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Abstract 

 

Of the number of seasonal forecasting systems that have been developed of late, none are 

of practical benefit to Western Australian farmers.  This study aims to improve the 

methodology for assessing the value of forecasting technology ex ante to its development, 

using the Merredin agricultural region of Western Australia as an illustration.  Results 

suggest that a seasonal forecasting technology that provides a 30 per cent decrease in 

seasonal uncertainty increases annual profits by approximately five per cent.  The 

accumulated annual benefit to farmers in the Merredin region (an area with 754 farm 

holdings over 35, 500 square kilometres of land) is approximately two million dollars.  

Hence, support is given for the development of seasonal forecasting techniques in 

Western Australia. 

 

Keywords: Seasonal forecasting information; seasonal uncertainty; whole-farm 

modelling; MUDAS 

 

1.  Introduction 

 

Australian agricultural producers face high levels of seasonal uncertainty (Scoccimarro et 

al., 1994).  This seasonal uncertainty (both within and between years) significantly 

reduces the efficiency of their production systems.  An accurate seasonal forecast would 

allow farmers to tailor their management practices to better suit the pending seasonal 

conditions.  This analysis is an assessment of the value of seasonal forecasting 

technology for Western Australian farmers. 

 

A number of seasonal forecasting systems have been developed of late.  Most of these 

systems use the El Nino Southern Oscillation (ENSO) phenomenon in conjunction with 

other climate indicators (such as cloud cover, water vapour and agronomic data) (e.g. 

Hammer (1996), Meinke and Hammer (1997), Orlove et al. (2000), Podbury et al. (1998) 

and Rimmington and Nicholls (1993)).  In Australia, the ENSO phenomenon is strongly 
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associated with droughts that occur throughout Australia suppressing rainfall during the 

winter, spring and summer months of the southern hemisphere (Podbury et al., 1998).  

The Southern Oscillation Index (SOI) is a key indicator of ENSO (Coughlan, 1988) and 

is a measurement of the standardised difference in atmospheric pressure between Tahiti 

and Darwin.  The SOI significantly correlates with rainfall events in subsequent months, 

a lag that allows it to be valuable as a forecaster of seasonal rainfall (Bureau of 

Meteorology, 1993).  However, the correlation between rainfall and the SOI is strongest 

in the northern and eastern areas of Australia (up to 0.6 in parts of northern Queensland, 

New South Wales and Tasmania) but is relatively weaker in the western and central areas 

of Australia (up to 0.3) (Podbury et al., 1998).  Hence, the SOI is of little use as a 

seasonal forecasting tool for agricultural areas of Western Australia (IOCI, 1999).  A 

relatively new innovation, the Indian Ocean Climate Initiative (IOCI) commenced in 

1997 to research the effects of the Indian and Southern Oceans on climate in south-

western Australia.  While the IOCI have developed seasonal forecasting technologies 

which show promise, no method offers accurate forecasting skill as yet (IOCI, 1999).  

 

A wealth of literature exists explaining biological impacts of seasonal forecasting on 

agricultural systems.  However, only a small proportion examines the economic impacts 

of such forecasting information (e.g. Byerlee and Anderson (1982), Fox et al. (1999a), 

Fox et al. (1999b), Hammer (1996), Marshall et al. (1996), Mazzocco et al. (1992), 

Mjelde and Cochran (1988), Mjelde et al. (1988) and Mjelde and Dixon (1993)).  Two 

limitations can be identified in those studies that have put an economic value on seasonal 

forecasting technology.  First, some studies have valued improved decision-making from 

seasonal forecasting for individual farm enterprises with no consideration given to the 

interdependencies between enterprises in the whole-farm context (e.g. Byerlee and 

Anderson (1982), Fox et al. (1999b), Hammer (1996), Marshall et al. (1996), Mjelde and 

Cochran (1988) and Mjelde et al. (1988)).  Neglect for interactions between enterprises 

will cause the valuation of forecast information to be underestimated1.  The second 

limitation is the use of a small number of years for which data is compared.  For example, 

Fox et al. (1999a) and Fox et al. (1999b) use only two years of data.  Such a limited 

                                                           
1 Hammer (1996) notes that further research should extend his study with the whole-farm enterprise mix. 
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sample of seasons may cause economic values to be over- or under-estimated depending 

on seasonal conditions and quality of forecasts in those years. 

 

This paper adds to the existing literature on seasonal forecasting by assessing the value of 

a forecasting technology that decreases seasonal uncertainty for farmers in the eastern 

wheatbelt of Western Australia.  The analysis does not suffer the limitations of previous 

valuations of forcasting technology.  The whole-farm context is considered through the 

use of a whole-farm mathematical programming model, MUDAS (Model of an Uncertain 

Dryland Agricultural System).  MUDAS represents seasonal uncertainty in the farming 

system with eleven discrete weather-year states, each with an associated probability of 

occurrence.  Each weather-year state was classified using meteorological records from 

1907 to 1995, overcoming the data limitations of previous studies.  The aim of the study 

is to improve the methodology for the valuation of climate forecasting technology using a 

Western Australian farming system as an illustration.  Given that no accurate seasonal 

forecasting technology is available for Western Australia, this analysis shows to what 

extent the investment of funds into developing such a technology would be beneficial in 

this context. 

 

The paper proceeds as follows.  The second section is a description of MUDAS.  The 

third section demonstrates how the model can be used to value seasonal forecasting 

technologies and reports on the results of the analysis.  The article concludes with a brief 

summary. 

 

2.  The model 

 

This analysis uses MUDAS, a whole-farm discrete stochastic programming model of a 

mixed cropping system of Western Australia.  It is based on the Merredin region of 

Western Australia, a region approximately 250 kilometres east of Perth and 35, 500 

square kilometres in size.  Variations in seasonal conditions are reflected in MUDAS 

through the modelling of the ramifications of eleven weather-years on enterprise yields 

and management.  Seasonal uncertainty is a particular concern in the Merredin region 
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where the variation in wheat yields is the highest in the state (Petersen and Fraser, 1999).  

Aspects of MUDAS will now be described under the following headings: the objective 

function (Section 2.1), weather year states (Section 2.2), soil types (Section 2.3), 

enterprise options (Section 2.4), and tactical adjustments (Section 2.5).  For a more 

detailed exposition on the nature and structure of MUDAS, the readers are referred to 

Kingwell (1996).  A brief discussion of why MUDAS was used will be presented after 

this description (Section 2.6). 

 

2.1 The objective function  

 

The objective function of MUDAS involves maximisation of expected utility (in the case 

of risk aversion) or expected profit (in the case of risk neutrality).  However, the 

following analysis is simplified to omit the role of risk aversion.  This simplification is 

justified given that previous studies have found the variance-induced change in farm 

management from external pressures to be small relative to the expected profit-induced 

changes, under levels of risk aversion consistent with Merredin levels (e.g. Kingwell 

(1996)). 

 

The objective function used involves maximisation of expected terminal wealth as 

follows: 

 





n

t

ttt WSWMaxE
1

)(         (1) 

 

where St  = the probability of occurrence of ending at terminal state t, 

Wt  = terminal wealth at terminal state t, 

n  = the number of terminal states i.e. 55 states of nature; 11 weather-year 

states by 5 price states. 

 

Marshall et al. (1996) define wealth as initial wealth plus annual profit in a decision 

period.  Terminal wealth in MUDAS is specified as initial wealth plus profit in the 
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decision period where initial wealth comprises mostly of the value of the land, cropping 

machinery and the sheep flock.  The maximisation of terminal wealth is achieved through 

the selection of optimal levels of farm activities.  These activities are represented as 

columns in a data matrix with the constraints or limitations to these activities represented 

as rows. 

 

2.2 Weather-year states 

 

MUDAS includes the impact of 11 discrete weather states (or seasons) on the farm 

enterprises.  To limit the “curse of dimensionality”, defined by Anderson (1991) as 

“where there are so many aspects to deal with quantitatively that clear analytical insight 

is difficult” (p. 4), these weather-years are defined as those with potential to affect farm 

management, in particular the dominant enterprises for the Merredin region: wheat and 

sheep.  

 

The MUDAS weather-years are defined by four classifications as presented in Table 1.  

The first classification, the amount of summer and early autumn rain, is classified as 

either “much” or “little”.  The second classification is time of sowing wheat on clay soil.  

This classification is defined as either “early” if sowing of wheat on clay soil can 

commence before May 10, “mid” if sowing can commence between May 10 and early 

June, or “late” if sowing can commence in June or early July.  The third classification is 

the nature and duration of sowing opportunities.  Sowing opportunities for lupins on 

sandy soils were compared to those for wheat on clay soils.  If a large difference was 

evident then the nature of the sowing opportunity was classed ‘patchy’.  Where little 

difference was evident then it was classed ‘clean’.  The continuation of crop sowing 

depends on the amount and duration of effective rainfall.  A daily time-step simulation 

model of wheat growth developed by Robinson (1993) was used to classify the duration 

of sowing opportunities into continuous and discontinuous.  Lastly, the timing of spring 

rains (Coelli, 1990), incidence of waterlogging and frosts (Anderson et al., 1992; 
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Table 1  Classification of MUDAS weather-year states 

 Amount of 

summer and early 

autumn rain 

Time of 

sowing wheat 

on clay soil 

Nature and 

duration of sowing 

opportunities 

Post-sowing 

weather 

conditions 

Estimate of 

wheat yieldc on 

clay soil (t/ha) 

Estimate of what 

yieldc on sandy 

loam soil (t/ha) 

Probability 

A much early clean, contd - 2.27 2.18 .067 

B little early clean, contd favourable 1.86 1.94 .124 

C little early clean, contd unfavourable 1.03 1.03 .079 

D much mid clean, contd - 1.90 1.83 .135 

E little mid clean, cont favourable 1.48 1.61 .157 

F little mid cleane, cont unfavourable 0.49 0.76 .067 

G little mid cleane, discont - 1.36 1.50 .067 

H much late cleane, cont - 1.59 1.42 .056 

I little late clean, cont favourable 1.29 1.52 .056 

J little late clean, cont unfavourable 0.33 0.51 .034 

K little late patchy, contd - 0.51 0.82 .157 

Source: Kingwell (1996) 
 

 

 

 

c Estimate of wheat yield made on first day of sowing; d Mostly continuous; e Mostly clean 



Davidson and Birch, 1978) and temperature (Foulds and Young, 1977) affect crop 

production.  Hence, the fourth classification is post-sowing weather conditions (which 

includes these factors) and is summarised as either “favourable” or “unfavourable”. 

 

Ignoring weather-year states with low probability of occurrence, or those with a low 

likelihood of influencing management, resulted in the 11 weather-year states with 

probabilities of occurrences presented in Table 1.  Estimates of wheat yields on clay and 

sandy loam clays are also presented for each of these weather-year states. 

 

2.3 Soil types 

 

Seven soil types are defined in MUDAS (Table 2).  They are based on the soil types that 

are widely distributed in the Merredin region as described in Department of Agriculture 

(1991) and Stoneman (1992).  These soils display a range of fertility.  The acid sandplain 

soils (S1) are relatively infertile and are usually not suitable for crop production.  The 

other soil types are suitable for crop production with the good sandplain (S2) being the 

most fertile.   

 

2.4 Enterprise options 

 

The ABS (1997) indicates that the region’s main enterprises are wheat, sheep and lupin 

production.  Hence these three enterprises are represented in MUDAS.  Other minor 

crops (e.g. field peas) and enterprises (e.g. pig production) are excluded from MUDAS as 

they do not form part of a typical farm. 

 

Table 3 lists the rotation options represented in MUDAS.  Lupin production is only 

possible on the sandy soils while wheat and sheep production is possible on all soil types.  

Costs associated with crop production on each soil class and weather-year include tillage, 

sowing, harvest, herbicide, chemical and fertiliser costs.  Farmers change their rates of 

nitrogen application depending on season, expected prices, rotational phase and soil type.  

Hence, MUDAS incorporates yield-nitrogen response functions for each weather-year, 
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soil type and rotation.  To reflect conditions in the Merredin region, sheep are kept for 

meat and wool production.  There are more than 20 classes of sheep in MUDAS, 

assuming a self-replacing flock.  The structure of the flock is dependent on relative prices 

of wool and live-trade prices for lamb and young wethers, and the husbandry costs 

associated with each class.   

 

Table 2  MUDAS soil types 

Soil class Description Area (ha) 

S1 (Acid sands) Yellow, loamy or gravelly sands.  Native 

vegetation is wodgil with sheoak and banksia on 

deep white sands. 

500 

S2 (Sandplain) Deep, yellow-brown loamy sands.  Native 

vegetation is gravillea and tamma. 

500 

S3 (Gravelly sands) Yellow-brown gravelly sands and sandy gravels. 

Native vegetation is tamma. 

250 

S4 (Duplex) Grey, sandy loams, loamy sands, gravelly sands 

and sand over white clay with yellow or red 

mottles.  Native vegetation is mallee. 

250 

S5 (Medium heavy) Red-brown, sandy loam over clay sub-soil.  

Native vegetation is salmon gum and tall mallee. 

375 

S6 (Heavy non-

friable) 

Dark red-brown sandy clay loams.  Native 

vegetation is gimlet, morrel and salmon gums. 

500 

S7 (Heavy friable) S6 soil treated with gypsum. 125 

Source: Kingwell (1996) 

 

Because of the biological complexity of the farming system, it is important to include 

some interdependencies of enterprises.  MUDAS includes five main interdependencies.  

First, pasture phases increase the weed burden of subsequent cropping phases yet can be 

advantageous to subsequent crops through increased soil nitrification and disease breaks.  

Second, sheep selectively graze crop stubble that diminishes the stubble burden for tillage 

equipment.  Third, the cropping phases reduce pasture set in the earlier years of a return 
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to pasture production yet provide stubble as sheep feed after harvest in summer and 

autumn.  Fourth, lupin crops are legumes and hence provide a yield boost to subsequent 

wheat crops due to nitrification of soils.  Lupins also provide a disease break and aerate 

soils through deep root growth.  Fifth, lupin seed that remains in the paddock after 

harvest provides nutritious feed for sheep. 

 

Table 3  Rotation options in MUDASf 

 

Rotations on soil classes 

S1, S2, S3 and S4 

Rotations on soils classes 

S5, S6 and S7g 

WL 

WWL 

 PPPP 

 PPPW 

PPW 

 PPWW 

 PWPW 

WWWW 

PPPP 

PPPW 

PPW 

PPWW 

PWPW 

WWWW 

Source: Kingwell (1996) 

 

2.5 Tactical adjustments 

 

In reality, farm managers change their farm management as the year unfolds to either 

minimise losses or capitalise on extra profits (Antle, 1988; Bathgate et al., 1991; 

Dorward, 1994; Hammer, 1996; Mazzocco et al., 1992; Mjelde and Dixon, 1993; 

Schroeder and Featherstone, 1990; Stewart, 1991; Taylor, 1993).  These tactical 

adjustments are approximated in MUDAS through the use of discrete stochastic 

                                                           
f The wheat-wheat-pasture (WWP) and wheat-wheat-wheat-pasture (WWWP) rotations are not considered 
feasible for the Merredin region as, in the absence of re-sowing, pastures do not regenerate after the 
cropping phases of these rotations. 
g W = wheat, L = lupins, P = pasture 
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programming which describes how some management decisions can be made after a state 

of nature is observed (Hardaker et al., 1991; Hazell and Norton, 1986). 

 

The tactical adjustment options represented in MUDAS can be made at four stages (see 

Table 4) and relate to enterprise area, machinery and labour usage, seasonal sheep 

liveweight patterns, sheep agistment, some aspects of pasture and stubble management, 

lupin feeding and application rates of nitrogenous fertilisers.  These options are specific 

for one or a number of weather-year states.  In reality, such options may give 

ramifications for not only that particular weather-year state but also subsequent states i.e. 

effects on soil fertility, weed burden and pasture availability.  These ramifications are 

also captured in the model. 

 

Table 4  The four stages in which tactical management decisions are made 

Stage Accumulated 

knowledge 

Management decisions Actual time of 

year 

1  Determination of initial farm plan to be 

applied across all weather-years. 

This plan is adjusted in stages 2 – 4. 

Beginning of the 

year 

2 Quantity of 

summer rain 

Feed decisions March/April 

3 Timing and 

nature of the 

sowing 

opportunity 

Tactical adjustments concerning crop and 

pasture areas, deferment of pasture feed, the 

livestock enterprise, hiring of additional 

casual labour and rates of application of crop 

and pasture nitrogenous fertilisers 

April – June 

4 Growing 

conditions 

Agistment, livestock feeding and harvest 

labour 

July - November 
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2.6 Why MUDAS was chosen for this analysis 

 

MUDAS was used in this study for four reasons.  First, it is a whole-farm model that 

includes the relevant biological complexities and interactions between enterprises in a 

typical wheatbelt farming system.  These complexities and interactions are difficult to 

capture accurately outside the whole-farm modelling framework, and without them it is 

likely that the impact of seasonal forecasting technology would be under-estimated 

(Pannell, 1996).  Second, it includes the stochastic nature of production outcomes 

associated with weather-years allowing the value of seasonal forecasting technology to be 

analysed.  Third, it includes seasonal information from nearly 90 years of observations, 

providing a comprehensive probability distribution of weather-year states.  Finally, 

MUDAS includes tactical decisions that arise sequentially as the weather-year unfolds.  

Seasonal forecasting technology would be of less value to the producer if it does not 

induce tactical changes in farm management.  Hence, the full value of this information 

technology could not be assessed without the modelling of tactical adjustments.   

 

3. Assessment of the value of seasonal forecasting technology 

for Western Australia farmers 

 

The assessment comprises four parts.  First, the methodology for valuing seasonal 

forecasting technology using MUDAS is presented (Section 3.1).  Second, optimal farm 

management in the absence of seasonal forecasting technology (the standard solution of 

the model) is described (Section 3.2).  The seasonal forecasting technology is then 

introduced and its long term average impact on farm management and profit is discussed 

(Section 3.3).  Lastly, the aggregated value of the seasonal forecasting technology for the 

Merredin region is presented with recommendations for directions in future climate 

research (Section 3.4). 
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3.1 Simulating increased information through seasonal forecasting technology 

 

The aim of this analysis is to evaluate the economic benefits of a technology that 

generates seasonal forecasting information for Western Australian farmers.  The overall 

benefit of the forecasting technology is assessed rather than the forecasts themselves.  

There is potential for confusion over this central aim.  If it were the benefits of the 

forecasts that were being evaluated, a representative sample of forecasts would be 

determined, and Bayes’ Theorem would be used to revise the probabilities for the coming 

season to reflect information from each forecast.  The model would be solved for each 

forecast and the expected return from these solutions would be weighted by the 

probability of observing each forecast to find the expected value of the forecasts.  This 

methodology would be suitable if a forecasting technology had already been developed 

and the precise form of the resulting forecasts was known. However, where such a 

technology has not been developed a different approach is required.  The ex ante 

approach used in this analysis will now be described. 

 

Consider first how the forecasting technology should be specified.  The formulation used 

here is based on that provided by the SOI in the northern and eastern parts of Australia 

which indicates whether an above average rainfall year is “more likely” or “less likely”.  

This information is given as a once-a-year event, made public at the start of the farm 

planning period (stage one of decision making). 

 

Now consider the economic impact of the information technology.  As Table 1 outlines, 

the seasons identified in MUDAS have a four-dimensional character which makes it 

unlikely that the overall impact of any feasible forecasting technology will do more than 

reduce the general level of seasonal uncertainty faced by Western Australia farmers.  

Consequently, in what follows the complete forecasting technology is characterised as 

providing an overall reduction in seasonal uncertainty, but without any change in 

expected yield.  A mean-preserving reduction in uncertainty is specified as this has been 

the favoured method of representing the value of risk-reducing information since 

Newbery and Stiglitz (1981).  Note that it is straightforward to modify the probabilities in 
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other ways, such as to increase or decrease expected yield.  However the approach used 

in this study can be viewed as representing an “average” assessment of the value of many 

years of climate forecasts, where sometimes this information would imply increased 

expected yields and in other cases decreased expected yields, but overall would provide a 

decrease in seasonal uncertainty. 

 

The new set of weather-year probabilities is calculated assuming the expected yields for 

each weather-year are those of the standard solution.  Table 5 presents the expected yields 

for each weather-year, the MUDAS standard probabilities and the new set of 

probabilities.  The highest-yielding weather-year, A, and the lowest-yielding weather-

years, F and J, are assigned probabilities of zero, and the probabilities of the other 

weather-years were altered so that the average yield remains at approximately 1.50 t/ha 

and the coefficient of variation of yield (CVy) decreases from 24.4 per cent to 17.1 per 

cent2.  Note that levels of CVy of approximately 17 per cent are common for shires in the 

vicinity of the Merredin region (Petersen and Fraser, 1999). 

 

This approach raises the issue of reliability, on which the value of the information 

technology is conditional.  First, the (approximately 30%) reduction in seasonal 

uncertainty is specified such that a coefficient of variation of yield common for shires in 

the vicinity of the Merredin region is produced.  This specification is viewed as a 

minimum standard for the information advantages of a forecasting technology, and 

therefore will produce conservative estimates of benefits.  Second, the benefits for 

farmers of improved seasonal information are generated by reduced losses in “poor” 

years and enhanced gains in “good” years.  The approach taken here is a mean-preserving 

reduction in the coefficient of variation of yield which means that although the results 

capture the benefits of reduced losses with better information about the likelihood of 

“bad” years, the benefits of enhanced gains with better information about the likelihood 

                                                           
2 Note that MUDAS is an ideal tool for evaluating the benefits of forecasting technology as it includes 
weather information based on nearly 90 years of observations, and therefore its probability distribution of 
weather years can reasonably be treated as the "actual" distribution rather than one that farmers are 
"learning" (as in the Bayesian approach). We are grateful to an anonymous referee for helping us to clarify 
this point. 
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of “good” years is underestimated.  Nevertheless, the approach supports the impact of the 

previous specification of “reliability” to produce a lower bound estimate of benefits. 

 

Table 5  Probability distributions for the standard model and the model with decreased 

seasonal uncertainty 

Weather-

year 

y  for each 

weather-year (t/ha) 

Standard probabilities Probabilities for 

model with decreased 

seasonal uncertainty 

A 2.08 0.067 0.000 

B 1.70 0.124 0.146 

C 1.62 0.079 0.079 

D 1.77 0.135 0.157 

E 1.68 0.157 0.179 

F 0.81 0.067 0.000 

G 1.61 0.067 0.067 

H 1.47 0.056 0.056 

I 1.32 0.056 0.107 

J 0.63 0.034 0.000 

K 1.07 0.157 0.208 

 Average yield (t/ha) 1.49 1.50 

 CVy (%) 24.4 17.1 

 

It is conceded that this ex ante approach will not provide as accurate an evaluation of the 

benefits of a forecasting technology as would be the case if the precise nature of the 

technology were known.  However, it is arguable that it at least provides a lower bound 

estimate of these benefits that may be of use in a research evaluation context. 

 

3.2 Optimal farm management in the absence of seasonal forecasting technology 

 

The standard MUDAS solution in the absence of seasonal forecasting technology is 

presented in this section.  Recall that a grower determines an initial farm plan but then 
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makes tactical adjustments to this plan as the weather-year unfolds.  Overall, Table 6 

indicates that average land use is fairly evenly divided between crop (48 per cent) and 

pasture (52 per cent) production, with wheat being the dominant crop.  Tactical 

adjustments of land-use are made in relatively moderate (i.e. H) and high (i.e. A and D) 

yielding weather-years where wheat areas and stocking rates are increased as potential 

wheat and pasture yields are relatively high.  However, in poor-yielding weather-years 

(i.e. I, J and K), no adjustments are made as prospective yields are low and pasture 

production is expected to be inadequate to sustain higher stocking rates. 

 

Table 6  Average land use in the absence of seasonal forecasting technology 

Land Use Area 

 ha % 

Total crop 1211 48 

Wheat 822 33 

Lupins 389 16 

Pasture 1289 52 

 

Average nitrogen application rate and the corresponding average wheat yield are 

presented in Table 7.  In relatively high-yielding weather-years (i.e. A and D), levels of 

N  are very high as the capacity of the plant to utilise nitrogen to increase yield is high.  

On the other hand, in relatively poor-yielding weather-years (i.e. J and K), levels of N  

are relatively low as the level and timing of rainfall events are such that the plant has 

limited capacity to utilise the fertiliser to increase yield. 

 

Table 7 also gives sheep enterprise management information.  The sheep enterprise is a 

self-replacing, ewe-dominant flock with the primary focus of producing young sheep.  

Young sheep are lucrative as they attract higher prices than older sheep (ABARE, 1999).  

Also, young sheep produce finer wool than older sheep, and finer wool attracts a higher 

price than broader wool (ABARE, 1999). 
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Table 7  Crop and sheep enterprise management in the absence of seasonal forecasting 

technology 

Average yield (t/ha) 1.53 

Coefficient of variation of yield (CVy) (%) 24.8 

Average nitrogen application rate (kg urea / ha) 61.4 

Average number of sheep in winter 4012 

Average number of sheep in winter less agistment 3985 

Average stocking rate in winter (DSE / pasture ha) 3.09 

Average level of supplementary feeding (tonnes of lupins fed) 109 

 

The main tactical adjustments made to the sheep enterprise are agistment and 

supplementary feeding levels.  Most agistment occurs in weather-years F and J, where 

pasture production is very low and it is cheaper to agist then supplementary feed them 

with purchased or retained lupin feed.  As may be expected, supplementary feeding 

occurs in relatively poor-yielding weather-years (i.e. F, J, K) where pasture production is 

limited. 

 

Average financial outcomes of the model are presented in Table 8.  Expected terminal 

wealth, E(Wt), comprises initial wealth plus expected profit, E().  Initial wealth 

comprises initial equity and land, land improvements (e.g. dams and fences), buildings, 

plant, equipment and cropping machinery.  As initial wealth does not depend on 

outcomes in wheat and wool prices, changes in terminal wealth are dependent on changes 

in E().  In the absence of the seasonal forecasting technology, E(Wt) is equal to $856, 

555 and E() is equal to $61, 727.  The variation of profit, Var(), across weather-years is 

equal to 1.14 x 1010, hence the coefficient of variation of terminal wealth, tWCV , across 

weather-year states is equal to approximately 12 per cent and the coefficient of variation 

of profit, CV, is equal to 173 per cent.  
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Table 8  Financial information in the absence of seasonal forecasting technology 

E(Wt) ($) 856, 555 

E() ($) 61, 727 

Var() 1.14 x 1010  

tWCV (%) 12.44 

CV (%) 172.65  

 

 

3.3 Long term average impact of seasonal forecasting technology on farm 

management and profit  

 

The previous section investigated optimal farm management in the absence of seasonal 

forecasting technology.  This section analyses the long term average impact of 

forecasting technology on farm management and profit.  The probability of occurrence of 

each weather-year has been altered according to Table 5. Forecasting technology is of 

value to a grower both because of reduced seasonal uncertainty and because it induces 

changes in management that cause farm profits to increase.  The broad effect of the 

information technology on land use is a relatively small increase in wheat area planted at 

the expense of lupins and pasture (Table 9).  Associated with this is an increase in 

average wheat yields due to an increase in average nitrogen application rate (Table 10).  

Average levels of agistment and supplementary feeding decrease due to a decrease in 

average sheep numbers (Table 10).  Overall, a grower’s supply response to seasonal 

forecasting technology is an increase in wheat area planted and average nitrogen 

application rates for wheat.  Table 11 demonstrates that the long term impact of the 

seasonal forecasting technology on a grower’s income stream is an increase in E() of 

approximately 5 per cent and a decrease in Var() of approximately 26 per cent3.  CV is 

decreased due to the changes in both E() and Var(). 

 

                                                           
3 The probabilities of weather-year occurrence were altered such that wheat yield variability decreased by 
30 per cent.  However, as nitrogen application rates increased (a risk increasing input (Regev et al., 1997)), 
Var() did not decrease proportionately. 
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Table 9  The impact of seasonal forecasting technology on average land use 

Land Use No seasonal forecasting 

technology 

With seasonal forecasting 

technology 

 ha % ha % 

Total crop 1211 48 1214 49 

Wheat 822 33 829 33 

Lupins 389 16 385 15 

Pasture 1289 52 1286 51 

 

Table 10  The impact of seasonal forecasting technology on crop and sheep enterprise 

management  

 No seasonal 

forecasting 

technology 

With seasonal 

forecasting 

technology 

Average yield (t/ha) 1.53 1.58 

CVy (%) 24.8 17.4 

Average nitrogen application rate (kg urea / ha) 61.4 71.7 

Average number of sheep in winter 4012 3980 

Average number of sheep in winter less agistment 3985 3980 

Average stocking rate in winter (DSE / pasture ha) 3.09 3.09 

Average level of supplementary feeding 

(tonnes of lupins fed) 

109 94 

 

Table 11  The impact of seasonal forecasting technology on a grower’s income stream 

(per cent change in brackets) 

 No seasonal forecasting 

technology 

With seasonal forecasting 

technology 

E() ($) 61, 727 64, 809 (4.76) 

Var() 1.14 x 1010  9.07 x 109 (-25.69) 

CV (%) 172.65  146.96 (-17.48) 
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3.4 The aggregated value of seasonal forecasting technology for the Merredin 

region. 

 

It is estimated that the long term impact on farmers in the Merredin region of Western 

Australia of seasonal forecasting technology that decreases seasonal uncertainty by 30 per 

cent is an increase of profits of approximately 5 per cent ($1.23/ha).  It should be 

recognised that this value is low compared with previous studies.  For example, Hammer 

(1996) and Marshall et al. (1996) found that tactical adjustments due to improved 

information derived from seasonal forecasting for wheat crop management in the 

Queensland grain belt increased profit by approximately $10/ha and $3.60/ha 

respectively.  However, it is expected that seasonal forecasting technology would be 

more valuable in Queensland where seasonal uncertainty is relatively high compared with 

Western Australia (Scoccimarro et al., 1994).  In addition, Fox et al. (1999b) valued 

precipitation forecast technology for wheat crop management in Ontario, Canada.  An 

average value of $100/ha per year was obtained, although this value varied significantly 

between the years studied (1994 and 1995).  Again, higher values are expected for this 

region than for Western Australia due to higher levels of seasonal uncertainty and 

productivity (average Ontario wheat yield is 4.25t/ha compared with 1.5t/ha for the 

Merredin region).  In addition, Fox et al. (1999b) considered the value of seasonal 

forecasting technology in years where the forecast is of particular benefit (i.e. mean crop 

yields are increased).  This contrasts with the approach taken in this paper which 

represents an “average” assessment of the value of many years of climate forecasts (i.e. 

the technology not the forecasts themselves are assessed). 

 

A 1996 survey counted 754 farm holdings in the Merredin region.  Hence, the aggregated 

annual value of seasonal forecasting technology for the region is approximately two 

million dollars4.   It should be noted that it is likely that climate forecasting information 

developed by an agency such as the IOCI would be applicable to a larger area of the 

                                                           
4 It is likely that the number of holdings in the Merredin region has decreased since 1996, however, the 
average size of the holdings would have increased as a result.  Hence, the change in holding number is 
unlikely to significantly affect the results. 
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south-west agricultural region of Western Australia than the Merredin region.  

Consequently, a more broadly applicable seasonal forecasting technology would provide 

substantial benefits for farmers in Western Australia giving support for the allocation of 

funds to climate forecasting research.  

 

4. Conclusions 

 

At present, accurate seasonal forecasting techniques do not exist for Western Australia, 

although the Indian Ocean Climate Initiative has developed systems which show promise.  

This analysis provides an assessment of the value of seasonal forecasting technology for 

crop-livestock farmers in the Merredin region of Western Australia, the region with 

greatest seasonal uncertainty in the Western Australian agricultural zone.  A whole-farm, 

discrete stochastic programming model, MUDAS, is used.  The model represents the 

uncertain production environment with eleven discrete weather-year states, each with an 

associated probability of occurrence.  The weather-years states were defined using 

meteorological records from 1907 to 1995.  By using MUDAS, the assessment does not 

suffer limitations evident in other valuations of seasonal forecasting information where 

enterprises are considered in isolation from the whole-farm context, and a limited number 

of years is used. 

 

The overall benefit of the information technology is assessed not the forecasts 

themselves.  It is assumed that the forecasting technology decreases the uncertainty of 

possible yield outcomes by 30 per cent (to a level common for shires in the vicinity of the 

Merredin region) while preserving the average yield.  This represents the average impact 

of many years of climate forecasts, some of which may forecast increased, and others 

decreased, expected yields.  A five percent increase in expected profits is observed.  The 

value of seasonal forecasting technology elicited in this study is low compared with 

estimates of other studies.  However, a lower value is expected as the uncertainty and 

productivity of the Merredin farming system is much lower than those of the other 

studies.  Considering the number of farm holdings in the area, the accumulated annual 

benefit of seasonal forecasting technology for the region is approximately two million 
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dollars.  Moreover, it should be noted that the benefits of an accurate seasonal forecasting 

tool are likely to be applicable to a larger area than just the Merredin region.  Hence, 

support is given for the allocation of funds to climate forecasting research in Western 

Australia. 
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