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The Dynamic Behavior of Efficient Timber Prices 
 

Abstract:  The problem of when to optimally harvest trees when timber prices evolve 
according to an exogenous stochastic process has been studied extensively in recent 
decades.  However, little attention has been given to the appropriate form of the 
stochastic process for timber prices, despite the fact that the choice of a process has 
important effects on optimal harvesting decisions.  We develop a simple theoretical 
model of a timber market and show that there exists a rational expectations equilibrium in 
which prices evolve according to a stationary ARMA(1,1) process.  Simulations are used 
to analyze a model with a more general representation of timber stock dynamics and to 
demonstrate that the unconditional distribution for rational timber prices is asymmetric.  
Implications for the optimal harvesting literature are: 1) market efficiency provides little 
justification for random walk prices, 2) unit root tests, used to analyze the informational 
efficiency of timber markets, do not distinguish between efficient and inefficient markets, 
and 3) failure to recognize asymmetric disturbances in time-series analyses of historical 
timber prices can lead to sub-optimal harvesting rules. 
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The Dynamic Behavior of Efficient Timber Prices 

Introduction 

In recent decades, the problem of when to optimally harvest trees when timber 

prices (and other components of forestry profits) are uncertain has received a great deal 

of attention.1  In these studies, price is assumed to evolve according to an exogenous 

stochastic process, and the corresponding dynamic optimization problem is solved to 

yield an optimal harvesting rule.  The form of the stochastic price process differs across 

studies.  Some researchers have analyzed non-stationary random walk processes (e.g., 

geometric Brownian motion), while others have examined stationary autoregressive and 

serially uncorrelated processes.  The basic insight provided by these studies is that, in 

most of the cases examined2, optimal harvesting involves the use of a reservation price 

rule whereby timber managers harvest when price climbs above a reservation price and, 

otherwise, delay harvest and revisit the decision in the next period.  It is shown that a 

reservation price rule weakly dominates a fixed-rotation rule consisting of Faustmann 

rotations evaluated at the mean of the price process. 

The central question addressed in this study is:  what is the appropriate model of 

timber prices?  This is an important question given the prescriptive nature of the timber 

                                                 
1 A representative, but but no means exhaustive, list of studies is Norstrom (1975), Brazee and Mendelsohn 
(1988), Morck et al. (1989), Clarke and Reed (1989), Haight and Holmes (1991), Haight and Smith (1991), 
Lohmander (1992), Thomson (1992), Reed (1993), Yin and Newman (1997), Plantinga (1998), Gong 
(1999), and Saphores et al. (2002).  These studies complement the literatures on renewable and 
nonrenewable resource use under uncertainty (e.g., Brennan and Schwartz, 1985; Dasgupta and Heal, 1974; 
Pindyck, 1984) and irreversible land development under uncertainty (Arrow and Fisher, 1974; Fisher and 
Hanemann, 1986; Albers, 1996). 
2 The exception is when prices follow a random walk process and timber production involves no fixed costs 
(see, for example, Thomson, 1992). 
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harvesting literature3 and evidence that the form of the price process strongly influences 

the performance of a reservation price rule relative to the Faustmann rotation (Haight and 

Holmes, 1991; Plantinga, 1998).  Nonetheless, most authors appear to select the form of 

the price process for analytical convenience.  When justification for the process is 

offered, one of two general arguments have been made.  First, some authors have argued 

for random walk processes on the grounds that such prices are consistent with an 

informationally efficient timber market (Thomson, 1992; Reed, 1993).  In the same vein, 

a number of authors have tested the hypothesis of efficient timber markets by applying 

unit root and other tests to time-series data on timber prices (Washburn and Binkley, 

1990; Haight and Holmes, 1991; Hultkrantz, 1993; Yin and Newman, 1995; Abildtrup et 

al., 1997).  The motivation for these studies is the claim that harvesting rules can work 

only if markets are inefficient since they rely on predictable price movements.  Second, 

some authors take an empirical approach and fit time-series models to historical price 

series (Haight and Holmes, 1991; Gong, 1999; Saphores et al. 2002). 

The objective of this paper is to examine the theoretical foundations for timber 

price dynamics.  We focus on the use of relatively young forests, as distinct from the 

problem of extracting old-growth timber consider by Reed (1993) and Sapphores et al. 

(2002).  With young forests, growth in the resource becomes a central feature of the 

problem and, as we show, has important implications for price dynamics.  In the next 

section, we develop a simple model of a competitive timber market and examine the 

stochastic properties of efficient prices generated in this setting.  In our model, 1) timber 
                                                 
3 Particularly in studies published in forestry journals, authors advocate the use of reservation price rules by 
timber managers.  For example, Brazee and Mendelsohn (1988) write, “When market demand and supply 
conditions are such that timber prices are relative high, individual land owners should respond by cutting 
more.  By tailoring harvests to variations in prices, the present value of all future timber revenues can be 
greatly enhanced over the standard Faustmann model.”  
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managers are price-takers with rational expectations who maximize the present 

discounted value of expected timber revenues over an infinite horizon, 2) timber demand 

is subject to exogenous i.i.d. shocks, and 3) the stock of timber evolves according to 

harvesting and a deterministic growth function.  We show that under the stated model 

assumptions there exists near a perfect foresight steady-state a unique stationary rational 

expectations equilibrium that can be completely represented by a stationary ARMA(1,1) 

price process.  This result indicates that stationary serially-correlated prices can arise in 

an informationally efficient timber market even when market shocks are i.i.d.  Thus, our 

theoretical results indicate that market efficiency provides little justification for random 

walk prices and that the unit root tests applied in earlier studies do not distinguish 

between informationally efficient and inefficient markets for timber. 

In the following section, simulations are employed to analyze a more general 

model of the timber market.  In contrast to the theoretical model in which the timber 

inventory is represented by a single stock variable, we consider a more standard age-class 

inventory model.  The model is used to simulate long sequences of prices, which, 

consistent with our theoretical results, display the features of a stationary and serially 

dependent price process.  Moreover, simulations are used to show that the unconditional 

price distribution is asymmetric.  A similar result is produced in models of optimal 

commodity storage (e.g., Williams and Wright, 1991), and is a consequence of stock-outs 

(depletion of the inventory).  In contrast, price asymmetry in our model arises from the 

concavity of the growth function.  This result indicates that researchers who rely on 

empirical evidence to justify a stochastic process for timber prices should exercise 

caution in fitting models to historical price series since the assumption of symmetric 
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disturbances, adopted in all previous studies, may not hold.  Incorrectly assuming 

symmetric disturbances can result in sub-optimal harvesting rules.  These and other 

implications of our results are discussed in greater detail in the final section of the paper. 

 

A Model of an Efficient Timber Market 

In this section, we explore the dynamics of timber prices in a rational expectations 

equilibrium.  Our purpose is to demonstrate that stationary and serially correlated prices 

can be generated even in a very simple market environment.  By focusing on a simple 

model, we can derive concise analytical results and elucidate the factors determining the 

behavior of efficient prices.  Simulations are used in the following section to examine 

price dynamics in a more complex setting.  Our model has a similar structure to the 

models of competitive storage analyzed by Williams and Wright (1991) and Deaton and 

Laroque (1992, 1996), except that the resource in our model exhibits stock-dependent 

growth.  As well, our model can be viewed as a stochastic version of Berck’s (1981) 

model of a renewable resource market. 

 

Agent Behavior 

Agents in the market are timber growers who each have access to a stock that 

evolves according to a deterministic growth function.  At each time t, agents choose some 

portion of the stock to sell in a competitive market, subject to the constraint that the 

quantity harvested ( ) cannot exceed the available stock ( s ); that is, .  The stock 

remaining after harvest, defined as 

tq t tq s≥ t

t t tx s q≡ − , (1) 

 6



grows according to the increasing and concave function .  Thus, the deterministic 

stock dynamics in our model may be summarized as, 

( )tg x

 1 ( )t ts x g x+ t= + . (2) 

In the forest economics literature, timber volume is more commonly modeled as a 

function of the age of a timber stand.  If a forest is composed of multiple stands of 

varying ages, then in general there is not a unique correspondence between total timber 

volume and timber growth.  For simplicity, we ignore the age composition of the forest 

and treat the timber resource as homogeneous.  In the simulations presented below, a 

more conventional age-class model of the timber resource is considered. 

Timber is competitively supplied by n agents.  Aggregate demand for timber is 

stochastic (see below) and, thus, risk-neutral agents will maximize expected discounted 

profits.  By assuming that agents are identical, we can focus on the optimal supply 

decision for a single, representative timber grower.  Specifically, the representative agent 

chooses the contingency plan { } to solve, tq

{ } 0

1

0

max

. . 0
( )

given

t

t
t tq t

t

t t

E p q

s t x
s x g x
x

β
∞

=

+

≥
= +

∑

t

 

where β is the discount factor, tp  is the price of timber, and timber management costs are 

assumed to be zero.  From the Kuhn-Tucker conditions, we obtain the Euler equations, 

 1

1

(1 '( )) 0
(1 '( )) 0

t t t t

t t t t

p g x E p x
p g x E p x

t

t

β
β

+

+

= + >
≥ + =

  
(3a)
(3b)
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In what follows, we focus on the interior solution to the representative agent problem, 

and, thus, equation 3a is the relevant behavioral equation.4  It says that agents will supply 

timber up to the point where the marginal benefit of selling in time t equals the 

discounted expected marginal benefit of selling in t+1, taking into account the growth in 

the stock between t and t+1.  Conditions required for an interior solution to exist are 

discussed below.  In the simulations section we consider corner solutions as well; that is, 

we solve the model with a version of equation 3b included. 

 

Market Equilibrium 

The supply of timber is determined by the agent’s Euler equation (3a) and the 

stock dynamics in (2).  Demand for timber is exogenous and subject to stochastic shocks 

transmitted through output markets for wood products.  Inverse demand is denoted, 

 ( ,t tp D nq )tε=  (4) 

where tε  is an i.i.d. shock with known distribution.  A rational expecations equilibrium 

(REE) of this model is a 4-tuple of stochastic processes {  that simultaneously 

satisfy equations (1), (2), (3a), and (4).  Unfortunately, systems of non-linear, 

expectational difference equations cannot, in general, be solved.  Instead, the standard 

approach in the macroeconomics literature on real business cycles (e.g., Kydland and 

Prescott, 1982; Farmer, 1999) is to log-linearize the system of equations about a perfect 

foresight steady-state.  The idea is simple.  If there is a perfect foresight steady-state, then 

the linearization about that steady-state should well approximate the local dynamic 

, , , }t t t ts q x p

                                                 
4 Here, we are considering the case in which stock-outs ( 0tx = ) do not occur; we are not assuming that 
they cannot occur.  If this were the case, timber would not be scarce and there would be no basis for 
positive prices. 
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behavior.  If the steady-state is also robust to small perturbations, then adding stochastic 

shocks with small support should not cause the system to deviate from the neighborhood 

in which the approximation is valid.  Once the linearization is complete, results from the 

literature on multivariate linear expectational difference equations may be applied to 

obtain the REE.  Complete details on the procedure can be found in Evans and 

Honkaponja (2001). 

We begin by identifying the perfect foresight steady-state.  The demand shock is 

assumed to equal its mean value, denoted ε .  In the steady-state, prices are constant and, 

thus, the Euler equation (3a) implies 1 '( ) 1/g x β+ = , where barred variables will 

represent their steady-state values.  The invertibility of '  pins down g x  and the steady-

state values of stock, harvest, and price are subsequently given by ( )q g x= , s x q= + , 

and ( ,p D nq )ε= , respectively.  Existence of an economically reasonable steady-state is 

not guaranteed; that is, a steady-state with 0p > .  It is clear that for most reasonable 

specifications of g, a positive x  will obtain and yield reasonable (positive) values of s  

and q .  However, for a given demand specification, large values of q  could result in 

negative steady-state prices.  This issue will be considered in greater depth in an example 

provided below. 

We are now in a position to obtain the linearized model by taking a Taylor series 

expansion about the steady-state.  For equation (3a), the first-order expansion is, 

1( ) (1 '( )) ''( )( ) (1 '( )) ( )t t t tp p p g x p g x x x p g x E p pβ β β ++ − = + + − + + − . 

Noting that (1 '( ))p g x pβ= +  and expressing variables as percent deviations from their 

steady-state values (indicated by hats), we obtain, 

 1ˆ ˆ ''( )t t t ˆtp E p xg x xβ+= +  (5) 
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Applying the same procedure to the other equations yields, 

 
1

1 2

ˆ ˆ( / )(1 '( ))
ˆ ˆ ˆ( / ) ( / )

ˆˆ ˆ( / ) ( , ) ( / ) ( , )

t t

t t t

t t

s x s g x x
x s x s q x q
p q p nD nq q p D nq tε ε ε

+ = +
= −
= + ε

 (6) 

where  is the partial derivative of the inverse demand function with respect to the ith 

argument and 

iD

t̂ε  is the percent deviation from its mean. 

We next compute a simplified reduced form for our model and analyze the REE.  

Combine equations (5) and (6) to eliminate the variables q and s.  This leaves, 

 1

1 1 2

ˆ ˆ ˆ
ˆ ˆ ˆ

t t t t

t t t

p E p x
x x p ˆt

α
γ γ µ

+

−

= +
= + +

, (7) 

where ''( ) 0xg xα β= < , 1 1 '( )g x 0γ = + > , 2 1/( ( , )) 0p xnD nqγ ε= − > , and 

2 1 ˆˆ ( , ) /( ( , ))t D nq xnD nq tµ ε ε ε= ε

1

 .  A REE of the model may be obtained by finding a 

stationary solution to the linear expectational difference equation (7).  A REE, however, 

may not exist and, even if it does, the equilibrium may not be unique.  If a unique REE 

exists, then the model is said to be determinate.  Whether or not the model is determinate 

depends on the magnitude of certain eigenvalues (details are found in Appendix A).  We 

have the following proposition regarding the determinacy of the model: 

Proposition 1.  If the steady-state is economically reasonable, then the model is 
determinate if and only if the reduced-form parameters satisfy, 
 
 2

1 2(1 ) 4γ αγ γ+ − > ; (8) 
 
otherwise, no equilibrium exists. 
 
Proof of Proposition 1.  The proof is omitted, but available from the authors upon 
request.  The restriction in (8) is equivalent to the assumption that the eigenvalues iλ  
(see Appendix A) are real. 
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If the steady-state parameters are economically reasonable and the reduced-form 

parameters satisfy (8), then the unique REE may be obtained using standard techniques, 

as described in the Appendix.  From equation (A4), we see that the equilibrium must 

satisfy, 

 1 1 2

1 1 2

ˆ ˆ ˆ
ˆ ˆ ˆ

t t t

t t t

p x
x x p ˆt

φ φ µ
γ γ

−

− µ
= +
= + +

. (9) 

Equation (9) could be placed in standard VAR form, but the one-dimensional nature of 

the dynamics permits a simple ARMA(1,1) representation, as follows: 

 1 1 2 1 1 2 1 1 2ˆ ˆ ˆ( ) ( )t t tp p ˆtγ φ γ φ φ γ µ φ µ− −= + + − + . (10) 

We conclude that, provided an interior steady-state exists, the associated unique efficient 

stationary price process will have an ARMA(1,1) structure. 

Before providing an example, two points about the solution are noted.  First, the 

above analysis was conducted under the assumption that an interior solution to the 

agent’s optimization problem exists.  Now notice that if a reasonable steady-state exists, 

then there is an interior solution to the corresponding non-stochastic model.  Further, 

provided the shocks are small enough to maintain the linear approximation, we have 

found an interior solution to the stochastic problem as well.  Second, a consequence of 

linearizing the model is that the disturbance terms in (10) are proportional to the demand 

shock t̂ε .  This implies that the unconditional price distribution will be symmetric if the 

demand shock distribution is symmetric.  This need not be the case for a non-linearized 

model, as our simulations will demonstrate. 
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Example 

We provide an example to show that an economically reasonable determinate case 

exists, and to give additional intuition for the preceding results.  For simplicity, we adopt 

the following linear specification of the inverse demand function, 

 1( , )t t t t tp D nq c nqε ε= = −  (11) 

where c  and 1 0> tε  is i.i.d. with mean  and variance 0 0c > 2σ .  For the growth function, 

we specify, 

0( )g x g xθ= + , 

where  is the timber growth with zero stock and 0 0g ≥ θ  captures the curvature of the 

growth function. 

With the functional forms specified above, there are seven structural parameters 

in our model.  We assign the following values to these parmeters:  0.95β = , , 0 10g =

0.1θ = , , , , and 0 10c = 1 0.8c = 2 1σ = 1n = .  The steady-state values are then 2.04x = , 

11.07q = , 1.14p = , and 13.11s = .5  Thus, we see that there exists an economically 

reasonable steady-state with positive prices, quantities, and stock levels.  We can then 

compute the reduced-form parameters of the model in (7):  0.045α = − , 1 1.05γ = , and 

2 0.7γ = .  Following the procedure described in the Appendix, we obtain the stationary 

ARMA(1,1) process defined by, 

 1 1ˆ ˆ ˆ0.86 0.31 0.04t t tp p ˆtµ µ− −= − + . (12) 

                                                 
5 Lowering the mean intercept to c0=5 shifts the demand curve far enough inward so that the equilibrium 
price level is negative and, thus, the associated steady-state is not reasonable. 
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Given the assumed parameter values, the price expression in (12) completely 

characterizes the REE of our model. 

 

Simulation of an Efficient Timber Market with Multiple Timber Age Classes 

In this section,  we simulate the infinite-horizon REE using an age-class model of 

the timber inventory commonly applied in the forestry literature.  In the model, the fixed 

amount of land dedicated to timber production is normalized to one, and allocated across 

six timber age classes.  The volume of timber per unit land ( v ), beginning with age class 

1, is 1.0, 2.2, 3.35, 4.45, 5.5, and 6.5.

j

6  Thus, growth is concave, as timber grows by 1.2 

units from age 1 to age 2, by 1.15 units from age 2 to age 3, and so on.  At age 6, timber 

obtains old-growth status, in the sense that it no longer grows.  With the total land in 

forests normalized to one, the amount of land in age class one, l , is simply, 1

6

1
2

1 j
j

l l
=

= −∑ , 

and so the state of the forest is fully described by the amount of land in each of the age 

classes 2 through 6. 

Over time timber grows from one age class to the next, unless it is cut, in which 

case it reverts to age class 1, or unless it attains old growth status, in which case it 

remains in age class 6 until harvested.  Formally, then, the state of the forest evolves 

according to the following system, where  is the amount of land in age class j 

harvested at time t: 

jth

                                                 
6 The results are robust to other representations of the timber growth function. 
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 , (13) 

6

1
2

6

2, 1 1 1 1
2

, 1 1, 1,

6, 1 5 6 5 6

1

1

3, 4,5

t jt
j

t t t jt
j

j t j t j t

t t t t t

l l

l l h l h

l l h j

l l l h h

=

+
=

+ − −

+

= −

= − = − −

= − =

= + − −

∑

∑ t

6

6

t jv

with initial conditions on land, 

 , (14) 
0

6

0
2

0 2

1

j

j
j

l j ,...,

l
=

≥ =

≤∑

and with the harvested land in each age class constrained to be positive and less than the 

total land in the age class: 

  . (15) 0 1jt jth l j ,..., t≤ ≤ = ∀

This last condition permits the harvest of all the timber in an age class, as well as all 

timber in all age classes.  As such, we broaden the focus of the theoretical model to 

consider corner, in addition to interior, solutions of the model.  

Whereas in the theoretical analysis the state of the forest is completely described 

by the stock of timber, here the stock of timber is not sufficient to identify the state of the 

forest; there is an infinite number of ways to arrange the age structure of the forest to 

obtain a given stock of standing timber.  With the above notation, the total stock of 

timber is defined as: 

6

1
t j

j

s l
=

= ∑ . 
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The demand for timber takes the form in (11) with c n1 1= = , where tq  is the aggregate 

harvest at time t, , and 
6

1
t j

j
q h

=
= ∑ t jv tε  is drawn from a discrete uniform distribution with 

values ranging from 9.6 to 10.4 in increments of 0.1.   

In a competitive timber market, REE prices are those that maximize the expected 

discounted value of timber.  Formally, we define ( )6

2t jt j
l

=
=l  as the vector of land state 

variables; as the vector of land areas harvested at time t; ( )6

1t jt j
h

=
=h ( t tw , )εl  as the 

state-dependent value of the forest at time t, given optimal decisions are made; and β  as 

the discount factor (in the simulation, 1 1 05/ .β = ).  Then REE prices are found by 

solving the infinite-horizon problem, 

 ( ) (2
1 1

1
2t

t t t t t t t tw , max q q E w ,ε ε β ε+ + )
 = − +  h

l l , (16) 

subject to (13)-(15). 

With the value function ( )t tw ,εl  unknown, solving for the infinite-horizon REE 

price function for a model such as this one involves the solution of a stochastic dynamic 

programming (SDP) problem with J state variables:  J-1 variables describing the state of 

the forest, and the disturbance term ε .  An obvious obstacle to numerically solving for 

REE prices is the so-called curse of dimensionality—the size of the programming 

problem increases exponentially as the number of variables in the state space increases 

linearly.  Our choice of six age classes strikes a balance between complexity—in 

particular, having enough age classes so that the concavity of timber growth comes into 

play—and computational ease.   
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It is important to emphasize that, in the algorithm discussed below, we 

approximate the derivatives of ( )t tw ,εl , rather than in ( )t tw ,εl  itself, because good 

approximations of a function obtained from discrete methods often yield poor 

approximations of the function’s derivatives, and, as revealed below, REE prices are 

tightly bound to the derivatives of ( )ttw ,εl .  With this in mind, the solution algorithm 

involves the first-order necessary conditions and the adjoint equations.  The former 

include,  

 

1 21

1, 1

1 21
6 6 6

6, 1

0, 1,...,5

0,

t
t j jt jt

j t

t
t t t

t

wp v E j
l

wp v E
l

β ρ ρ

β ρ ρ

+

+ +

+

+

 ∂ − − + = = ∂  
 ∂ − − + = ∂  

 (17) 

where 1
jtρ  and 2

jtρ  are Lagrange multipliers associated with constraint (15), and the time 

subscript on w indexes the state at which the derivative is evaluated.  The adjoint 

equations are:  

 

1 1 1

1, 1 2, 1

1 1 1
6

6 6, 1 2, 1

, 2,3, 4

.

t t t
jt

jt j t t

t t t
t

t t t

w w wE j
l l l

w w wE
l l l

ρ β

ρ β

+ +

+ + +

+ +

+ +

 ∂ ∂ ∂ = + − = ∂ ∂ ∂  
 ∂ ∂ ∂ = + − ∂ ∂ ∂  

,5

 (18) 

Details on the solution algorithm are provided in Appendix B. 

Figure 1 presents a typical 100-year sequence of REE prices from the model.  

Consistent with the results of the theoretical model, this price sequence exhibits the 

classical symptoms of a stationary, serially-correlated price series:  prices cross the long-

term mean price (8.89, denoted by the red-dashed line) frequently and some persistence 

in the price level is evident.  We fit the AR(1) model, 
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0 1 1t tp d d p tη−= + + , 

to a sequence of five thousand prices.  This yields parameter values  and 

 with standard errors 0.119 and 0.0134, respectively, and an estimated standard 

deviation of 

0 5.95d =

1 0.331d =

η  equal to 0.405.  The coefficient on lagged price suggests a stationary 

process with a modest degree of serial dependence.  We present these results purely for 

descriptive purposes.  Below, we discuss a number of challenging econometric issues that 

arise with the estimation of ARMA models of timber prices. 

As noted above, our timber model is similar to models of optimal commodity 

storage (e.g., Williams and Wright, 1991), except that these models typically assume the 

stock depreciates at a constant rate.  An important result from this literature is that price 

changes are asymmetric:  positive changes above the mean (spikes) tend to be larger in 

absolute value than negative changes below the mean (troughs).  This asymmetry results 

from periodic stock-outs.  When there is a positive demand shock (or negative supply 

shock) and a stock-out occurs, price arbitrage cannot moderate increases in the current 

price due to the impossibility of drawing on future stocks.  In contrast, during periods of 

low demand when stock-outs do not occur, price declines are cushioned by carrying 

inventory forward to the future.   

In our simulations, stock-outs never occur in a simulation of 10,000 periods.  This 

accurately reflects the situation on the ground—the depletion of the timber inventory 

would never arise in the U.S. market, nor in most foreign markets.  Yet, despite the 

absence of stock-outs, our simulated timber prices display the same asymmetric pattern 

of high peaks and low troughs.  Figure 1 suggests that prices are right-skewed:  prices are 

usually below average.  This is confirmed in Figure 2, which presents the estimated 
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unconditional probability density function for prices in the simulation model.  The 

function was obtained via kernel density estimation using a normal kernel and the 

approximately optimal bandwidth described by Silverman (1986).  The estimation 

involved 1000 prices, each of which was generated as the terminal price of a 500-period 

simulation, with the initial state of the forest chosen randomly.  The null hypothesis of no 

skew in the distribution is rejected at the 1% level. 

For timber, then, the explanation of asymmetric prices in an efficient market 

subject to symmetric shocks is not stock-outs per se, yet the fundamentals of the 

explanation are the same as in the storage literature.  Essentially, there are “stock-outs” of 

slower-growing timber in the oldest age classes.  When the older timber stock is depleted 

during periods of high demand, owners of younger, faster-growing timber may withhold 

timber from the market, preferring to forego high prices in the current period for the high 

growth in their timber.  In contrast, during periods with low demand and a relative 

abundance of old timber, owners of older, slower-growing timber are more willing to 

supply in the current period because the opportunity cost of doing so is lower. 

We demonstrate this dependence of prices on the stock level by plotting the 

difference between 1tp +  and tp  against the stock level  for a typical 1,000-year 

sequence of prices (Figure 3).  Note, first, that prices are more volatile at low stocks than 

at high stocks, even though stock-outs never arise.

ts

7  Second, when stocks are low, prices 

at time t+1 are more likely to be lower than prices at time t (the price difference is less 

than zero).  This is because when stocks are low, the only timber remaining is the fast-

                                                 
7 A stock-out is implied by a stock level of 1.0, which indicates that the entire forest is in stand age 1 (recall 
that the forest area is normalized to unity, and the volume of timber in stand age 1 is 1.0 per unit area).  
This is possible only if all stock in the previous period was harvested.  The minimum stock in the 1000-
year sequence is 1.364. 
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growing timber in the younger age classes, and the owners of this timber are willing to 

forego a high current price for a lower price in the future, in order to reap the benefits of 

relatively high timber growth.  Note, too, that when stocks are high, the reverse 

relationship holds: prices are more likely to be higher in period t+1 than in period t (the 

price difference is greater than zero).  When stocks are high, a large amount of timber is 

in older, slower-growing timber.  The owners of this timber are willing to sell at a low 

price—foregoing the opportunity to fetch a higher price by postponing harvest—in order 

to move their land into younger, faster-growing trees. 

 

Discussion and Conclusions 

The key result from our theoretical model is that stationary serially-correlated 

prices can arise in an efficient timber market even when market shocks are i.i.d.  Before 

we can explore the implications of this result for the optimal harvesting literature, we 

must be clear about the meaning of “efficient market.”  The notion of an efficient market 

is frequently associated with Eugene Fama.  In an influential paper, Fama (1970) 

attempts to formalize the idea that efficient markets fully reflect available information by 

requiring the forecast errors to form a martingale difference sequence.  More specifically, 

he says the price process tp  is efficient with respect to the information sets tI  if  

 1 1t t t 1tx p E p+ + += −  (19) 

satisfies , where 1 0t tE x + = ( )( )tE E I⋅ = ⋅ t .  Various forms of efficiency differ according 

to the content of the information set; for example, weak-form efficiency refers to the case 

in which tI  contains exactly the history of past prices.  Unfortunately, this formal 

definition is of little use.  As LeRoy (1989) notes, Fama’s definition is a tautology and 
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hence has no meaningful implications.  To see this, simply apply the expectations 

operator to both sides of (19) and note that 1( ( )) ( )t t t t tE E p E p+ 1+=  from the law of 

iterated expectations. 

tI

In a subsequent paper that attempts to address these difficulties, Fama (1976) 

offers the following alternative:  a market is efficient if agents are rational and use all 

relevant available information to form expectations.  A slightly more formal statement is 

that a market is efficient with respect to the information sets  provided agents form 

their expectations mathematically conditional on these information sets.  Note, then, that 

any rational expectations equilibrium is efficient with respect to the information set 

imposed by the model.  In particular, the ARMA(1,1) price process derived from our 

theoretical model is efficient with respect to the information set containing all past values 

of prices and shocks.  It is important to keep in mind that these prices are an equilibrium 

result of rational, optimizing behavior.  Thus, even if prices are serially correlated, as in 

(12), there is no scope for agents to earn even higher returns by exploiting stochastic 

price variations.  While this statement may seem at odds with the central conclusion of 

the optimal harvesting literature, it should be remembered that the point of comparison in 

these studies is a myopic Faustmann rule.  In an efficient market, agents cannot generate 

higher returns because all relevant information about the structure of the market is 

already incorporated into their decision calculus.   

As noted above, authors of previous studies have motivated the selection of non-

stationary random walk processes for timber prices on the grounds that such prices are 

consistent with an efficient timber market.  One finds a source for this claim in Fama 

(1970):  “… it is best to regard the random walk model as an extension of the general … 
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efficient markets model in the sense of making a more detailed statement of the economic 

environment.”  However, our results show that market efficiency provides little 

justification, at least in the case of timber markets, for random walk prices.  The ARMA 

(1,1) process derived above represents efficient prices and may be stationary depending 

on the values of model parameters.  In our example, we show that a stationary process 

can be obtained with economically reasonable choices of parameters.  Of course, there is 

no reason to think that an efficient market cannot also produce non-stationary prices.  

Thus, market efficiency alone provides little guidance for the specification of a price 

process. 

A similar critique applies to studies that use time-series data on timber prices to 

test for the efficiency of timber markets (Washburn and Binkley, 1990; Haight and 

Holmes, 1991; Hultkrantz, 1993; Yin and Newman, 1995; Abildtrup et al., 1997).  These 

studies focus on weak-form efficiency; that is, efficiency is defined with respect to the 

information set containing past prices.  The general approach is to apply Dickey-Fuller 

unit root tests to historical price series, where failure to reject the unit root (indicating 

non-stationarity) is taken as evidence of market efficiency.8  In its simplest form, the 

Dickey-Fuller test requires estimation of, 

 0 1 1t tp b b p tε−∆ = + +  (20) 

where tp  is the logged price in time t, 1t t tp p p −∆ = − , b  and   are model parameters, 

and 

0 1b

tε  is a normally distributed disturbance term with zero mean.9  The null hypothesis is 

                                                 
8 The test in Washburn and Binkley (1990) has a slightly different form; see their reply (Washburn and 
Binkley, 1993) to the comment by Hultkrantz (1993). 
9 Haight and Holmes, Yin and Newman, and Abildtrup et al. also include lagged, first-differenced price 
terms, which accommodates a more complicated moving average error structure (this is an augmented 
Dickey-Fuller test).  The null hypothesis for this version of the model is also 1 0b = .  
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1 0b = , implying that prices follow a random walk process with drift rate .  In most of 

the timber price studies, the null hypothesis of a unit root is rejected.  Our results suggest, 

however, that a finding of stationarity does not distinguish between efficient and 

inefficient markets.  For the ARMA(1,1) process in (12), b

0b

1 0.14= .  For the simulated 

prices series discussed in the previous section, b1 0.67= .  Thus, we see that rejection of 

the unit root should not be accepted as evidence of market inefficiency.  Nor should it be 

viewed as evidence of efficiency since there is no reason to think that inefficient markets 

cannot generate stationary prices. 

A key insight provided by the simulations is that the concavity of the timber 

growth function may give rise to an asymmetric unconditional price distribution.  If 

prices are modeled as an ARMA(p,q), then the asymmetry of the unconditional price 

distribution implies that the disturbance term in the econometric model is asymmetric as 

well.10  In earlier studies, researchers who fit empirical models to historical price series 

have assumed symmetric errors.  While an incorrect assumption of symmetric 

disturbances will not bias least squares coefficient estimates, it can produce sub-optimal 

harvesting rules.  In particular, under an assumption of symmetric prices, landowners will 

tend to regard high prices as a rarer event than they actually are.  Thus, landowners will 

be induced to harvest in cases where postponing the harvest decision is optimal. 

The discussion thus far would appear to argue the case for empirically-based 

models of timber prices, provided appropriate attention is paid to the structure of the error 

                                                 
10 For an ARMA(p,q) process with symmetric disturbances, it can be shown that the unconditional price 
distribution is symmetric.  The proof involves rewriting the right-hand side of the ARMA model as a linear 
combination of disturbances and then showing that a linear combination of symmetric disturbances is itself 
symmetric.  It follows, therefore, that if the unconditional price distribution is asymmetric, then the 
disturbance term in the ARMA price model is asymmetric. 
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terms.  However, it must be recognized that not all REEs can be represented as ARMA 

processes.  That it could in the model analyzed above is a consequence of the simple 

stock dynamics in (2).  If multiple stock variables are required to represent the timber 

inventory, as with the age-class model considered in the simulations, then the solution 

cannot be represented by a single equation.  In general, a system of equations (a vector 

autoregressive moving average model, or VARMA) that includes stock variables in 

addition to prices and shocks will need to estimated.  Given the heterogeneity of timber 

resources, such models could be difficult to estimate and apply to actual harvesting 

decisions.  Thus, future research might compare the performance of simple models of 

timber prices to models providing a more complex representation of market equilibria. 
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Figure 1.  Typical Sequence of REE Prices
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Figure 2.  Estimated Unconditional Probability Density Function of REE Prices
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Figure 3.  Effect of the Timber Stock on the Price Difference, pt+1 - pt
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Appendix A 
 

In this appendix, we obtain the REE of the reduced-form model in (7).  For 
notational ease, we make the following variable change:  1 ˆt tx x+ =% .  Then, (7) can be 
written,  
 

1

11 2

ˆ ˆ 01 0 1
ˆ0 1

t t t

t t

p E p
x x

α

tµγ γ
+

+

      
= −

 
      

  
 

   % %  

t

, 

 
or, more compactly, 1t t tHy FE y η+=

ty
+ .  Recall that a martingale difference sequence is 

any stochastic process  that satisfies 1 0t tE y + = .  Now define the forecast error as the 2-
vector 1t t ty E tyξ −= − .  Because agents in the model are assumed to be rational, the 
expectations operator is the conditional expectations operator (in particular, the 
information set includes the structural equations (5) and (6)).  It follows from the law of 
iterated expectations that tξ  is a martingale difference sequence.  Furthermore, because 

1tx +%

t

 is known at time t, .  Thus, the forecast error for the second element of 1 ˆ( )t t tE x x+ =%

ξ  is zero; that is, 2, 1 1 1t t t tx E x 0ξ + + += −% % = . 
Using the definition of the forecast error, the reduced-form model may be written,  

 
 1 1

1 1t t ty F Hy F tη ξ− −
− −= − + . (A1) 

 
We may conclude that if  is a REE, then there exists a martingale difference sequence ty

tξ  with 2, 0tξ =  so that  satisfies (A1).  On the other hand, it may not be the case that 
any such martingale difference sequence yields an REE.  To more precisely determine the 
number and nature of the equilibria, we now analyze which martingale difference 
sequences yield reasonable solutions to (A1). 

ty

The linearization technique used to obtain (5) and (6) requires us to focus on 
(asymptotically) stationary equilibria, and for obvious reasons.  If the equilibrium is non-
stationary, the process will tend to drift away from the steady-state and, thus, from the 
neighborhood in which the linearization applies.  Even near a steady-state there may exist 
many stationary REE.  The steady-state is determinate if there is associated a unique 
stationary REE; if many exist the steady-state is indeterminate and if none exist it is 
explosive.  Whether or not our steady-state is determinate will depend on the modulus of 
the eigenvalues iλ  of the matrix .  This dependence is most easily seen by stacking 
our potential REE (A1) in VAR form.  We write 

1F H−

ˆ ˆ[ , , ]t t t tw p x 'µ= %  and, 
 

1

0
0 0 0

F H
G

α− − 
 =  
  

. 

 
Then, 
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 ''

1 ˆ[ , ]t t tw Gw tξ µ−= + . (A2) 
 
It is straightforward to show that G is diagonalizable with eigenvalues iλ  and zero, and 
so we write G S , where S is the matrix of eigenvectors and 1S −= Λ 1 2[ , ,0]Diag λ λΛ = .  
Changing coordinates to  allows us to write (A2) as, 1

tz S w−= t

't

 
 1 '

1 ˆ[ , ]t t tz z S ξ µ−
−= Λ + . (A3) 

 
We see now that if both eigenvalues lie in the unit circle then for any martingale 
difference sequence, 1,tξ , the resulting VAR is stationary (in this case,  and  are 
first-order autoregressive processes with coefficients on the lagged variables less than 
one).  This is the indeterminate case and the associated martingale difference sequences 
are sometimes referred to as sunspots.  We also see that if both eigenvalues lie outside the 
unit circle, then for any 

1,tz 2,tz

1,tξ  the result VAR is explosive.  In this case, the process would 
tend to move away from the steady-state and the non-linear dynamics of the model would 
come into play. Finally, if one eigenvalue is in the unit circle and one is outside, the 
determinate case obtains; there is a unique martingale difference sequence for which (A3) 
is stationary and the associated dynamics of  take place entirely in the contracting 
eigenspace.  Proposition 1 characterizes the regions of the parameter space corresponding 
to these types of steady-states; see text equation (8).

tw

11 
We will assume that the reduced-form parameters satisfy (8) and, without loss of 

generality, that 1 1λ >  and 2 1λ < .  Stationarity of (A3) then requires that  and 1, 0tz =
11 13

1, ˆtS S tξ µ= − , where  is the ij-component of SijS 1− .  The associated REE may then be 
written, 

 

 

12 13

11 11

1 1 2 1 1

ˆ

ˆ ˆ

t t

t t t

S Sp x
S S

x x p

µ̂t

tγ γ µ− − −

= − −

= + +

%

% %

. (A4) 

 
Equation (9) is derived from (A4) by defining , , replacing  12 11

1 /S Sφ = − 13 11
2 /S Sφ = −

tx%  with 1ˆtx − , and moving the second equation forward by one period. 
 

                                                 
11 This method of obtaining the REE is discussed extensively in Evans and McGough (2002). 
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Appendix B 
 

In this appendix, we provide details on the algorithm for solving the simulation 
model.  The algorithm involves three steps.  
 

1.  With the five expected marginal value functions ( ),

j

w
E

l
ε

β
 ∂ 
 ∂  

l
 approximated from 

the previous iteration (initially these functions are identically equal to zero), for each grid 
point in the state space a search across harvest volumes is made to find the harvest 
decision h  satisfying the six necessary conditions.  This search exploits the structure of 
the problem; namely, that because the rate of growth of timber declines with stand age, 
harvest must proceed monotonically from age class six to age class one.  So long as 
some, but not all, timber is harvested, the solution is characterized by the result that  
 

 ( )( ) 1

1, 1

, , 0REE t
j

j t

wp q v E
l

ε ε β +

+ +

 ∂ − = ∂  
h  (B1) 

 
for the age class j for which the acreage harvested is an interior solution ( ) or a 

degenerate corner solution (i.e., both B1 holds and 

0 jh l< < j

1 0ρ = ).  Otherwise, the equilibrium 
price is found from the inverse demand function with all timber stock consumed.  The 
solution is thus quickly bracketed within an age class, and quasi-Newton methods are 
then used to find the solution to (B1) for the candidate age class.       
 
2.  Given the solution of the problem in step 1 at all of the state grid points, the solution 

values of 1
jρ  are used in the adjoint equations to find new values of ( ),

j

w
l
ε∂

∂
l

.  Taking the 

expectation of these values over the disturbance term yields new approximations of the 

functions ( ),

j

w
l

E
ε ∂

 ∂  

l 


                                                

 at the grid points.  To these grid points a 5-dimensional 

Chebyshev polynomial of order five is fit (note, then, that the grid points are the 
Chebyshev nodes).12  In summary, the outcome at each iteration of the algorithm is a set 
of approximations of the five expected marginal value functions, each approximation 
being a five-dimensional Chebyshev polynomial. 
 The advantage of using Chebyshev polynomials to approximate functions is well-
documented in Miranda and Fackler (2002).  Not only do Chebyshev polynomials satisfy 
certain minimax theorems of approximation (theorems concerned with whether a 
polynomial minimizes the maximum approximation error), but coefficients of the 
polynomials are obtained by exceptionally rapid algorithms. 

 
12 We also fit a polynomial of order seven and found little effect on the results. 
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3.  The algorithm returns to step 1 with the new approximations of 
( ),

j

w
E

l

  ∂ ε
 

∂  

l

( )

, and 

terminates when the new approximations of equilibrium prices, ( ), ,REEp q ε εh , defined 
in (B1),  are “close enough” to the old approximations.13  Sequences of REE prices are 
then generated by substituting sequences of random draws from the distribution of 
demand shocks into the final version of (17) and solving for the REE prices, using the 
state equations (13) to update the state of the forest.     
 

                                                 
13 The convergence criterion used in the algorithm is that at each grid point, prices are within 1.0-5 percent 
of their values in the previous iteration. 
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