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Abstract 

An argument in favor of the development of genetically modified (GM) hybrids is that 

their presence is considered to be risk decreasing., and hence, insurance premiums for 

US corn growers who plant approved hybrids have been reduced. In this study we 

investigate, using a large set of experimental data, whether the presence in a corn 

hybrid of various combinations of GM traits is likely to affect production variability 

and downside risk. We estimate a heteroskedastic production function that allows for 

the variance of yield to change with the level of inputs, and use the residuals of the 

mean function to estimate the marginal effect of each input on variance and skewness 

of yield. The results show that the presence of most combinations of GM traits leads to 

an increase in both yield variability and downside risk.  

 

Key words: Production functions, yield, risk, skewness, corn, genetically modified 

traits. 

        JEL codes: C2, Q12, Q16 

 

Although much attention has been paid to the effect of the introduction of genetically 

modified (GM) crops (in particular, those with Bt traits) on mean yield, the risk element 

has received much less attention. Because production risk is a well documented aspect of 

most types of biological production, a complete evaluation of the impact on production 

of inputs, and new technologies, requires consideration of their interaction with the 

riskiness of output, as noted by Shankar, Bennett and Morse (2008). This is particularly 

important because  levels of yield variability and skewness can be influenced by the 

amount of input use: while some inputs (for example, land size) increase the level of 

yield variability, others (for example, irrigation, frost protection, disease-resistant seed 

varieties, and over-capitalization) will reduce variability.  

The recognition of this possibility has motivated two lines of research. The first is 

the theoretical analysis of the effect of specific inputs on yield variability. This 

discussion is particularly important in the case of agrochemical inputs such as pesticides 
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because it is inconclusive. If, as has been argued, GM traits are to be thought of as more 

effective pesticides then this discussion carries over to the discussion of the risk impacts 

of GM traits. We review this literature in the next section. Secondly, because, ultimately, 

the yield variability effect of specific inputs is an empirical question, there is the need for 

the definition of an analytical framework that allows for the possibility of risk increasing 

and risk decreasing inputs in the context of the estimation of production functions. Just 

and Pope (1978) proposed such an approach, one that allows the identification of the 

distinction between the effect of an input on the mean function and its effect on output 

variance.  

However, it is also important to take into account the effect of these inputs on 

downside risk, that is, the probability of being exposed to unexpectedly low returns, since 

empirical evidence suggests that farmers exhibit decreasing absolute risk aversion, and 

that their welfare is positively (negatively) affected by an increase (decrease) in 

skewness of returns (Antle 1987; Kim and Chavas 2003).  An increase in skewness of 

yield means a reduction in downside risk exposure, and skewness may be affected, for 

example, by chemical applications which may reduce a farmer’s risk of extremely low 

yields (Gallagher 1987).  The extension of the Just and Pope approach to higher 

moments of the distribution (including skewness) was proposed in Antle (1983). Both 

empirical approaches are briefly reviewed in section 3, while the empirical estimates of 

the effect of GM traits (and their combinations) on yield variability are presented in 

section 5. The results suggest that the introduction of GM traits in most combinations has 

led to an increase in yield variability in corn, and that downside risk has increased, not 

decreased. 

The policy implications of these results, in particular those policies directed to 

risk management (including insurance), are discussed in section 6 which also concludes. 
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For example, the Risk Management Agency (RMA), which manages crop insurance in 

the United States through the Federal Crop Insurance Corporation (FCIC), has agreed to 

the reduction, by between 14 per cent (for yield risk programs) and 20 per cent (for 

revenue programs), of insurance premiums for corn growers who plant approved hybrids 

with GM traits, under the assumption that triple-stacked corn hybrids have a negative 

effect on yield variability, or a positive effect on the skewness of yield. Whether such an 

assumption is valid is not a priori unanimously accepted and is, ultimately, an empirical 

question, that we address in this paper.  

Insurance, yield variability, pesticides and GM 

Production uncertainty has implications for the implementation of crop insurance, and 

the availability of crop insurance in the USA has depended on ongoing government 

support, at high cost. We provide a brief background to the program in the next section. 

Crop insurance 

Crop insurance contracts are developed by the FCIC, and by private sector insurance 

providers. Private insurance companies sell all Multiple Peril Crop Insurance (MPCI) 

and FCIC provides subsidized reinsurance to approved commercial insurers (Risk 

Management Agency 2008). The insurance provider agrees to indemnify the insured 

farmer against losses due to unavoidable perils, such as unusual climate, insects and 

disease, inability to plant or excessive loss of quality due to adverse weather during the 

crop year.  Actual Production History (APH) insurance covers between 50 and 85 per 

cent of the individual grower’s yield history (Barnaby 2009), and the producer insures 

between 55 and 100 per cent of the predicted price. If the harvested amount less any 

appraised production is less than the yield insured, the producer is paid an indemnity 

based on the difference (Risk Management Agency 2010). Other products pay 
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indemnities on the basis of low prices, low yields, or both. Growers may also select 

catastrophic (CAT) coverage (Barnaby 2009).  

 

Table 1. Insurance Statistics for Corn Compared with Total Crops 

Total Crop Year Statistics as of 31 January 2011   Corn Year Statistics as of 31 January 2011 
Item 1990 1999 2009 Item 1990 1999 2009 

Policies 
Number ('000) 

Policies 
Number ('000) 

895 1288 1171 295 451 504
Net acres insured 101361 196918 264621 Net acres insured 26304 52472 71893

Percent 
Insured acres as percentage 
of total acres planted to 
corn 35 67 83

Farmer paid premium 
Billion dollars

Farmer paid premium 
Billion dollars

0.62 1.35 3.52 0.16 0.4 1.36
Premium subsidies 0.22 0.95 3.82 Premium subsidies 0.05 0.2 2.04
Total premium 0.84 2.3 8.95 Total premium 0.21 0.6 3.4
Indemnities 0.97 2.43 5.43 Indemnities 0.12 0.36 1.18
Insurance protection 12.83 30.94 79.5 Insurance protection 4.04 8.6 31.1

Loss ratio 

Percent 

Loss ratio 

Percent 

116 105 58   55 60 35 
Loss ratio excluding 
subsidy 156 180 154 

Loss ratio excluding 
subsidy 75 90 87 

Sources: USDA NASS (2011); Risk Management Agency (2011) 

Some statistics comparing the insurance performance of corn with other crops are 

provided in table 1. For unsubsidized insurance to be viable, loss ratios (ratio of 

indemnities to premium payments) need to be no more than 0.7 (Wright and Hewitt 

1994). However, to encourage participation, the Federal Crop Insurance Act of 1980 

authorized a subsidy of 30% of the crop insurance premium limited to the dollar amount 

of 65% coverage, so that the objective is that pre subsidy premiums should be set at a 

level such that the loss ratio is 1.075 (Babcock, Hart and Hayes 2004). Over the 1980s 

and early 1990s the actuarial performance of the program was poor, but, following 

improvement in participation rates, the aggregate loss ratio fell to 0.98 for 1994-2003, 

compared with over 1.5 in1981-1993 (Glauber 2004). The loss ratio has continued to 

improve, particularly for corn.  
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Despite the program’s actuarial performance having become more acceptable, 

there is still concern about the large underwriting gains that private insurance companies 

earn under the program (Glauber 2004; LaFrance, Pope and Tack 2010), and the average 

annual cost to government of the whole program which, for the crop years 2002-2010, 

and excluding premiums, was $4.12 billion (Risk Management Agency 2011).  

If premiums are reduced, and risk (measured in terms of variance and skewness) 

can be shown to have increased (or not changed), the loss ratio could be expected to 

increase, particularly since Goodwin, Vandeveer and Deal (2004) find a negative 

relationship between premium rates and level of participation.  However it should also be 

noted that previous studies (Goodwin 1993; Knight and Coble 1997) have shown that 

demand for crop insurance is generally inelastic with respect to premium so the effect of 

the reductions on uptake of insurance may, in fact, be relatively small. 

Yield variability, pesticides and GM 

Bt corn is genetically engineered to produce a protein found in the soil bacterium 

Bacillus thuringiensis. The protein is toxic to lepidopterous insects (Hurley, Mitchell and 

Rice 2004). The most economically important pests of corn are the European corn borer 

and corn rootworm. Applications of foliar insecticide to control corn borer infestations 

provide protection of up to 80% against first generation corn borer, and 67% against 

second generation borer (Mason et al. 1996; Ostlie, Hutchison and Hellmich 1997; Gray 

and Steffey 1999; Baute, Sears and Schaafsma 2002). Corn rootworm was managed 

historically by rotating crops or with soil insecticide, but since some species of rootworm 

have evolved to reduce the effectiveness of crop rotation in some areas, and soil 

insecticide is not entirely effective, protection against rootworm through traditional 

methods is estimated at about 63% (Rice 2004). A non-zero pest infestation causes some 

pest damage, and realized yield adjusts downward, being lower than potential yield. 
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However if the Bt traits are present, the control of both pests could be considered to be 

close to 100%  (Rice and Pilcher 1998; Ortman et al. 2001; Baute, Sears and Schaafsma 

2002; Singer, Taylor and Bamka 2003; Dillehay et al. 2004; Rice 2004).  

The Bt traits in corn hybrids can therefore be classified as a kind of “super 

pesticide”, and are likely to have a positive effect on expected yield. They may also have 

an effect on yield variability, although there is less consensus in the literature, about the 

effect on yield variability of agrochemicals such as pesticide and fertilizer than there is 

about other inputs. Therefore, the marginal effect on yield variability for these inputs (the 

traits incorporated in the seeds) could be expected to be negative or positive, 

respectively, according to the differing views expressed by, for example, Feder (1979)  

and others on one hand and Horowitz and Lichtenberg (1993)and Pannell (1991) on the 

other. 

Feder (1979) is considered to have established the theoretical relationship for the 

presumed negative relationship between degree of variability and level of pesticide 

usage. The number of pests (or its distribution) within a given time period can be reduced 

by using pesticides, and in fact a major motivation for pesticide application is the 

provision of some insurance against damage. The existence of uncertainty in the pest-

pesticide system leads to a higher and more frequent use of chemicals and Feder (1979) 

argues that such an increase in use will lead to a reduction in marginal variance. As 

empirical evidence in support of this reasoning,  Turpin and Maxwell (1976) show that 

farmers use soil pesticides as insurance against production uncertainty, suggesting that 

they perceive that increasing input use does not increase variance. Smith and Goodwin 

(1996) find that crop insurance and pesticide are substitutes, so that an increase in the use 

of pesticides reduces the requirement for crop insurance. 
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Pannell (1991) suggests that the reputation of pesticides as risk reducing inputs 

appears to be mainly based on analyses which only consider uncertainty about the level 

of pest infestation or chemical efficacy, and not the many other sources, such as 

uncertainty about output price and yield, which may or may not result in reduced risk as 

pesticide use is increased. Horowitz and Lichtenberg (1993) argue that, intuitively, an 

input reduces variability if it adds more to output in bad states of nature than in good 

states of nature, since this makes output in each state of nature more uniform. An input 

increases variability if it adds relatively more to output in good states than in bad ones, 

since that increases the discrepancy between states of nature. In crops where high pest 

infestations occur primarily when crop growth conditions are good, pesticides work by 

increasing output in good states of nature and marginal variance is likely to be positive 

(Horowitz and Lichtenberg 1993).  

The conclusions of Pannell (1991) and Horowitz and Lichtenberg (1993) differ 

from the conventional wisdom because they consider output uncertainty rather than 

concentrating solely on pest infestation. Pesticides are likely to increase yield variability 

when output uncertainty is the dominant source of randomness (Pannell 1991).2 

Empirical approach: stochastic production functions 

An understanding of the marginal effects of input use on the distribution of output is 

essential to the understanding of the relationship between input use and yield variability. 

The starting point of much of the literature that analyses this relation in the context of the 

estimation of production functions is the work of Just and Pope (1978; 1979), who argue 

that popular formulations of stochastic production functions are limited in their analysis, 

in that the choice of functional form (where the error term interacts multiplicatively with 

                                                 
2 Much of this discussion carries over to other agrochemical inputs, namely fertilizer. While Glauber and Collins 
(2002), for example, state that it is a known fact that pesticides and fertilizer reduce risk, others (for example, 
Just and Pope 1978; Wan, Griffiths and Anderson 1992) suggest that fertilizer use may lead to increased yield 
variability and Quiggin (1992)  suggests that fertilizer may be risk increasing in the sense that their marginal 
productivity may be negative in a poor state of nature and positive in a good state of nature. 
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the deterministic part) imposes a risk-increasing effect for all inputs, whereas there are 

cases where inputs may reduce output variance. 

Just and Pope (1978; 1979) propose instead that a useful production function 

should have sufficient flexibility so that the effect of inputs on the deterministic 

component of production may differ from the effect of inputs on the stochastic 

component. They suggest instead that the error term should be parameterized by some 

function of the inputs, h(X), in such a way that the relationship of the inputs with risk is 

not determined solely by the relationships of inputs with expected output.3 In the most 

general case, the disturbance h(X)ε enters the production function in an additive way, 

allowing for the possibility of increasing, decreasing or constant marginal risk (Just and 

Pope 1978). Such a function can be expressed as follows: 

 (1) Yit = f(Xit) + uit = f(Xit) + h1/2(Zit) εit  

 where Yit is output and we assume that E(εit) = 0, var(εit) = 1.4 The functions f(Xit) and 

h(Zit) determine the conditional mean and variance, respectively, of Y.  The component 

f(.) is the deterministic component of production (representing the mean of production) 

as a function of the independent variables and uit is the stochastic component 

(representing its variance). The suggested approach is flexible in that the set of inputs 

used to estimate the stochastic component of the production function (Zit), need not be 

the same as the set of inputs in the deterministic part of the production function (Xit), and 

the functional form of h(.), may or may not be identical to that of f(.). 

While the Just and Pope (1978) production function allows input levels to affect 

risk (defined as the variance of output) independently of their effect on the expected level 

of output, later studies have suggested the need to understand the relation between the 

                                                 
3 Their model, with interdependent heteroskedastic disturbances that condition the mean and variance of the 
dependent variable on independent variables, uses the heteroskedastic error structure proposed by Harvey 
(1976). 

4 The multiplicative case, y=f(X)h(X)ε constrains the sign of the change in variance of marginal product 
with respect to a factor change without consideration of  the nature of the input. 
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use of variable inputs and higher moments of the distribution of output (Babcock, 

Chalfant and Collender 1987).  For example, Day (1965), Anderson (1973), Antle and 

Goodger (1984), and Just and Pope (1979) found that third and fourth moments of output 

may be functions of inputs. Nelson and Preckel (1989) identified the need for a flexible 

approach to estimating yield distributions when skewness is important, and Antle and 

Goodger (1984) found that input-conditioned mean and variance are not sufficient for a 

description of a stochastic production. 

Antle (1983) suggested an extension of the approach proposed by Just and Pope 

(1978) which a general representation of the distribution of output without imposing 

arbitrary restriction on the moments and showed that consistent estimates of all central 

moments can be obtained econometrically. In this model, the moments of the probability 

distribution, including skewness, are explicit functions of inputs, allowing for an analysis 

of the effect of input use on downside risk exposure (Kim and Chavas 2003). Following 

Kim and Chavas (2003), E[yit - E(yit)]
j  is the jth central moment of yit.. The skewness is 

therefore the cube of the residuals of yield, and the marginal skewness conditional on the 

input is the cube of the residuals regressed on the inputs.  

Data 

In this study we use a large dataset of results from experimental field trials to investigate 

the effects of the presence in a corn hybrid of a GM trait, or a combination of GM traits 

on variance and skewness of yield. Our dataset was compiled from reports of actual yield 

results from independently run experimental field trials of corn hybrids, submitted by 

corn breeders to the State Agricultural Extension Services of ten universities (Illinois at 

Urbana-Champaign, Purdue, Iowa State, Kansas State, Minnesota, Missouri, Nebraska – 

Lincoln, The Ohio State, South Dakota State, and Wisconsin – Madison) over 13 years, 

in the ten most important corn-producing states in the United States. While data for 13 

years would represent a small sample for an individual farmer, we have the advantage of 
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data from trials for those 13 years at a large number of locations. In all we have 1765 

individual trials over a range of conditions. 

There are several advantages in using these data to estimate the effect of GM traits, 

on the yield distribution. The trials were designed and managed with the objective of 

determining the productive value of each hybrid, and hence, we can consistently estimate 

the genetic value of the hybrid (including the presence of GM traits) in terms of its effect 

on yield. The trial reports provide details of the agronomic practices adopted in the tests, 

allowing us to avoid the identification problems that are associated with the estimation of 

production functions and recognized in the literature (Peterson and Hayami 1977; 

Babcock and Foster 1991; Griliches and Mairesse 1998; Just and Pope 2001; Mundlak 

2001). The included 

 

 

Figure 1. Number of trials by year and GM category 

variables are defined in table 3, and there is a more detailed description in the appendix. 

The data consist of real results for yield in different locations over the ten most important 

corn-producing states of the USA, and over a relatively long period (13 years), and we 

therefore avoid problems with using aggregate data (Eisgruber and Schuman 1963; 
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Brennan 1984; Kolady and Lesser 2009). The results are published and provide a source 

of objective information, thus benefiting from the independence of the university system.  

Another important advantage of our dataset is that because we use experimental 

data, our analysis is independent of the risk preferences of an individual farmer. 

Therefore, while the analysis will not directly reflect decision making at farm level, it 

will allow the  focus to be instead on variability and skewness. It should also be noted 

that at the  farm level production there is a non-zero probability of a zero yield. However, 

the results of the trials from which we source our data are reported only where a non-zero 

yield has been achieved. Therefore an advantage of using this experimental data is that 

the distribution of the yield is relatively normal around a mean of 181 bushels/acre, and 

is not truncated at, or near, zero. 

The data reports yield in bushels per acre for 163,941 observations for 14,614 

hybrids, at 339 locations. In addition to information about the genetic make-up of the 

hybrid (including the traits present in each hybrid and the degree of stacking), the dataset 

includes rich detail on agronomic practices (yield, seeding rate, nitrogen application), 

climatic conditions (rainfall and average minimum and maximum temperatures for each 

of the months April to September) as well as other variables that potentially influence 

yield and its variability (soil type, cultivation type, previous crop, whether the trial is 

early or late, and whether or not irrigation water was applied).  

The specific detail of pesticide and herbicide management practices at each site varies 

quite considerably between sites and over years, and we have not been able to include 

specific practices. We also do not have information about the incidence of pest 

infestation. We have therefore included interaction terms for year by Crop Reporting 

District, and we believe that year and location effects relating to pest infestations and 

chemical use will be captured by these variables. 
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Table 3. Summary Statistics 

Variable Definition Mean 
Std. 

Dev. Min Max 
Yield Bushels per acre of shelled grain (56lb/bu)adjusted to a 

moisture content of 15.5% 181.33 39.96 1 317 
Plant density  Plant density in thousands of kernels per acre 29.40 3.48 8.65 43.47 
No or min till Dummy variable indicating no or minimum till  0.08 0.28 0 1 
Conventional Conventional soil preparation methods (base case) 0.92 0.28 0 1 
Irrigated Dummy variable indicating crop grown with irrigation 0.13 0.34 0 1 
Dryland Crop grown without irrigation (base case) 0.87 0.34 0 1 
Early Dummy variable indicating an early trial 0.23 0.42 0 1 
Late Dummy variable indicating a late trial (base case) 0.77 0.42 0 1 
Soybean Dummy variable indicating that soybean was the previous 

crop in the rotation (base case) 0.83 0.38 0 1 
Corn Dummy variable to indicating that corn was the previous 

crop in the rotation 0.08 0.27 0 1 
Wheat Dummy variable to indicating that wheat was the previous 

crop in the rotation 0.05 0.22 0 1 
Alfalfa Dummy variable to indicating that alfalfa was the 

previous crop in the rotation 0.01 0.12 0 1 
Other Dummy variable to indicating that a crop other than those 

mentioned above was the previous crop in the rotation 0.03 0.16 0 1 
Silt loam Dummy variable indicating  silt loam soil (base case) 0.56 0.50 0 1 
Clay Dummy variable indicating  clay soil 0.02 0.15 0 1 
Silty clay loam Dummy variable indicating  Silty clay loam soil 0.18 0.39 0 1 
Clay loam Dummy variable indicating Clay loam soil 0.10 0.30 0 1 
Loam Dummy variable indicating Loam 0.08 0.27 0 1 
Sandy loam Dummy variable indicating  Sandy loam soil 0.05 0.23 0 1 
Sand Dummy variable indicating Sand 0.00 0.06 0 1 
Nitrogen (lbs /ac) Nitrogen application in lbs per acre 141.54 76.92 0 380 
Nitrogen not 
reported 

Dummy variable indicating that nitrogen use was not 
reported 0.15 0.36 0 1 

Conventional Dummy variable indicating conventional hybrids (base 
case) 0.43 0.49 0 1 

CB Dummy variable indicating hybrid has corn borer resistant 
trait only 0.21 0.41 0 1 

RW Dummy variable indicating hybrid has corn rootworm 
resistant trait only 0.00 0.05 0 1 

Ht Dummy variable indicating hybrid has herbicide tolerant 
trait only 0.04 0.20 0 1 

CB and Ht Dummy variable indicating hybrid has both corn borer 
resistant and herbicide tolerant traits 0.11 0.32 0 1 

RW and Ht Dummy variable indicating hybrid has both corn 
rootworm resistant and herbicide tolerant traits 0.01 0.10 0 1 

CB and RW Dummy variable indicating hybrid has both corn borer 
resistant and corn rootworm resistant traits 0.01 0.09 0 1 

CB, RW and Ht Dummy variable indicating hybrid is at least triple stacked 
with corn borer resistant, corn rootworm resistant and 
herbicide tolerant traits 0.19 0.39 0 1 

 

 



14 
 

A detailed description of the data, their sources and our methods for 

dealing with missing data can be found in the appendix. Figure 1 summarizes the 

relative importance of GM versus non GM varieties under trial.  The breakdown 

of data by year and state of trial, and by year and GM attributes, can also be 

found in tables 5 and 6 in the appendix. 

Empirical estimates 

We investigate the effect of the presence of GM traits on the distribution of corn 

yield through the specification and estimation of a heteroskedastic production 

function that allows for the variance and skewness of yield to change with the 

presence of the traits and their various combinations (Just and Pope 1978; 1979; 

Anderson and Griffiths 1981). Using the approach proposed by Just and Pope 

(1978) and Antle (1983), we start by obtaining consistent estimates of the mean 

function for corn yield. Because we have multiple observations for the same 

hybrids, we are also able to control for varietal differences and, in addition, we 

take advantage of the richness of the data to control for a wide variety of 

agronomic practices, location characteristics and climatic conditions. We 

estimate a linear production function and include only observations for hybrids 

for which we have at least five trials.5 Because our main concern, in this first 

stage, is to obtain consistent estimates of the mean, we use a fixed effects 

specification of this production function  

(2) yit = x′itβ + αi  + μit  

                                                 
5 We therefore base our analysis on a sample of 147,790 observations relating to 8,423 hybrids. The 
summary statistics of the included variables are presented in table 3. 
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where yit is the yield, adjusted for moisture content, of hybrid i in year t, x′it is the 

set of covariates presented in table 3, together with a set of location and year 

dummy variables (or their interactions) that account, respectively, for any 

location specific trial characteristics and year specific occurrences that were not 

accounted for elsewhere in the data, αi is the unobserved effect of the underlying 

germplasm and µit is the idiosyncratic error relating to both the cross sectional 

element and time. 

The residuals are then generated by subtracting the linear estimates of yield 

from observed yield and squared (cubed) to give the variance (skewness) of 

yield, which are then explained as a function of the independent variables, 

including the GM traits and their combinations. In the first step we were 

interested only in generating the residuals, and therefore the fixed effects model 

was suitable for our needs. However, we now wish to obtain the marginal effect 

of the GM traits and their combinations, on variance and skewness, and in the 

fixed effects estimation these effects are absorbed into the unobserved effects for 

each hybrid.  

One alternative would be to estimate the random effects model shown in 

equation (3), where GM’ γ is the effect of the GM traits, θi  the underlying 

genetics of each hybrid, and αi. = GM’ γ + θi. 

(3) yit = x′itβ + GM’ γ + θi  + μit  

However, when entering hybrids for trial, plant breeders can be expected to 

nominate trial sites with conditions that are favorable for the performance of each 

hybrid. It is therefore likely that there will be some correlation between the 
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characteristics of the trial site and those of the individual hybrid. To overcome 

potential problems of endogeneity with the random effects model, we can 

estimate equation (3) using the approach proposed by Hausman and Taylor 

(1981). The Hausman-Taylor estimator fits a random effects model in which 

some of the covariates are correlated with the unobserved individual level 

random effect but none of the explanatory variables are correlated with the 

idiosyncratic error, μit. Given the richness of our dataset this seems a credible 

assumption. Following Greene (2003) we rewrite equation (3) using three sets of 

observed variables to express this estimator:  

(4)    yit = x′1itβ1 + x′2itβ2 + z′1i γ1 + θi + µit 

where x1it  is a matrix of  variables that are time varying and uncorrelated 

with θi, (for example those trial characteristics not under the control of the seed 

breeder), x2it  is a matrix of variables that are time varying and are correlated with  

θi, (for example those trial characteristics known in advance by the breeder, and 

related with the location of the trial) and z1i is a matrix of variables that are time 

invariant and uncorrelated with θi (in this case, the various combinations of GM 

traits).  

Under the standard assumptions outlined by Greene (2003, p. 303), 

Hausman and Taylor (1981) show that x1it, z1i, x2it - ̅2i and ̅1i  can be used as 

instrumental variables in the estimation of equation (3). The Hausman-Taylor 

approach allows identification and efficient estimation of both β and θi, performs 

better than traditional instrumental variables methods, which rely on excluded 
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exogenous variables for instruments, and has the strong advantage of not needing 

external instruments (Verbeek 2008).  

Therefore, by regressing the variance (skewness) on the inputs, using the 

Hausman-Taylor estimator, we find the marginal effect of each input on the 

variance (skewness) while addressing any problems of endogeneity between the 

hybrid effects and the variance (skewness) of the distribution. Additionally, the 

use of this estimator allows us to include the interaction term between CRD and 

year (which we use as a proxy for pest pressure and pesticide use) as an 

additional control.6  The empirical estimates are presented in table 4.7  

The full results are reported in table 8 in the appendix.  

The results of the regressions for the second and third moments show that 

increased nitrogen application, consistent with Glauber and Collins (2002), but 

contrary to the findings of Just and Pope (1978) and Wan, Griffiths and Anderson  

(1992), decreases variance. There is no statistically significant effect of fertilizer 

use on downside risk. Irrigation reduces yield variability, and strongly reduces 

the downside risk. This is consistent with, the literature, for example, the findings 

of Harri et al. (2009).  

 

                                                 
6 We have also estimated the marginal variance and skewness using FGLS, but because of problems 

with computer capacity we were not able to include the interaction term which proxies for pest 

pressure.   

7 We also present, in table 4, for information, the results that would have been obtained if we had used 

the Hausman-Taylor estimator rather than the fixed effects estimator to generate the residuals in the 

first step. The results are almost identical. 
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Table 4. Empirical estimates of the effect of input use of variance and skewness of output  

  Model 1 Model 2 Model 3 Model 4 

 Variance Skewness Variance Skewness 

VARIABLES (based on FE 
residuals) 

(based on FE 
residuals) 

(based on HT 
residuals) 

(based on HT 
residuals) 

GM traits (Conventional as base)    
Corn borer resistance (CB)  86.44*** -3,225*** 82.86*** -2,982*** 
 -14.72 -1,021 -14.64 -1,018 
Rootworm resistance (RW)  -17.74 1,648 -16.46 1,472 
 -71.82 -5,727 -71.49 -5,710 
Herbicide tolerance (Ht)  41.37* -1,426 44.17* -1,682 
 -24.73 -1,823 -24.61 -1,818 
CB and Ht 141.0*** -6,256*** 139.5*** -6,442*** 
 -21.5 -1,731 -21.42 -1,726 
CB and RW 289.1*** -9,006*** 289.2*** -9,389*** 
 -49.04 -3,407 -48.78 -3,398 
RW and Ht 181.5*** -4,572 177.3*** -5,418 
 -50.38 -3,651 -50.13 -3,640 
CB, RW and Ht 97.95*** -5,342** 94.21*** -5,760** 

-25.85 -2,244 -25.79 -2,237 
Plant density -1.431 -1,076*** -0.0708 -1,175*** 

-2.098 -257.7 -2.101 -256.9 
No min till 43.96*** -1,481 37.78** -1,304 

-15.94 -1,958 -15.96 -1,952 
Irrigated -92.82*** 10,972*** -95.11*** 11,454*** 

-20.55 -2,523 -20.58 -2,515 
Early -56.32*** 1,798 -58.54*** 1,512 

-9.469 -1,093 -9.475 -1,090 
Previous crop: Corn 169.4*** -11,288*** 166.2*** -11,638*** 

-14.32 -1,755 -14.33 -1,750 
Previous crop: Wheat 199.2*** -11,310*** 201.5*** -10,985*** 

-20.15 -2,473 -20.17 -2,466 
Previous crop: Alfalfa 108.6*** -1,883 95.81*** -772.9 

-27.29 -3,348 -27.32 -3,338 
Previous crop: Other 347.4*** -24,428*** 337.7*** -23,819*** 

-29.21 -3,586 -29.25 -3,575 
Nitrogen in lbs/ac -0.603*** 11.34 -0.541*** 9.472 

-0.121 -14.86 -0.121 -14.82 
Soil type: Clay 204.9*** -2,333 212.8*** -2,414 

-57.05 -7,007 -57.12 -6,987 
Soil type: Silty clay loam -97.20*** 5,465*** -94.94*** 5,393*** 

-11.35 -1,392 -11.36 -1,388 
Soil type: Clay loam -133.3*** 2,930 -141.1*** 3,113* 

-15.31 -1,878 -15.32 -1,873 
Soil type: Loam -42.10** -1,472 -33.35* -1,578 

-18.8 -2,308 -18.82 -2,301 
Soil type: Sandy loam 364.2*** -17,917*** 383.4*** -19,377*** 

-18.66 -2,292 -18.69 -2,285 
Soil type: Sand 657.9*** -13,935** 695.4*** -17,436*** 

-55.23 -6,782 -55.3 -6,762 
Constant -1,164** 178,162*** -1,437*** 194,387*** 

-538.1 -66,016 -538.7 -65,825 
Observations 147,790 147,790 147,790 147,790 
Number of hybrids 8,423 8,423 8,423 8,423 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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The estimates for our main results of interest show that the marginal 

variance for most GM traits and their combinations is positive, and therefore the 

presence of GM leads to an increase in variance, except in the case of the 

presence of rootworm by itself which has no significant effect.8 A more 

surprising result, given the policy of discounting insurance premiums when triple 

stacked hybrids are planted, is that the presence of triple stacked traits increases 

variance. Finally, and if we assume that downside risk is an important aspect, it is 

worth noting that in the skewness function, most of the GM trait combinations 

(including the triple stacking of traits), have a statistically significant negative 

coefficient. Therefore, the effect on downside risk is negative and strongly 

statistically significant except in the cases of the rootworm resistance trait when 

it is present by itself, herbicide tolerance by itself, and the rootworm/herbicide 

tolerant combination, all of which have no statistically significant effect. These 

results suggest that if the reduction in insurance premiums is guided by a 

supposed reduction in variability of yields, then the reduction cannot be justified.  

Conclusion 

In this paper we use a large, rich dataset collated from the results of experimental 

hybrid corn trials by 10 US university extension services in the most important 

corn-producing states in the US over 13 years to investigate the effects on 

variability of yield and downside risk of the presence of GM traits. Following the 

approaches of Just and Pope (1979) and Antle (1983), we use the residuals 

obtained from the estimation of a linear production function to calculate the 

variance and skewness of yield, conditional on the inputs, including the various 
                                                 
8  Recall that hybrids having only the rootworm trait make up only a very small proportion of our 
sample (table X). 
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combinations of GM corn. Our most interesting finding is that the presence of 

most combinations of GM traits leads to an increase in variance and an increase 

in downside risk. Since the reduction in risk premiums applies only to hybrids 

which have at least three of the GM traits, we are most interested in the result for 

the triple stacked hybrids. We find that the presence of triple stacking has a 

strongly statistically significant   positive effect on variance, and an equally 

strongly significant negative effect on skewness. We therefore conclude that, 

based on our sample of hybrids, if the FCIC’s policy of a reduction in insurance 

premiums is guided either by a supposed reduction in variability of yields or an 

improvement in downside risk for growers who plant triple stacked hybrids, then 

the reduction cannot be justified.     
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Appendix: Data 

In this appendix, we provide a more detailed description of our treatment of the data. 

Trials by year and state 

The number of trials by year and state is shown in table 5, and the number of 

observations by GM category in table 6. Summary statistics for the variables included 

in the analysis are provided in table 3 in the text. 

Table 5. Number of Trials by Year and State 

Year Illinois Indiana Iowa Kansas Minnesota Missouri Nebraska Ohio 
South 

Dakota Wisconsin Total 

1997 1189 981 3693 642 823 1190 1139 1004 535 2146 13342 
1998 1069 3245 668 789 308 1169 955 590 2063 10856 
1999 2095 3409 621 993 1223 1149 967 634 2159 13250 
2000 1810 1626 3575 555 985 334 1332 853 556 1997 13623 
2001 1739 1710 3321 671 859 1168 1087 844 593 1767 13759 
2002 1302 1629 505 697 1201 1010 844 481 1765 9434
2003 1630 1155 466 735 1389 996 888 522 1797 9578 
2004 2005 1341 672 931 1468 1149 1010 731 1818 11125 
2005 1925 1471 2214 679 836 1479 1043 941 494 1803 12885 
2006 1816 1196 2607 702 1190 1825 1023 838 640 1682 13519 
2007 1778 1160 2810 932 1296 1529 1352 1215 588 2205 14865 
2008 2020 1470 2587 1029 1039 1585 1201 1053 472 1779 14235
2009 1565 1241 2397 1028 940 1589 1185 1435 420 1669 13469 
Total 21943 14980 29858 9170 12113 16288 14835 12847 7256 24650 163940 

 

Table 6. Number of Trials by Year and GM Category 
 

Year 
Total 

conventional 
CB 
only 

RW 
only 

Ht 
only CBHt CBRW RWHt CBRWHt 

Total 
GM 

Total 
number of 
trials 

1997 12906 408 20 8 436 13342 
1998 9683 1048 78 53 1179 10862 
1999 8694 3589 705 269 4563 13257 
2000 9730 3289 445 151 3885 13615 
2001 9880 2910 671 301 3882 13762 
2002 5579 2755 533 567 3855 9434 
2003 3653 4319 47 497 1047 8 7 5925 9578 
2004 3133 5242 219 672 1713 25 77 44 7992 11125 
2005 3633 4979 122 925 2678 194 107 247 9252 12885 
2006 1955 3031 149 1123 4466 462 421 1912 11564 13519 
2007 589 1517 24 916 4387 433 501 6498 14276 14865 
2008 446 666 9 608 1881 200 425 9999 13788 14234 
2009 476 246 2 378 1544 58 114 10645 12987 13463 
Total 70357 33999 572 7571 19065 1372 1653 29352 93584 163941 
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Missing data 

We have relied on the cooperation of the various extension services to obtain copies 

of those reports which are not available online, and some records are not complete.  

 Iowa has the longest history of testing but records are incomplete. Records are 

complete from 2005. Professor Joe Lauer of UW Madison was able to provide us 

with data for individual locations for 1997-2001. The years 2002-2004 are lost. Even 

though we only have ten years of Iowa data the number of trials is substantial.  

 Cultivation type and rotation were not reported by Ohio for 1998-2002 but the 

locations and agronomic practices for other years are consistent so that we have 

assumed that the same cultivation methods and rotation decisions were made.  

 Indiana in some years reports only regional average yields, so we have 

omitted those years and those locations where individual site results are not reported. 

This means that we have no entries for 1998-1999, and limited entries for 1997.  

 The University of Missouri is missing reports for 1998 and 2000, but some of 

the 1998 and 2000 results are reported in the following years’ reports and we have 

included those results. 

Dependent variable  

Grain yields are reported as bushels per acre of shelled grain (56 lb/bu) adjusted to a 

moisture content of 15.5%. As expected, the average annual yield for each state for 

these trials is consistently above the average annual corn yield for each state 

published by the National Agricultural Statistics Service of the USDA (see table in 

part E of the supporting material online). 

Agronomic variables 

Early or late 
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 Most states conduct early and late maturity trials, but in some cases the distinction 

was not made until the late 1990s or early 2000s. Some states still do not make a 

distinction. If there is not a specific statement that the trial is early season we have 

assumed that it is late. Nebraska reports on mid trials in some years but we have 

classified these as late. A dummy variable is used to indicate an early trial.  

Irrigated or dryland 

Missouri, Nebraska, Kansas, and Wisconsin conduct irrigated trials, and a dummy 

variable is included to indicate whether a trial is irrigated.  

Minimum or no till compared with conventional tillage 

Type of cultivation is reported in some detail and it has been impossible to account 

for all of the variations. A dummy variable has been used to indicate minimum or no 

till preparation, but only where this is explicitly stated. The default variable is 

conventional and everything other type of cultivation is included in this category. 

Soil type  

Seven soil types are identified by dummy variables, with silt loam as the default soil. 

The only state that does not report soil type is Minnesota and we have used the 

coordinates for each trial location and the Soil Web Survey of the USDA Natural 

Resources Conservation Service (2010) to identify the predominant soil type in that 

location.  

Rotation 

Previous crop is also reported for most locations. However, Illinois does not report on 

rotation, and, in a small number of other locations in other states, the rotation is 

omitted. As soybean is the usual rotation crop, we have assumed that this is the 
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previous crop where it was missing. Dummy variables have been included for corn, 

wheat, alfalfa, and other, with soybean as the base case. 

Plant density  

Generally a seeding rate is reported, although in some states final plant population is 

given instead. We have used final plant population (in thousands) where possible, but 

if this was not available we have substituted seeding rate. This is not exactly 

comparable, but the order of magnitude is in general similar.  

Fertilizer 

We have nitrogen fertilizer application in lbs/acre for most states. However, Illinois 

started to report fertilizer application rates only in 2000. Iowa does not report 

fertilizer rates. We included a zero value for the missing observations. To 

differentiate between cases where nitrogen use was reported as zero, and the missing 

observations, we have introduced a dummy variable with a value of 1 indicating 

“Nitrogen not reported”. Although some states do report phosphorus and potassium 

application, others do not, and we have not included these fertilizers in our analysis. 

Pesticides and herbicides  

It would have been useful to include pesticide and herbicide application rates. 

However the variety of different combinations that are possible and that have been 

used over the past 20 years is immense. We have assumed that the trials are 

conducted so as to eliminate pest and weed infestations.  

 Climatic variables - rainfall and average maximum and minimum temperatures 

In most cases the trial reports include rainfall for the growing months. If not, for 

example for Ohio and Iowa, there is generally a very good network of weather 

stations and it has been possible to extract monthly rainfall from their databases (Iowa 
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Environmental Mesonet 2009; OARDC 2009). For those states which do not report 

specific rainfall figures (Nebraska includes column charts, and Minnesota does not 

report rainfall) we have used the database provided by the PRISM Climate Group at 

the University of Oregon (PRISM Climate Group Oregon State University 2009). 

This allows monthly rainfall, minimum and maximum temperatures to be extracted 

based on latitude and longitude coordinates. Some universities have reported rainfall 

May-September, others April-August and others April-September. We have filled the 

gaps for the months April-September from the PRISM database. As temperature is 

likely to be less local than rainfall, we have extracted minimum and maximum 

monthly temperatures April-September from the PRISM database.  

Other variables 

Location where trial conducted  

We have details of the location where the trial was conducted. The locations are not 

necessarily exactly correlated with the included site characteristics. The trials may not 

be at exactly the same site each year, or may be at different farms or sites in the 

immediate area. At some locations trials are held on more than one soil type. The 

weather data is by location, not by CRD. Therefore weather is not exactly correlated 

with the CRD-year interaction term included in the models.  

Interaction term for year by Crop Reporting District (CRD) 

It is likely that there are some factors that are variable by year and by location. In 

particular, we do not include variables related to pest pressure or chemical use, 

because it was too difficult to obtain consistent information across states. The CRD 

by year interaction terms are therefore included to account for different chemical 
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usage practices and different degrees of pest infestation. As mentioned in f(i), weather 

is reported by location, not CRD, 

GM traits and stacking of traits 

We have details of the GM traits associated with each hybrid. We have identified the 

presence of these traits using dummy variables, and have also created dummy 

variables to indicate the combinations of traits where traits are stacked. The base case 

is no GM traits. The number of trials by year and by category of GM traits for the 

whole dataset can be found in table 3 and figure 1 in the text. 

Hybrid identifiers  

The trial reports provide the name of the company submitting the hybrid for trial, the 

name of the hybrid, and, since the introduction of genetically modified hybrids, the 

GM traits associated with each hybrid. Since some quite different hybrids have the 

same number, we have identified each separate hybrid by combining the name of the 

submitting company and the name of the hybrid. It is this variable that we have used 

to create dummy variables for our cross section. Where the hybrid number is the 

same, and the submitting company has changed, but is known to be affiliated with the 

previous submitting company, we have considered the hybrids to be identical. In 

some cases a hybrid will have the same name, but a different submitting company in 

consecutive years. For example, Keltgen, Lynks and Mycogen all submitted a hybrid 

with the same name in different years in the mid 1990s. Mycogen acquired Keltgen 

and Lynks in the early to mid 1990s, so we have assumed that these hybrids are in 

fact the same, and have renamed the hybrid identifier accordingly. Kruger Seed 

Company has at times submitted seed under the company names Kruger, 

KSC/Challenger, Circle and Desoy. We have based our decision on the ownership 
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groups shown in table A1. This table was collated from numerous sources, including 

company reports, company websites, media releases and newspaper articles. It is 

accurate, to the best of our knowledge, as at December 2011. 

Table 7. Ownership of United States Seed Breeders and Distributors  

Monsanto DuPont Syngenta AgReliant Dow 

Asgrow Heritage Pioneer AgriPro AgriGold AgriGene 

Campbell High Cycle Curry Blaney Callahan Cargill 

CFS Hubner AgVenture CIBA Dahlco Dairyland 

Challenger ICORN Adler Elite Great Lakes Golden Acres 

Channel Jung Frontier Funks Herried Grand Valley 

Cheesman Kruger McKillip Garrison Horizon Growers 

Circle Lewis Select Seed Garst J M Schultz Jacques 

Crows Linco Spangler Golden Harvest LG Seeds Keltgen 

DeKalb Midwest Doeblers Gutwein McAllister Lynks 

Desoy NC + Hoegemeyer HyPerformer Noble Bear McCurdy 

Didion REA NuTech ICI Pride Mycogen 

Diener Sieben  NK Producers ORO 

Fielders Choice Specialty Seed Consultants Novartis Shissler Pfister 

Fontanelle Stewart Terral Payco Voris Prairie Brand 

Gold Country Stone Alliances PSA Wensman Renze 

Grow Direct Trelay Beck Stauffer  Schillinger 

Hawkeye Trisler Wilken Sturdy Grow  Shur Grow 

Heartland Wilson Burrus Super Crost  Sigco 

     Taylor Evans 

     Triumph 

     Vineyard 
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Table 8. Full Results (but not including the year by CRD interaction term) 

 (1) (2) (3) (4) 
 varianceFEresid skewnessFEresid varianceHTresid skewnessHTresid 
VARIABLES residFE2sq residFE2cub residHTsq residHTcub 
GM traits (Conventional as base)    
Corn borer resistance (CB)  86.44*** -3,225*** 82.86*** -2,982*** 
 (14.72) (1,021) (14.64) (1,018) 
Rootworm resistance (RW)  -17.74 1,648 -16.46 1,472 
 (71.82) (5,727) (71.49) (5,710) 
Herbicide tolerance (Ht)  41.37* -1,426 44.17* -1,682 
 (24.73) (1,823) (24.61) (1,818) 
CB and Ht 141.0*** -6,256*** 139.5*** -6,442*** 
 (21.50) (1,731) (21.42) (1,726) 
CB and RW 289.1*** -9,006*** 289.2*** -9,389*** 
 (49.04) (3,407) (48.78) (3,398) 
RW and Ht 181.5*** -4,572 177.3*** -5,418 
 (50.38) (3,651) (50.13) (3,640) 
CB, RW and Ht 97.95*** -5,342** 94.21*** -5,760** 
 (25.85) (2,244) (25.79) (2,237) 
Plant density -1.431 -1,076*** -0.0708 -1,175*** 
 (2.098) (257.7) (2.101) (256.9) 
No min till 43.96*** -1,481 37.78** -1,304 
 (15.94) (1,958) (15.96) (1,952) 
Irrigated -92.82*** 10,972*** -95.11*** 11,454*** 
 (20.55) (2,523) (20.58) (2,515) 
Early -56.32*** 1,798 -58.54*** 1,512 
 (9.469) (1,093) (9.475) (1,090) 
Previous crop: Corn 169.4*** -11,288*** 166.2*** -11,638*** 
 (14.32) (1,755) (14.33) (1,750) 
Previous crop: Wheat 199.2*** -11,310*** 201.5*** -10,985*** 
 (20.15) (2,473) (20.17) (2,466) 
Previous crop: Alfalfa 108.6*** -1,883 95.81*** -772.9 
 (27.29) (3,348) (27.32) (3,338) 
Previous crop: Other 347.4*** -24,428*** 337.7*** -23,819*** 
 (29.21) (3,586) (29.25) (3,575) 
Nitrogen in lbs/ac -0.603*** 11.34 -0.541*** 9.472 
 (0.121) (14.86) (0.121) (14.82) 
Soil type: Clay 204.9*** -2,333 212.8*** -2,414 
 (57.05) (7,007) (57.12) (6,987) 
Soil type: Silty clay loam -97.20*** 5,465*** -94.94*** 5,393*** 
 (11.35) (1,392) (11.36) (1,388) 
Soil type: Clay loam -133.3*** 2,930 -141.1*** 3,113* 
 (15.31) (1,878) (15.32) (1,873) 
Soil type: Loam -42.10** -1,472 -33.35* -1,578 
 (18.80) (2,308) (18.82) (2,301) 
Soil type: Sandy loam 364.2*** -17,917*** 383.4*** -19,377*** 
 (18.66) (2,292) (18.69) (2,285) 
Soil type: Sand 657.9*** -13,935** 695.4*** -17,436*** 
 (55.23) (6,782) (55.30) (6,762) 
Rainfall     

April -15.51*** 333.7 -15.76*** 435.3 
 (4.302) (528.2) (4.307) (526.7) 
May -6.422** 1,042*** -6.399** 1,070*** 
 (2.959) (363.4) (2.963) (362.3) 
June 16.19*** 373.4 16.95*** 433.2 
 (2.472) (303.5) (2.475) (302.6) 
July -13.45*** -1,092*** -13.84*** -1,097*** 
 (2.772) (340.3) (2.775) (339.3) 
August 2.635 11.94 3.337 -0.759 

 (2.659) (326.4) (2.662) (325.4) 
  September 15.79*** -640.4* 14.97*** -642.0* 
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 (3.119) (383.0) (3.123) (381.9) 
Mean minimum monthly temperature    

April -9.125*** -384.7 -9.859*** -376.9 
 (2.266) (278.3) (2.269) (277.5) 
May 32.88*** -2,885*** 34.13*** -2,827*** 
 (6.413) (787.3) (6.420) (785.0) 
June -34.69*** 345.7 -32.90*** 198.9 
 (6.938) (852.0) (6.946) (849.6) 
July -7.938 1,846** -11.08 1,842** 
 (7.640) (938.3) (7.650) (935.6) 
August -1.763 475.5 -2.730 583.4 

 (6.834) (839.1) (6.842) (836.7) 
 September 1.466 1,067** 1.964 1,119** 

 (3.642) (447.2) (3.646) (445.9) 
Mean maximum monthly temperature    

April 18.31*** 1,687*** 19.60*** 1,686*** 
 (4.288) (526.6) (4.293) (525.1) 
May -18.48*** 2,865*** -23.03*** 2,978*** 
 (5.525) (678.1) (5.531) (676.1) 
June 40.75*** -1,707** 42.13*** -1,666** 
 (6.153) (755.4) (6.160) (753.2) 
July 6.353* -575.1 6.836* -541.7 
 (3.500) (429.9) (3.505) (428.6) 
August -21.34*** -4,419*** -21.58*** -4,599*** 

 (6.164) (756.6) (6.171) (754.5) 
 September 3.414 938.2 6.259 864.5 

 (5.631) (691.0) (5.637) (689.0) 
Constant -1,164** 178,162*** -1,437*** 194,387*** 
 (538.1) (66,016) (538.7) (65,825) 
   
Observations 147,790 147,790 147,790 147,790 
Number of hybrids 8,423 8,423 8,423 8,423 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 
 


