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ABSTRACT 

Although food processing sector production is inherently linked to the availability 

and prices of agricultural materials (MA), this link appears to be weakening due to 

adaptations in input costs, technology, and food consumption patterns.  This study 

assesses the roles of these changes on food processors’ costs and output prices, with a 

focus on the demand for primary agricultural commodities.  Our analysis of the 4-digit 

U.S. food processing industries for 1972-1992 is based on a cost-function framework, 

augmented by a profit maximization specification of output pricing, and a virtual price 

representation for agricultural materials and capital.  We find that falling virtual prices of 

MA and input substitution have provided a stimulus for MA demand.  However, scale 

effects have been MA-saving relative to intermediate food products, and disembodied 

technical change has strongly contributed to declining primary agricultural materials 

demand relative to most other inputs. 

 

 

The authors are Professor, Department of Agricultural and Resource Economics, 
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Introduction 

 It is typically assumed that output levels and prices in the U.S. food processing 

sector are directly linked to the availability and prices of the agricultural products or 

materials (MA) used for production.  However, the traditional link between farm and food 

prices and production may be weakening.  Adaptations in input costs and food 

consumption patterns are leading to changes in the production structure and technology 

of the food processing industries, that in turn affect demand patterns for primary 

agricultural materials.  Such structural changes have been documented not only by 

anecdotal evidence, but in studies such as Goodwin and Brester, and Morrison and 

Siegel.  In particular, Goodwin and Brester find that value-added by manufacture, both 

per worker hour and as a percentage of sales, increased in the 1980s in the U.S. food and 

kindred products industry overall, possibly implying an undermining of MA demand. 

Various economic and behavioral factors underlie these trends.  As noted by 

Goodwin and Brester, relative prices of inputs important to food manufacturing, such as 

energy and labor prices relative to those for raw materials, shifted significantly in the past 

couple of decades.  The business environment also has experienced quite a 

transformation, including market structure and regulatory (tax) changes in the early 

1980s.  Tax changes have, for example, had a direct impact on relative input prices, by 

affecting the prices of capital inputs.   

Perhaps even more important than these alterations in the economic climate 

facing food processors are adaptations in food demand patterns.  The fact that a greater 

proportion of adults are in the labor force today causes a higher demand for food products 

that require little home preparation time; they are at least in part prepared at the 
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processing plant.  These modifications in dietary preferences, combined with changes in 

food technology that allow processors to adapt foods to meet those preferences, could 

lead to more in plant processing of agricultural commodities.  Other technical changes 

associated with capital equipment and the quality of agricultural materials, could also 

have an impact on the relative demand for agricultural products. 

 These adaptations in food product costs, demand, and characteristics may mean 

that food processors are responding by altering their input composition.  If they are using 

more capital, skilled labor, and nonagricultural materials to produce food products than in 

the past, these factors could become increasingly important elements in processors’ costs 

relative to agricultural commodities.  The corresponding decline in agricultural materials 

input intensity is likely to result in weaker effects of changes in agricultural commodity 

prices on food prices, which has important impacts on both consumers of the final 

product and producers of the raw agricultural materials.   

 To address these issues, this study assesses the role of changes in food product 

demand, input prices, and food processing technology on food processors’ costs and 

output prices, with a particular focus on the use of agricultural commodities as compared 

to other factor inputs.  Our analysis of cost structure and input composition changes in the 

U.S. food processing industries is based on a cost-function representation of production 

processes in these industries.   

In our model we recognize a full range of substitution patterns among capital, 

labor, energy, agricultural materials, food materials and “other” materials inputs resulting 

from input price changes or technological factors.  This allows us to explore 

modifications in input mix, costs and commodity prices resulting from changing 



 3

agricultural commodity prices and output demand.  It also facilitates consideration of 

technological factors affecting MA demand and production costs such as the quasi-fixed 

nature of capital (adjustment costs), scale economies, technical change associated with 

either time trends (disembodied) or capital composition (embodied in capital), and 

agricultural innovations or market power embodied in the MA input price. 

The model is estimated using data on 4-digit SIC level U.S. food processing 

industries, and the results summarized according to time period (1972-82 and 1982-92) 

and 3-digit code (meat, dairy, vegetables, grains, sugar and candy, oils, beverages, and 

miscellaneous).  The base price and quantity data for output, capital, labor, and materials 

are from the National Bureau of Economic Research Productivity Database.  The 

materials breakdown was drawn from data in the Census of Manufactures, which are only 

available at 5-year intervals – from 1972 to 1992.  We therefore have a panel of data for 

34 industries and 5 time periods, which are distinguished by fixed effects for estimation.1 

Our empirical results suggest that agricultural materials (MA) demand has been 

affected by various technological and market characteristics of the food processing 

industry.  Although own price effects have had the potential to limit MA demand, growth 

in the price of agricultural materials has fallen over time, and in the effective price has 

fallen even lower, so this effect was essentially erased – or even reversed direction – by 

the end of the 1980s.  Substitution effects have also contributed to MA demand.  Rising 

capital costs, especially in effective units, and its implied limitations on production 

flexibility, have particularly enhanced MA substitution.  Scale effects have had a 

somewhat ambiguous effect, since MA use has increased slightly more proportionately 

than output increases in effective units, but less than the use of intermediate food 
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products, so MA demand, especially in traditionally measured units, has weakened 

relative to these substitute inputs.  We also, however, find a strong and increasing 

downward trend in MA demand over time.  The direct effect of disembodied technical 

change in the food processing industries, possibly induced by changing output demand, 

has clearly been MA-saving, even adapted for the conflicting forces from innovation, and 

rigidities in the agricultural sector, that have affected the virtual prices of agricultural 

materials and capital. 

The Model 

 Our goal is to evaluate costs, input demand (especially for agricultural materials), 

and output price (supply) behavior in the U.S. food processing industries, and their 

dependence on various pecuniary and technological forces.  A cost function specification 

recognizing virtual prices, and augmented by an output pricing equation, provides the 

foundation for this exploration.   

Such a framework assumes that cost minimizing input demand behavior based on 

observed input prices and output demand characterizes firms in the food processing 

industries.  Fixed effects and a time trend represent industrial and temporal differences.  

The potential for imperfect markets from quasi-fixity and deviations from perfect 

competition is incorporated through the virtual price specification.  The resulting cost 

structure representation allows us also to characterize profit maximizing output prices 

and quantities through an equality of the associated marginal cost and marginal revenue. 

 More formally, the technology and cost-minimizing behavior underlying the 

observed production structure are typically represented by a total cost specification of the 

form TC(Y,p, r), where Y is (food) output, p is a vector of variable input prices, and r is 
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a vector of exogenous technological determinants.  The TC-Y relationship, summarized 

by the TC,Y=ln TC/ln Y elasticity, represents the shape of the (minimized long run) 

cost curves, given observed factor prices and the existing technological base.  Impacts on 

this cost relationship of changes in components of the p and r vectors, and thus on the 

implied overall costs and input-specific demands, can be derived via 1st- and 2nd-order 

elasticities with respect to these arguments of the cost function.   

The ability to reach minimum possible production costs, as implied from such a 

cost function specification, is often recognized to be restricted by adjustment costs, which 

severs the equivalence of the observed input price, pk, and its true economic return.  

Alternatively, something that looks like internal adjustment costs may stem from 

increased factor prices due to some other type of input market imperfection.  This could 

arise from, for example, imperfect competition in the factor market, external adjustment 

costs or unmarketed (or unmeasured) characteristics.2  

One way to deal with a deviation between the measured and virtual or shadow 

value of input xk from imperfect markets is to include xk instead of pk as an argument of 

the (variable) cost function, thus implicitly representing the shadow value (Zk) wedge as 

TC/xj = pk-Zk  0. 3  An alternative approach is to directly incorporate the virtual price 

of input xk, p*k=pk+k, into the function, where k represents the wedge between pk and 

Zk.  This representation is particularly appealing if the interaction terms from the former 

model seem uninformative, but an imperfect market gap, k seems to exist (k 

statistically deviates from zero).4  If instead Zk (p*k) appears well approximated by pk, or 

k0, one can reasonably assume that rigidities or other input market imperfections are 

not binding constraints on, or determinant of, measured cost structure patterns.   



 6

We have adopted such a virtual price framework as that most consistent with our 

data, from preliminary investigation of estimation patterns.  In this scenario, the total cost 

function for producing food output in the U.S. food-processing sector becomes TC = 

TC(Y,pv,p*x,r), where pv represents the vector of observed variable input prices for 

factors that satisfy standard requirements for Shephard’s lemma to be valid, and p*x is a 

vector of effective prices that deviate from observed prices by the additive factors x.
5   

In our analysis, the variable inputs – for which empirical investigation supported 

the k0 assumption – are labor, (L) and materials (food, MF, energy, E, and “other” MO) 

inputs, with prices pL, pMF, pE, and pMO.  Demand decisions for these inputs are thus 

represented by vj=TC/pj.  Evidence was found, however, for deviations between 

observed and effective or virtual prices for capital (K) and agricultural materials (MA). 

The virtual price of capital was therefore defined as p*K=pK+K, with k0 

potentially attributable to capital rigidities (adjustment costs) or unmeasured taxation or 

quality impacts.  Various forms for the deviation between pK and ZK=p*K were tested to 

establish their empirical justification in terms of significance of the parameters, 

robustness of the overall results, and plausibility of resulting elasticities.  The final 

chosen specification is an augmented version of an additive shift factor recognizing 

technical change trends; K = K1 + Ktt + Ktt2, where t is a trend term and t2 a dummy 

variable representing post-1980 structural change.   So p*K = pK + K1 + Ktt + K2t2 

appears as an argument of TC(), with optimal K demand given by K=TC/p*K. 

Similarly, treating MA as an xk factor, with effective price p*MA = pMA+MA, and 

MA = MA1 + MAtt + MA2t2, was empirically supported.  The finding that MA0 is 

plausible for a variety of reasons.   In particular, if the processing industries perceive 
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some (market power) control over MA prices, the (higher) marginal than (observed) 

average price drives MA input demand behavior and MA>0.  This is of interest since the 

potential for (relatively large) processing facilities to depress prices paid to (relatively 

small) farmers, has often been recognized as a policy concern.  In reverse, embodied 

technical change (and thus implied quality) could imply lower effective prices of 

agricultural materials compared to their measured values (MA<0).  Thus, p*MA becomes 

an argument of TC(), with MA choice represented by MA=TC/p*MA, and the sign and 

thus interpretation of the MA “wedge” to be established empirically. 

The variables in the r vector reflecting the industry’s technological base include 

the time counter t, as well as t2, to represent disembodied technical change trends and 

further structural change shifts in the 1980s as compared to the 1970s (t2=1 for 1982, 

1987 and 1992).  A capital equipment to structures ratio, (EQ/ST=ES), is also used to 

represent technology embodied in the capital stock.6  And dummy variables for the 

different industries, DI, are included to capture fixed effects.7 

Output supply/pricing decisions are also accommodated in this cost-based model 

by specifying a pricing mechanism that allows for a difference between output price and 

marginal costs, or average (observed) and marginal (virtual) cost.  This extension of the 

cost function framework is founded on imposing the standard profit maximizing 

condition underlying output choice, MR = MC (where MC is marginal cost and MR is 

marginal revenue), and assuming that any gap between output price pY and MR results 

from a dependency of pY on output levels; pY(Y).  This is implemented similarly to the 

specification of virtual input prices for MA and K,8 through the optimization equation MR 

= pY + pY/YY = TC/Y = MC, so pY/YY reflects the wedge between MR and 
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MC.9  We find pY/Y to be well approximated by a parameter, Y, so the effective (or 

virtual) price is p*Y = pY+YY, and the resulting optimization equation becomes p*Y=MC 

or pY=-YY+MC .  Alternative treatments with Y specified as a function of other 

exogenous variables were also tried, with no significant impact.10   

The resulting total cost function TC(p*MA,p*K,pL,pMF, pE,pMO,Y,ES,t,t2,DI) and 

associated input demand and output supply (pricing) optimization equations facilitate 

evaluating a broad range of production structure issues in the U.S. food processing 

industries.  A useful way to characterize the impacts of changes in the economic and 

technological climate on the cost base and resulting choice behavior is through a 

decomposition of observed changes.  This provides us with information on both 

individual elasticities, and their implied contribution or exogenous changes to observed 

cost, demand, and supply (pricing) changes.   

That is, we can divide observed TC changes over time, dTC/dt, into its driving 

forces, by quantifying the total derivative:  

1) dTC/dt  =  TC/dp*MAdpMA/dt + TC/p*KdpK/dt + TC/dpLdpL/dt                         

+ TC/pMFdpMF/dt + TC/dpEdpE/dt + TC/pMOdpMO/dt + TC/YdY/dt             

+ TC/ESdES/dt + TC/t2 dt2/dt + TC/t  

which can be rewritten as: 

2) dln TC/dt  =  ln TC/dln p*MAdln pMA/dt + ln TC/ln p*Kdln pK/dt                          

+ ln TC/dln pLdln pL/dt + ln TC/ln pMFdln pMF/dt + ln TC/dln pEdln pE/dt        

+ ln TC/ln pMOdln pMO/dt + ln TC/ln Ydln Y/dt + ln TC/ln ESdln ES/dt      

+ ln TC/t2 dt2/dt + ln TC/t,  

or in terms of elasticities, as: 
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3) dln TC/dt  =  TC,p*MA dln pMA/dt + TC,p*Kdln pK/dt + TC,pLdln pL/dt                        

+ TC,pMF dln pMF/dt + TC,pE dln pE/dt + TC,pMO dln pMO/dt + TC,Y dln Y/dt            

+ TC,pES dln ES/dt + TC,t2 dt2/dt + TC,t ,  

where TC, are cost elasticities with respect to the various arguments of TC(), and dY/dt, 

for example, represents the actual change in Y between two time periods. 11 

By defining “contributions” of individual arguments of TC(), we can rewrite (3) as: 

4) dln TC/dt  =  CTC,p*MA + CTC,p*K + CTC,pL + CTC,pMF + CTC,pE + CTC,pMO + CTC,Y            

+ CTC,ES + CTC,t2 + CTC,t  , 

where the CTC, cost-contributions capture the responsiveness or elasticity combined with 

the actual change in the exogenous variable.  Note that the industry fixed effects fall out 

by construction since we are capturing within-industry changes.  By contrast, t2 appears 

even though it is a dummy variable; however, its impact is only reflected in the time 

period the dummy variable becomes one.12 

Each of these measures has a specific interpretation as a cost driver.  For example, 

the scale elasticity TC,Y = ln TC/ln Y captures the shape of (or movement along) the 

cost curve in TC-Y space, and thus the extent of (internal) scale economies.  The 

contribution of such economies to observed cost changes, CTC,Y,  therefore depends on 

both the TC,Y elasticity and the observed output (scale of production) change, dln Y/dt. 

Input prices also have well defined impacts on costs, which are represented by the 

elasticities and contributions TC,j and CTC,j (j=L,E,MF,MO).  The TC,j measures, however, 

collapse to the estimated input j cost shares due to Shephard’s lemma; TC,j=ln TC/ln pj 

= (TC()/pj)pj/TC = vjpj/TC = Sj.  The cost impact of a price change for the variable 

factor vj therefore depends on its input-intensity in production.  Similarly, for the xk 
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variables, these measures depend on the virtual prices p*k, since xk() = TC()/p*k 

(k=MA,K); decision-making behavior is driven by the effective price of the factor.  The 

associated “virtual share” is thus TC,k = TC()/p*kp*k/TC = S*k. 

The TC,rn elasticities represent shifts in the cost function from external 

technological and economic forces.  The elasticity TC,t=ln TC/t, for example, is 

typically interpreted as (disembodied) technical change that results in a downward shift 

of the cost relationship over time (cost diminution).  A TC,t2=ln TC/t2 elasticity 

similarly reflects the structural changes in the 1980s suggested by Goodwin and Brester. 

And cost impacts of adaptations in capital composition toward more effective capital 

equipment (embodied technical change) are measured by TC,ES=ln TC/ln ES.  The full 

expected impacts from changes in these factors will depend on the actual changes in the 

arguments of the function, as implied by the computed contributions, CTC,.  

Given the form empirically suggested for the virtual prices p*K and p*MA, we also 

may distinguish the direct (dir) and indirect (ind) impacts of t changes on costs, where the 

indirect impact works through the effects of t on K and MA.  That is, writing TC() as 

TC(p*MA(t),p*K(t),pL,pMF,pE,pMO,Y,ES,t,t2,DI), the implied total (tot) t impact is: 

5) TC,t (tot) = ln TC/t + ln TC/ln p*MAln p*MA/t + ln TC/ln p*Kln p*K/t 

= TC,t (dir) + TC,pMAp*MA,t +TC,pKp*K,t 

= CTC,t (dir) + CTC,p*MA,t + CTC,p*K,t = CTC,t (dir) + CTC,t (ind) .  

Perhaps even more important than the cost decomposition, in the context of this 

study with its focus on agricultural materials use, are the implied impacts on MA demand.  

Characterizing this piece of the puzzle again relies on the Shephard’s lemma result MA() 

= TC()/p*MA.  This demand equation depends on all arguments of the cost function if 
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TC() is approximated by a flexible form that recognizes second order relationships.  The 

overall cost impacts represented by the TC, elasticities can therefore be divided into their 

input-specific effects through second-order cost elasticities capturing the dependence of 

input demand behavior on the pecuniary, technological, and market factors represented 

by the components of the pv, p*x and r vectors, and output demand Y. 

This decomposition of observed changes in MA() demand can be derived 

similarly to that for TC() as: 

6) dln MA/dt  =  MA,p*MAdln pMA/dt + MA,p*Kdln pK/dt + MA,pLdln pL/dt                       

+ MA,pMFdln pMF/dt + MA,pEdln pE/dt + MA,pMOdln pMO/dt + MA,Ydln Y/dt            

+ MA,pESdln ES/dt + MA,t,  

=  CMA,p*MA + CMA,p*K + CMA,pL + CMA,pMF + CMA,pE + CMA,pMO + CMA,Y + CMA,ES + CMA,t. 

The MA, elasticities therefore quantify the shape of and shifts in the MA demand curve 

for 1% changes in pMA and other arguments of the MA() function, and the CMA, 

measures reflect the actual contributions given observed changes in these determinants.   

In particular, MA,pj = ln MA/ln pj indicates the responsiveness of MA demand to 

its own price for j=MA, and substitutability between input vj and MA for j=K,L,E,MF,MO.  

Similarly, the MA-specific impacts of changes in the scale of production or technological 

factors are captured by the MA,Y = ln MA/ln Y and MA,rn = ln MA/ln rn elasticities.  

For example, if MAY>1 expansions in demand for processed food products increase the 

demand for agricultural products more than proportionately; increases in the scale of 

production are relatively MA-using.  And if MA,rn<0 for rn=t2 (the dummy shifter 

representing the 1980s), the demand for agricultural commodities was more limited, 

given other economic and technological factors, in the 1980s than in the 1970s, 
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suggesting a structural shift toward lower MA-intensity of production (possibly induced 

by output demand composition changes).  MA,t similarly indicates the force of 

disembodied technical change or trend on MA demand.  The total t-effect can also be 

divided into its direct and indirect (through p*k) impacts, as in (5); MA,t (tot) = MA,t (dir) 

+ MA,pMAp*MA,t +MA,pKp*K,t, or CMA,t (tot) = CMA,t (dir) + CMA,p*MA,t + CMA,p*K,t.  

These indicators thus allow us to source the determinants of observed MA changes.  And 

the measured input demand patterns in turn provide implications about the prices that 

agricultural producers will receive for their products, pMA.  

Another set of second-order relationships that can provide us useful insights is 

based on the definition of marginal cost, MC()=TC/Y.  Again, for a flexible cost 

function this 1st-order relationship will depend on all arguments of the original TC() 

function, so we can decompose it as:  

7) dln MC/dt  =  MC,p*MA dln p*MC/dt + MC,p*Kdln p*K/dt + MC,pLdln pL/dt                      

+ MC,pMF dln pMF/dt + MC,pE dln pE/dt + MC,pMO dln pMO/dt + MC,Y dln Y/dt            

+ MC,pES dln ES/dt + MC,t,  

=  CMC,p*MA + CMC,p*K + CMC,pL + CMC,pMF + CMC,pE + CMC,pMO + CMC,Y + CMC,ES + CMC,t .  

Although not as fundamental for our analysis as that for TC() and MA(), this 

decomposition allows consideration of at least two issues of interest, the differential 

impacts of economic and technological changes – in particular pMA changes – on returns 

to scale, and on the extent of market power, in the food industries.13 

That is, the TC() elasticities and contributions measure the impacts on total and 

thus average (for given Y) costs,14 so comparison with the associated MC() measures 

allows us to impute the differential impacts on marginal and average costs, and thus on 
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scale economies.  For example, we can consider how pMA changes affect marginal as 

compared to average cost (AC), and thus TC,Y = MC/AC.   Similarly, using the pricing 

expression pY = -YY + MC specified above, we can construct a decomposition of pY 

analogous to those presented above, with the difference from that for MC=p*Y depending 

on the form of Y.  This may be used to evaluate how pMA (or other) changes impact pY 

as compared to MC, which provides information on the pass-through of agricultural 

materials prices to food prices, and on the implications for markup behavior (pY/MC).    

 In sum, the decompositions of the TC(), MA(), MC(), and pY() functions, and 

their underlying elasticity and contribution estimates with respect to the pv, px, Y and r 

variables, provide a detailed picture of the production structure relationships in the food 

industries, and the role of agricultural materials.  These measures will provide the basis 

for the discussion of empirical results below.   

Data 

To empirically implement this model of the production structure of the U.S. food 

processing industries, we use a panel of input and output quantities and prices we have 

constructed from the Census of Manufactures, the NBER productivity database, the 

Bureau of Labor Statistics, and the U.S. Department of Agriculture.  

In particular, we distinguished cost shares for three materials aggregates – 

agricultural materials, food materials (processed agricultural materials shipped to other 

food processing establishments), and other materials.  To accomplish this, we used 

Census of Manufactures data to calculate the share of each materials aggregate in the 

industry value of shipments for which cost information is available.15  These shares were 

then adjusted in two ways to arrive at our final estimated materials shares.  
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First, in some food industries, the industry value of shipments includes substantial 

amounts of materials resales – materials that are purchased but not processed before 

being resold.  We subtracted resales from the value of shipments, to better capture 

manufacturing output.  Second, some small establishments are not required to separately 

report individual materials purchases, but instead report all materials in an “n.s.k.” (not 

separately classified) category. We assumed that these establishments allocated n.s.k. 

shipments to agricultural, food, and other materials categories in proportions equivalent 

to those reported by the larger institutions. 

Materials input price series were constructed primarily from commodity PPIs 

(Producer Price Indexes) from the Bureau of Labor Statistics.  In cases where an industry 

consumed several specific agricultural or food materials, an aggregated materials price 

index was constructed from the constituent materials indexes, with each price index 

weighted by its expenditure share in the Census aggregate. In the few cases where PPI 

indexes were not available, we constructed indexes from average price series maintained 

by USDA’s National Agricultural Statistics Service. The resulting data panel covers 5-

year intervals from 1972 through 1992, for the 40 4-digit SIC industries in the U.S. food 

processing sector (SIC 20). 

  The remaining data on output and input prices and quantities were taken from the 

4-digit manufacturing NBER (National Bureau of Economic Research) productivity 

database, which is often used as a foundation for production structure studies.   

Empirical Implementation 

 Empirical implementation of the model developed above requires more explicit 

specification of the cost function and the resulting system of estimating equations.  In 
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particular, a functional form must be assumed for TC(p*MA,p*K,pL,pMF, pE,pMO,Y,ES,t, 

t2,DI).  We have used a version of the generalized Leontief (GL) cost function, called a 

GL-quadratic (GL-Q) by Paul, which takes the form (with fixed effects included through 

dummy variables DUMI3 and DUMI4 for the 3- and 4-digit industries, respectively): 

8) TC(Y,p,r) = jI pj DUMI3 jI  +jIY pj DUMI4jYIY + kI p*k DUMI3 kI  

+ kIY p*k DUMI4kYIY+ji ji pj
.5pi

.5 +jk jk pj
.5p*k

.5  +kl kl pk
.5pl

.5 

+ k kY p*k Y + kn kn p*k rn + kp*k (YYY2 + n Yn rnY+ mn mn rmrn)  

+ j jY pj Y + jn jn pj rn + jpj (YYY2 + n Yn rnY + mn mn rmrn) . 

 The fixed effects were incorporated in such a manner that linear homogeneity in 

input prices is maintained.  The 3-digit dummy variables on the input prices permit 

industry-specific intercepts in each of the input demand equations.  The 4-digit cross-

output interaction dummies allow for industry- and input- specific impacts in the output 

pricing equation.  4-digit dummies for these terms appeared important from preliminary 

estimation to accommodate large discrepancies in the output/input mixes of the different 

industries; the variation in the resulting elasticity estimates was too great to be plausible 

with only 3-digit dummies to adapt for differences across industries.16 

The final estimating model is comprised of a system of demand equations for the 

inputs (L,K,E,MA,MF,MO), and a pricing (supply) equation for output.  The input demand 

equations are constructed according to Shephard’s lemma; vj() = TC()/pj 

(j=L,E,MF,MO) and xk() = TC()/p*k (k=MA,K), where p*k = pk + k, and k = k1 + 

ktt + k2t2.
  The form of the output pricing equation resulted from equating MR and 

MC is pY = -YY + TC/Y, as discussed above, where Y was differentiated across 

industries to incorporate fixed effects into this relationship; Y = IYIDI4.   
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Estimation was carried out by seemingly unrelated (SUR) estimation techniques 

for this system of equations, with the potential for heteroskedasticity accommodated by 

techniques in TSP that allow standard errors to be computed from a heteroscedastic-

consistent matrix  (Robust-White).  An alternative approach to heteroskedasticity 

adjustment – to reconstruct the equations as input/output instead of input demand 

equations – was also tried in empirical estimation, but did not improve the estimates.   

Although instrumental variables (IV) procedures are often used in the literature on 

which this study is based, to accommodate potential endogeneity or measurement errors 

in the data, we did not rely on them for a variety of reasons.  First, IV techniques require 

a somewhat arbitrary specification of instruments, which can be problematic.  In addition, 

models of this form are typically estimated with time series data, and often use lagged 

values of the observed arguments of the function as instruments.  But this is not 

conceptually appealing for our application due to the short time series, as well as the 5-

year gaps between data points.  Although some preliminary investigation was carried out 

to determine the sensitivity of the results to other IV specifications, the results from these 

models were more volatile (less robust) and not as plausible as those from the basic SUR 

model, which was therefore relied on for the final estimation. 

 Our specification of the arguments of the r vector also warrants additional 

comment.  Including ES as a determinant of the cost structure in addition to the standard 

time trend t initially seemed important for explaining cost and input demand patterns; the 

ES parameters, interpreted as the impact of technical change embodied in the capital 

stock, tended to be significant and plausible.  When t2 was also included to capture the 

potential impact of structural changes in the 1980s, the t2 parameters became statistically 
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significant but the ES parameters tended to be less definitive.  Both variables thus seem 

to capture changes in the 1980s – perhaps toward greater capital- or high-tech- intensity 

of production.  Since the ES parameters remained jointly statistically significant, 

however, they were retained in the final specification.   

The Results 

The parameters estimated from the cost-based model specification TC(p*MA,p*K,pL,pMF, 

pE,pMO,Y,ES,t, t2,DI) are presented in Appendix Table 1.  The dummy terms are not 

included in the table since there are too many to be illuminating, but they are primarily 

statistically significant.  The overall explanatory power of the model is indicated by the 

high R2’s for the estimating equations, including the TC() equation which was not 

estimated but was fitted to determine the implied R2 (as denoted by the parentheses).  

Also, many parameter estimates that are not individually statistically significant are 

jointly significant, such as the ES parameters mentioned above.17 

These estimates were used to construct the cost, input demand, and output supply 

elasticity and contribution estimates from the decompositions outlined in the modeling 

section.  The measures were averaged across the whole sample, and separately for 1972-

1982 and 1982-1992, and by 3-digit industry, to distinguish temporal and industrial 

patterns.  The elasticity estimates were constructed by computing the indicators for each 

data point and then averaging across the sample under consideration.  Statistical 

significance of these measures (since they are combinations of parameters) was imputed 

by constructing elasticity estimates instead over the averaged data; values significantly 

different from zero at the 5% level are indicated by an asterisk (*).18  In most cases the 
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significance implications were not data-dependent, although for some estimates the data 

point at which the measure was evaluated contributed to evidence of significance.   

Patterns of Agricultural Materials Demand 

 To begin our investigation of agricultural materials use in U.S. food processing 

industries, we first assess MA demand implications from the decomposition presented in 

the first panel of Table 1 for the full sample (corresponding to equation 6).  Recall that 

such a decomposition weighs the estimated elasticities by the observed changes in the 

arguments of the function to determine their contribution to observed (or estimated) 

changes in the dependent variable (in this case MA demand).19    

First consider the elasticities.  The largest MA (in absolute value) demand 

elasticity as well as contribution (response taking the observed determinant change into 

account) is from its own price.  The own elasticity of MA,pMA = –1.138 for U.S. food 

processing industries implies MA demand is fairly elastic; pMA increases have motivated a 

movement up the demand curve (holding other factors fixed) to a lower MA demand level 

that more than compensated for the price change in proportional terms.  Based on 

observed pMA price changes, this provided a negative contribution of CMA,pMA = -0.062% 

to the overall observed increase in MA use of 0.038 (or 3.8% per year); other factors 

outweighed the negative own-demand effect.20    

By contrast, if the indirect implications from the deviation between the effective 

and observed input prices are taken into account this effect appears quite a bit smaller; 

p*MA changed by only 0.036% as compared to the pMA change of 0.055%,21 so the total 

contribution weighted by this price change would be C*MA,pMA = -0.041.  The lesser 

apparent growth in p*MA than pMA could derive from various factors – including 
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augmented quality that is not captured in the measured values – but is inconsistent with 

increases in market (monopsony) power.22  That is, MA appears to capture some form of 

technical change or productivity embodied in MA, that represents the impact of technical 

innovation in agricultural markets transferred to the next level of the food chain – food 

processing.23  This effect will be evaluated more explicitly below in the context of the 

indirect components of the t impact within the CMA,t (tot) decomposition. 

All other inputs are substitutable with MA, as is apparent from their positive price 

elasticities, and the observed increases in these input prices over the sample period thus 

imply positive shift effects on MA demand that in sum seem to more than compensate for 

the own price effect.  In particular, MA seems somewhat substitutable with both MF and 

MO, but the contributions of pMF and pMO changes to observed MA demand adaptations 

are not substantial since the price changes have not been large; CMA,pMF=0.0035 and 

CMA,pMO=0.016.  Rising relative prices of labor and energy – which have been 

experienced in these industries for most of the recent past – have also had positive effects 

on MA use, although their contributions are limited by smaller substitution elasticities; 

CMA,pL=0.012 and CMA,pE=0.004.  The statistically insignificant elasticities for pL and pMF 

suggest that MA-MF substitution (where MF might be expected to be more complementary 

with L) is driven more by demand than price (substitution) impacts. 

The contribution of pK increases to MA demand is much greater than the price 

effects associated with other inputs, especially if adjustments in effective pK, p*K, are 

recognized.  Even based on observed pK changes, CMA,pK=0.044.  If weighted by the 

greater increases p*K, the MA demand augmenting impact of capital price changes would 

be C*MA,pK =0.056.  The implied higher growth (as well as level) of virtual compared to 
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measured price of capital could result from various factors.  Its drivers could include 

substantive and rising adjustment costs (perhaps from larger scale and more high-tech 

production resulting in greater production rigidities), environmental or safety standards, 

or taxes, that are not effectively captured in the measured user cost of capital.  These 

capital costs motivate a substitution effect toward primary agricultural products. 

In turn, growth in the scale of production, or output demand, has had a greater-

than proportional effect on the augmentation of MA demand; MA,Y=1.095 on average for 

the full sample, implying CMA,Y=0.024.24  And although MA,Y>1 implies scale effects are 

MA-using, they are even more MF-using, so in this sense they are relatively MA-saving. 

By contrast to the positive substitution and scale influences on MA use, 

disembodied technological shift impacts on MA demand have been negative, and in a 

direct sense, quite large.  That is, an input-cost-diminution impact associated with MA 

demand is evident (CMA,t(tot) = -0.008 on average), that is typically interpreted as 

deriving from disembodied technical change.  This trend is statistically relevant; the MA,t 

(tot) estimates are significantly different from zero for most individual observations.25  

And this tendency was augmented post-1980 (CMA,t2 (tot) = -0.021).    

The direct t- and t2- impacts are, however, much greater in magnitude than these 

total measures, since much of the direct trend effects are counteracted by effective price 

trends that may be interpreted as embodied technical change or adjustment costs, as 

alluded to above.  These patterns can be seen from the decompositions of the total trend 

and structural change impacts in the first section of Table 2, that arise from the inclusion 

of t- terms in the p*MA and p*K (MA and K) specifications (as in equation (5)).   
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Recall that the full t impact is MA,t (tot) = MA,t (dir) + MA,pMAp*MA,t 

+MA,pKp*K,t, so the indirect t-effect exhibited through the trend in p*MA is CMA,p*MA,t = 

MA,pMAp*MA,t.  For our scenario, although MA,pMA < 0, since the trend component of 

p*MA is negative (p*MA,t = -0.125), the indirect p*MA effect on MA demand is positive – as 

is the p*K effect since K is a substitute but p*K is rising (p*K,t = 0.128).  Thus each of 

these components partially counteracts the large direct t-impact of -0.0525.  This 

tendency is attenuated in the 1980s, however, since p*MA,t2 = 0.073 and p*K,t = -0.122, so 

the negative CMA,p*MA,t2 and CMA,p*K,t2 terms further support the negative CMA,t2(dir) = -

0.013, causing the driving force of structural change in the 1980s to be MA-saving.   

This evidence is consistent with the embodied technical change interpretations of 

the t-impacts on effective prices implied by the discussions of the p*MA and p*K as 

compared to pMA and pK changes above.  Declines in effective as compared to measured 

pMA, and the reverse for pK, both tend to augment MA use.  Escalation of the equipment-

to-structure ratio, representing another form of embodied technical change, also had a 

positive (but statistically insignificant) impact on the demand for MA; CMA,ES = 0.014. 

Total Cost Implications 

In addition to the specific MA impacts, the total cost effects of adaptations in the 

economic and technological climate are of interest individually, as well as providing 

indications of input biases (variations in MA from overall input demand changes).  The 

cost effect most directly associated with the use of MA is represented by the TC,pMA = 

0.025 elasticity, indicating the impact on costs of pMA changes, which depends on the 

input intensity or average share of MA for industries that use agricultural commodities.26  

This is larger than the corresponding elasticity for any other input; rising (falling) pMA 
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has a substantive positive (negative) impact on production costs, and thus on output 

production/price, in the food processing industries.  Note, however, that the overall pMA 

contribution to total cost increases of CTC,pMA=0.014 is not only smaller than that for 

capital (due to the high effective price of capital), but is also is even lower if the smaller 

increase in effective pMA is recognized within this measure (C*TC,pMA, weighted by the 

change in p*MA, would be 0.008).  

The TC,Y estimate of 0.868, which implies significantly increasing returns to 

scale, also deserves attention.  This evidence is largely driven by a very small capital-

output elasticity, that counteracts the MA,Y elasticity of slightly more than 1, and an MF,Y 

elasticity that is even higher (nearly twice that for MA), which suggests scale expansion is 

somewhat MA-using, and significantly K-saving and MF-using.   

This is of particular interest since this conclusion is closely linked to the inclusion 

of t in the K and MA specifications.  When t is not included as an argument in these 

specifications (MAt=MAt2=0), output increases instead appear MA-saving (MAY is 

significantly smaller than 1), and both K,Y elasticity and TC,Y elasticity estimates are 

much closer to 1, implying close to constant returns to scale.  These patterns highlight 

two issues alluded to above.  First, apparent declines in the MA-input-intensity of output 

production in the food industries are partly associated with increases in effective or 

quality-adjusted MA-inputs, perhaps due to embodied technical change.  Second, 

adjustment costs for capital implied by a higher and more quickly rising p*K than pK may 

mean that these estimates should be interpreted as short-run, or at least capital-

adjustment-constrained estimates.  And both of these impacts, if ignored, affect 

estimation of the scale- or output-effects. 
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Finally, the elasticities associated with disembodied and capital-embodied 

technical change deriving from t and ES changes, and with structural changes in the 

1980s (t2), suggest other technological forces have contributed to cost diminution.  The 

negative (and significant) values for both CTC,t (dir) = -0.004 and CTC,t2 (dir) = -0.012, 

augmented by the (insignificant) embodied technical change impact CTC,ES = -0.041, 

highlight such trends, and their enhancement in the 1980s, and from technological 

advance embodied in equipment.  However, the total disembodied technical change 

impact becomes positive – CTC,t (tot) = 0.0004 – when the higher cost of capital (from the 

p*K trend) is recognized, even though the analogous effect for p*MA is in the opposite 

direction (CTC,p*MA,t = -0.006).  By contrast, CTC,t2 (tot) is even more negative than its 

direct counterpart, since CTC,p*K,t2 = -0.0025 outweighs CTC,p*MA,t2 = 0.001. 

Note also that the input-specific CMA,t (dir) = -0.0525 measure is much larger (in 

absolute value) than the associated overall input declines captured by CTC,t (dir) = -0.004, 

and the total MA effect CMA,t (tot) is negative whereas that for TC, CTC,t (tot) is positive, 

indicating that “technical change” has been both relatively and absolutely, MA-input-

saving.  Over time there has been a technical change bias toward reducing MA use more 

than other inputs for a given level of output.27 

Marginal Cost and Output Price  

To move toward consideration of the pass-through of MA prices (and other 

factors) to output price, as well as its impact on scale economies, we can compare these 

estimates to those for marginal cost in the third panel of Table 1.  Note that the input 

price effects for the materials and labor inputs are slightly larger for MC than for total 

(and thus average) cost, implying a depressing impact on scale economies (MC increases 
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more than AC with higher input prices, so their ratio rises).  The reverse is true, however, 

for the pK and pE elasticities, supporting the notion that capital is subject to adjustment 

costs, and “lumpiness”, that are driving forces for returns to scale.  This is also consistent 

with the virtually nonexistent MC impacts of changing output.  And with the fact that 

marginal cost has decreased (statistically) significantly over time, both in terms of the 

direct and indirect effects, largely due to the smaller impact of pK on MC than on TC. 

Comparing these measures to those for pY provides some insights about markup 

(imperfectly competitive) behavior, and its determinants.  The average pY,pMA = 0.272 

elasticity is larger than either TC,pMA, or the (slightly smaller) MC,pMA.  So a 1 percent 

increase in pMA drives a somewhat larger increase in AC than MC, and an even greater 

adaptation in pY than MC.  This implies a higher markup pY/MC associated with a rise in 

pMA, but also an increase in the scale economies that support such markups (since MC 

augmentation is lower than that for AC, so the associated profitability is less than would 

be implied for a constant returns technology).28  Note also that pY decreases somewhat 

more than MC as time progresses, primarily due to the larger (indirect) p*MA effect.  

Temporal and Industrial Variations 

In addition to the indicators for the data averaged for the entire sample, it is useful 

to briefly consider variations in the estimates over time and by industry, which are 

presented in Tables 3 and 4, respectively.  

The temporal decompositions presented in Table 329 show a much smaller 

depressing contribution of pMA increases to MA demand post-1980, that results from low 

pMA growth; the measured MA,pMA elasticity is actually larger later in the sample.  Also 

note that the trend in the effective price of MA (p*MA) is actually downward for the post-
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1980 period, so the full contribution of own price changes to MA demand is positive.  

This tendency is particularly worth highlighting since measured pMA changes that 

occurred after the end of our sample period (late 1990s) actually dropped, which implies 

that the implications from these measures may have been exacerbated.  It also appears 

that although the growth rate of MA demand in the 1980s was larger than in the 1970s, 

the individual input price contributions were generally smaller, with less of the growth 

arising from output increases.  In fact, a large proportion of MA demand expansion seems 

to have arisen from t-effects.  In particular, the indirect p*MA effect has increased over 

time to the point where CMA,t(tot) is positive post-1980, although the direct impact, 

CMA,t(dir), reported in Table 2, remains negative (but smaller) in the later time period. 

The TC measures for the 1970s as contrasted to the 1980s, presented in Table 3, 

indicate a much smaller average annual percentage increase in total costs for the food 

processing industries overall post-1980, that is only in part due to a slower output growth 

rate (CTC,Y is 0.019 in the 1970s and 0.015 post-1980, with slightly less scale economies 

implied in the later time period).  All the contributions of individual TC determinants are 

smaller (the elasticities are lower as well as the changes in the arguments of the function), 

although they remain statistically significant.   

In particular, the TC,pMA elasticity is slightly lower in the 1980s, but the 

contribution falls more since pMA increased so little (in fact becoming negative if 

evaluated according to effective price changes).  The (over)-estimate of the actual TC 

change in the 1980s seems to be driven by capital price effects, which appear in the 

CTC,pK measure of 0.014, as well as a positive CTC,p*K,t measure of 0.009 which augments 
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the direct CTC,t(dir) = 0.004 (but is slightly counteracted by the downward TC 

contribution resulting from the negative Cp*Ma,t).
30     

Although a full analysis of the 3-digit industries within the food processing 

aggregate is beyond the scope of this study, it is worth briefly considering the differences 

in MA demand that are apparent across these sub-samples, as reported in Table 4.   

First note that for the meat products industries very little substitution (including 

own-price responsiveness) is apparent, as might be expected.  The main impact on MA 

changes during this sample period was from output demand.  Note also that the t-effect is 

very small, at only about 10% the magnitude of that for these industries as a whole. 

For the dairy industry, the own and cross-substitution responses seem similar to (a 

bit lower than) those for the overall food processing industries.  But the t impact in total 

is very slightly positive, since the indirect adjustment – particularly the CMA,p*MA,t 

component – is quite large. 

The vegetables sector of the industry seems to be fairly responsive to the own 

price of MA.  The p*K contribution, as well as the t elasticities (and their components) are 

also large.  The substantial t impacts on p*MA and p*K in fact suggest a particularly 

significant amount of embodied technology in the primary agricultural vegetable inputs, 

as well as high and increasing adjustment costs, likely due to the great scale and 

processing expansion in this industry. 

The grain mill and oil industries have exhibited quite different patterns.31  We find 

a negative output impact on MA demand for grains, both due to the very low MAY 

elasticity (output increases have occurred with very little increase in primary inputs, 

likely due to expanding processing), and observed output declines for some observations.  
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Responsiveness to other (price and technical change) factors seems generally low in this 

industry, except perhaps for ES.  For the oil industries, we find the own (pMA) 

contribution to be smaller than for most industries, and even less responsiveness to prices 

of other inputs, and thus substitutability; the cross-demand contributions are only about 

half those for the food industries as a group.  By contrast, the output response is the 

largest (by a small margin) of any other industry on average. 

For sugar and confectionary products the own price contribution is by contrast 

very large, although other substitution effects are somewhat small relative to the other 

industries.  The pK impact is slightly more minor, and the CMA,t (tot) impact more major, 

than for the industry as a whole.  And industries in the miscellaneous category have 

exhibited similar substitutability patterns to those apparent for the overall industry, except 

for very small capital/energy and technological (t,ES) contributions. 

Impacts of MA Price Changes 

Finally, in Table 5 we report elasticities that facilitate an evaluation of 

responsiveness to pMA changes, which may be thought of as a converse experiment to the 

evaluation of MA demand changes that began our discussion of empirical results.  These 

measures facilitate investigation of the potential implications of the declines in pMA that 

were experienced by the food industries during the remainder of the 1990s not 

represented by our data sample.   

Some evidence in this table also appeared in the decomposition tables; in 

particular, a 1 percent decline in the price of agricultural materials (holding other cost and 

demand determinants constant) would be expected to reduce total costs by TC,pMA =         

-.254% (with marginal costs declining by virtually the same amount, pY dropping slightly 
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more, and all these responses falling over time), and increase MA demand by MA,pMA = 

1.137% (and more over time).  The expected reduction in total cost can in turn be 

decomposed from the values reported in Table 5 into declines in all other factors of 

production, with L and K decreasing the least relative to the average, and other materials 

(MO) falling the most.  The responsiveness of the materials inputs, however, is clearly 

rising over time, and that for the value added (K and L) inputs falling.32  

Concluding Remarks  

In this study we have investigated the production structure of the U.S. food processing 

industries, with a focus on the role and impact of agricultural input (MA) markets.   Our 

results show that the demand for primary agricultural inputs in the food processing 

industries, and overall production costs, have been increasingly impacted over time, but 

in contradictory directions, by a broad range of production factors.  These factors include 

input price changes (and substitutability), output demand changes (and scale effects), 

interrelationships with capital (and associated embodied technical change and adjustment 

costs), and both disembodied technical change and innovations embodied in the 

agricultural materials input from technical progress in the agricultural sector. 

In particular, our data suggest that although MA use has risen less than the 

demand for MF (intermediate food products) in the food processing industries overall 

between 1972 and 1992, it has increased more than both other-input use and output 

production, especially in the latter part of our sample.  During this period growth in the 

price of agricultural commodities has fallen off, and the effective price of agricultural 

materials has dropped further relative to its measured price, reducing the own-price 

impact that would stimulate declines in MA demand, and in fact reversing it in the 1980s.  
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This is to some extent related to an increasing price elasticity of demand for agricultural 

materials, which was also found by Goodwin and Brester.  MA demand has been further 

stimulated, at least to some extent, by substitution among inputs, and especially from 

effective capital price increases.   

Expansion in output demand has also has augmented MA demand, since at least 

when effective prices are taken into account output increases have been associated with 

slightly greater than proportional MA changes on average.  However, this is not true 

relative to MF use, since scale biases are much more MF-input-using.  We also find a 

declining effect of agricultural materials prices on output prices, which provides an 

indication of a weakening linkage between the primary and processed foods markets. 

Technical change embodied in capital equipment also appears to have enhanced 

MA use, but this impact is statistically insignificant, whereas disembodied technical 

change has clearly driven declines in MA use, holding all other determining factors 

constant.  The direct t-impact has been large and negative, particularly in the early part of 

the sample period, and has only been partially counteracted by the positive technological 

impacts embodied in the effective MA and K prices.  The implied drop in primary 

agricultural product demand has also been stronger than the overall cost diminution 

effect, which implies a relative MA-input-saving bias.  And the post-1980 (t2) structural 

change impact suggests that this trend is intensifying, and is further exacerbated by 

diminishing effective price (p*MA and p*K) changes. 

Overall, the measured share of primary agricultural materials in total costs has 

been dropping, so the contribution of MA price increases to cost changes has fallen over 

time.  Thus, the link between MA demand and costs of production has weakened, 
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especially compared to capital due to its higher and increasing effective price, and in 

relative terms to partly processed food inputs, MF.  These patterns are largely due to 

output effects and disembodied technical changes, that are likely associated with output 

demand adaptations.  However, a complex combination of economic, technological and 

demand forces have contributed to changing the role of agricultural materials in the food 

processing industries. 
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Footnotes 
                                                 
1 Although we have data for 40 industries, since 6 use no primary agricultural inputs (such as 
bakery, which uses flour but not wheat directly), these industries were deleted from the sample. 
2 The latter case is typically interpreted as increased demand putting cost pressure on suppliers. 
3 See Morrison [1985] or Morrison and Siegel for further discussion of a more detailed 
representation of quasi-fixity, including in the latter case a dynamic structure explicitly capturing 
adjustment costs.  Paul [1999, 2000] also specifies fuller models of market structure.  For the 
current study, however, the limited impact of these imperfections on the estimates for this largely 
cross-section data set seem sufficiently captured by the virtual price model. 
4 That is, incorporating xk directly into the cost function allows the deviation of the market and 
shadow price, Zk-pk, to depend on all arguments of the function if VC() has a sufficiently flexible 
functional form.  However, the cross-terms in this case were insignificant in preliminary 
empirical investigation, so this more complex model seemed unnecessary.  Also, the chosen p*k 
characterization allows estimating equations to be specified for the xk factors, which adds 
structure, and thus facilitates obtaining significant xk coefficients.   
5 See Fulginiti and Perrin [1993] for a motivation and development of a similar approach. 
6 Ball and Chambers instead use equipment and structures measures separately in their 
exploration of substitution, scale, and trend effects in the meat processing industry.  We found, 
however, that this disaggregation generated multicollinearity problems, and so left capital in its 
aggregated form. 
7 The resulting measures should therefore be interpreted as “within” estimates; they are relative to 
industry-specific means and thus reflect intra-industry variation. 
8 By contrast to the p*K and p*MA treatments above, this expression simply but directly recognizes 
the dependence of the wedge between pY and p*Y on the output level due to imperfect markets. 
9 Causation issues emerge for estimation of this equation if perfect competition prevails and thus 
pY is exogenous.  But for the more general case, which might well be assumed for our scenario, 
pY is affected by the choice of Y so the price and quantity of output become joint decisions. 
10 Note that Y represents the slope of the output demand function so only arguments with second 
order effects (impacts on the slope as well as just a shift impact) would appear in Y().  Fixed 
effects to reflect industry-specific differences were also incorporated for estimation of p*Y. 
11 Note that the TC,p*k elasticities are weighted by the observed changes in pk, since (as elaborated 
below) we have expanded our interpretation of the t effect to include the indirect effect via the 
dp*k/dt trend, so this impact is double-counted if it also appears multiplicatively with TC,p*k. 
12 For our analysis, therefore, the impact is captured for 1977-82 since t2 is defined as one for the 
1982, 1987 and 1992 time periods.  Note also that since the time dimension of our data is over 5-
year intervals, to make these changes into annual averages these measures are divided by 5.  
13 Note also that there is a direct relationship between, for example, the MA,Y elasticity discussed 
above and the MC,pMA elasticity.  The 2nd order derivative both measures are based on are equal 
by Young’s theorem (and imposed by symmetry); 2TC/pMAY=2TC/YpMA.  Thus their signs 
will be the same, although their magnitudes will deviate due to the different multiplicative factors 
incorporated in the elasticity computation.  Similarly, information on substitution between MA 
and MF from the MA,pMF elasticity has implications for the substitution impact on MF from a pMA 
change, as elaborated in the next section. 
14 This is somwhat more complex for the output elasticity, for which AC,Y = TC,Y-1 is the average 
cost elasticity, based on the quotient rule for AC=TC/Y. 
15 Establishments are required to report consumption of major materials that are important 
components of production costs, where important is defined as expenditures exceeding a given 
value – usually $10,000. 
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16 Dummies for MA=0 and MF=0 observations analogous to those for the 3-digit industries were 
initially included to act as shifters in the MA and MF demand equations for industries in which 
these materials inputs are not used, although these estimates tended to be statistically 
insignificant.  For the final estimation results, however, since our focus is on MA use, the MA=0 
industries were removed from the sample. 
17 One issue of significance worth specific mention is the neither the MA1 or MA2 estimates in the 
final specification reach statistical significance at the 5% level.  This was primarily due to 
insignificance of the simple shift factor, MA1, since if this is set to zero MA2 is significant.  
However, the measured elasticities varied negligibly with this adaptation, so to retain symmetry 
of the virtual price treatments we retained both parameters in the specification. 
18 We used the ANALYZ command in PC-TSP to construct these estimates, which required 
evaluating the significance for a single data point.  We alternatively constructed t-statistics for the 
elasticities for individual observations and for averaged data.     
19  Note that the observed and estimated changes in the dependent variables in this exercise 
sometimes are very similar but in other cases vary quite a bit.  This variation is to be expected due 
to the estimation in levels (and then imputing differences), as well as the cross-section nature of 
the data and the averaging process used to construct final estimates. 
20 These contributions were computed by multiplying the averaged elasticity and price change 
measures, rather than averaging the multiplied measures.  Although most measure differ little 
across these two methods, the CMA,pMA and CMA,Y contribution does appear larger this way than it 
does when the contributions are first computed and then averaged (-0.62 as compared to -0.44 for 
the former, and 0.24 versus .017 for the latter). 
21 The values for p*MA and p*K changes are not included in the tables, in order to keep the 
presentation as simple as possible, since they are not directly crucial to the analysis, and are 
indirectly implied by the CMA,p*MA,t (for example) terms in Table 2. 
22 Monopsony power is not evident overall for these markets, unless it is counteracted by quality 
changes, since it is generally (and on average) the case that p*MA<pMA rather than the reverse. 
23 Note also that the p*MA-pMA gap might be affected by quality change in the agricultural 
commodity marketing system between the farm gate and the processing plant.  For example, 
quality changes that could be stemming from improvements in transportation, storage, cleaning, 
and sorting would not directly be measured here since the PPIs that provide the basis for our 
market price measures are measured at the farm, and MA demand at the processing plant. 
24 The * for this measure in the table denotes significantly different from one, the comparison 
point, rather than zero. 
25 However, since the average t stays constant the t-impact is essentially neutralized for the 
averaged data used for computation of the t-statistics. 
26 The bakery industry, for example, uses no primary agricultural products, but instead relies on 
partially processed materials such as those from the grain industry. 
27 These patterns contrast with statements made by Heien that suggest technical change generally 
increases the marginal product of farm output.  
28 This pattern is also evident for pMF increases, although in this case the input price change 
affects the MC-AC difference more than the pY-MC deviation. 
29 Since the statistical significance of the estimates varies negligibly across data points, so the 
statistical significance of the averages is representative of that for the sub-samples, the *’s 
denoting significance are left out of these tables. 
30 The t2 measures for the 1980s are zero, since 1977-82 growth is reflected in the first time 
period, and this is when the t2 dummy variable exhibits its impact since it becomes 1 in 1982.   
31 These industries are often reported in a group with the bakery industry, but, as noted above, the 
bakery industry was omitted here since it does not report any primary agricultural materials use. 
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32 Note that although the signs of these measures are established by the inverse second order 
elasticities, such as MA,Y as compared to MC,pMA, and MA,pMF versus MF, pMA, the magnitudes of 
the elasticities depend on the price and quantity levels and therefore differ. 


