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Rules For Optimal Fertilizer Carryover:

An Alternative Explanation
John O. S. Kennedy*

A method of deriving rules for optimal
fertilizer application when there is
carryover is presented. The carryover
situations considered are: carryover a
deterministic function of fertilizer avarlable
in the previous period; carryover a
deterministic function of fertilizer applied
in more than one previous period; and
carryover a stochastic function of fertilizer
available in the previous period. The
method of derivation is more direct than an
inductive one previously presented. The
rules are given an economic interpretation,
and the gains from using them in practice
are considered.

Introduction

The rule for determining the level of
fertilizer which leads to the maximum net
return from a crop is well-known. Assuming
crop yields are subject to diminishing marginal
returns to fertilizer input, fertilizer should be
applied at the level at which the value of the
marginal product of fertilizer equals the price
of fertilizer. Probably less well-known are rules
for maximizing the present value of net returns
from a sequence of crops when fertilizer applied
n one season promotes growth not only in that
season but also in subsequent seasons. The
problem of finding optimal fertilizer levels
when there are carryover effects was initially
discussed by Heady and Dillon (1961, pp. 524-
5), Fuller (1965) and Anderson (1967, pp. 53-
4). They set out the principles involved, but no
general rules were presented. Lanzer and Paris
(1981) have emphasized the problem is one of
optimal control, requiring dynamic analysis
taking account of the current level of soil
nutrients,

Rules for optimal fertilizer application
when there is carryover of various types have
been derived by Kennedy ef a/. (1973), Dillon
(1977), Kennedy (1981) and Taylor (1983) by
a process of induction based on dynamic
programming. However, experience from
explaining the logic of dynamic programming
and comments made by Godden and Helyar
(1980) suggest that the method used for
deriving the rules may have appeared complex
and the results may have lacked intuitive

appeal. The purpose of this article is to present
a more direct method of deriving the optimal
rules for a range of deterministic carryover
functions. The method is also extended to
problems with stochastic yteld and carryover
functions, and stochastic prices. The rules
derived are given an economic interpretation
which is a simple extension of the rule for
optimal fertilizer application in the absence of
carryover. The rules can be summarized as
requtiring that fertilizer be applied at the level
at which the expected present value of the
current crop and of the savings in future
fertilizer applications obtained from the
marginal unit of fertilizer equals the current
price of fertilizer,

The article ends by considering what
incentives there are 10 use a carryover rule. In
particular, there is investigation of the size of
the gains from applying an optimal multiperiod
rule compared with applying the suboptimal
single-period rule when there actually are
fertilizer carryover effects from one period to
the next.

Carryover Proportional to Fertilizer
Available

Consider the simplest possible problem
situation. The way in which crop yield responds
in period / to available fertilizer r, is given by
the response function y, {;}. Available fertilizer
(r 15 the sum of applied fertilizer (g;) and
carryover (x;). Carryover i1s a proportion (v,) of
available fertilizer in period i~/. The price of
the crop, p!, and of the fertilizer p/, are known
for all periods. Fertilizer costs are paid at the
beginning of cach period. and crop rcturns are
received at the end of each period. The
objective i1s to maximise the present value of
net returns from fertilizer applications over »
periods, given a discount factor a and initial
fertilizer carryover, x,. For convenience, the
value of the residual ferulizer x, ., ,; at the end
of the planning horizon is assumed to have zero

* Department of Economics. La Trobe University.
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value!. For an atomistic firm facing perfectly
competitive input and output markets, the
problem can be formuiated as

max S o T (aphy, {x, + a} - pla)

La, isl
subject to @, = 0

X,

v = Vit a)

with x, given.

The problem could be solved by forming
the Lagrangian and setting all of the partial
derivatives with respect 10 a, x; and the
Lagrange multipliers equal to zero. A simpler
method relies on the logic used in dynamic
programming. The following recursive
functional equation applies:

fitx} = m:x [ep)y; {r} - P{ai tof, vl

= aply{x, + a*} -plaX+af, {v(x,+a*)}
G=n...0 (1)

subject to a4, = 0
(i=n....1),
r=x+*a

with X, given

Sosr b, 4 =0,

where f;{x;} is the present value of net returns
from carryover obtained by implementing the
optimal sequence of fertilizer applications
a’.....a;. The equation stipulates that, for
optimality, fertilizer must be applied in all
periods i at the rate which maximizes the sum
of net return in period i (the first two terms of
the RHS) and the present value of the resulting
fertilizer carryover to period [ + I (the last
term).?

If the response function 1s concave,
differentiating the term in square brackets with
respect to a; gives the first-order condition for
an interior maximum?

apdy,/da;, - pl+ avdf,, /dx,, 0
G=1....n (2

Note that, because r, = q; + x;, then dr,/dx; =
dr/da; = 1, and, since y; = y; {x; + a,;} then, by
the  chain rule of  differentiation
ay/dr; = dy/da, = dy/dx;, alsc that, because
Xi4 = vi{x; + @), 0x; + Jda; = v,

4
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If df, + /dx; + ; were known, then (2) could
be solved for optimal @. In fact it is easy to
show that df; + j/dx; + ; 1s a constant, equal to
the price of fertilizer in period i + 7 for all
[ = n-1. To show this, differentiate (1) with
respect 1o x; to obtain

df,/dx, = ap’dy,/da,+ avdf,, [dx,,
(i=14...,n),

where dy,/da, is evaluated at x; + a;. But from

(2),

apdy,/da; + evdf., [dx,, = P:f
(i=1,...,n),

and therefore

dfjdx, = p/ (=1 ....n). (3)

This result is not surprising. Equation (3)
merely states that the value of an additional
unit of fertilizer carried over from period i — 1
10 period / should equal the price of fertilizer
in period /. This holds whatever the carryover
level. After substitution in {2), the condition for
optimality becomes?*

apdyjda, = pl-avpl,,
(=1....,n—D. (4

If residual fertilizer at the end of the planning
horizon has no value, then df, ., /dx,,; = 0.

I The optimal rule for i = I,....,n — 1 is not
dependent on this assumption. However, to find
the optimal rule for the final decision period, the
money value of the residual fertilizer x, ; must
be known.

2 The logic of the recursive functional equation is
elaborated in any of the many texts on dynamic
programming., such as Nemhauser (1966),
Hastings (1973) and Kennedy (1986).

3 The solution is interior if the non-negativity
constraint on ¢; is-not binding. The method of
deriving optimal carryover rules fails if it is
binding. However, the constraint is unlikely to be
binding unless there are marked parameter
changes between periods, such as a significant rise
in p//pr

4 Fuller (1965, p. 117) anticipated the special
version of (4) for constant prices and response
functions, and a = 1.



Thus the rule for the final decision period is
found directly from (2) to be

ap s dyn |da, = pi.

Condition (4) states that for a, = a7, the present
value of the marginal product of fertilizer at the
level x; + a7 must equal the opportunity cost of
the marginal unit of fertilizer. The latter equals
the price of fertilizer in period /, less the present
value of savings of v, units of applied fertilizer
in period 7+ I because of carryover. The
condition can be compared with that for
maximizing net revenue for the single-period
problem without carryover:

ap” dy/da=p.

The only additional information required
to solve the dynamic problem with carryover is
the values of x;, v, and p/ . ,. Thus in order to
find the optimal application rate a there is no
need to know y, {r;}, v; or pfor j > i, nor pffor
i>i+ L

The condition for optimality (4) is the
same regardless of how small or how large n
may be. The reason for the separability of a;
from parameters beyond period i + I is that,
whatever the level x; + a’and hence carryover
vi{x; + a) to period i + I, the total amount of
fertilizer, r7,,, to be made available in period
I+ I is the same. Hence carryover to period
i+ 2, equal to v, 174, is independent of a*

Alternative Carryover Functions

More complex single-period carryover
functions have been suggested than one which
has carryover to period 7 directly proportional
to fertilizer available in i — /. For example,
Fuller (1965) has used

X = ri (b + cexp(hr)),
and Stauber et al. (1975) used
Xy = qr;,

where b, ¢, h, g and s are constants. It is simple
to show that for the general case with a concave
single-period carryover function

Xiv; = & {n}, (5)

the optimality condition is (4) after replacing v,
with dg; /0a,. This more general case is dealt
with in the next section analyzing the stochastic
problem.

KENNEDY: OPTIMAL FERTILIZER CARRYOVER

Available fertilizer, r, is made up of
applications in period i/, and carryover from
applications in periods prior to /. In using a
single-period carryover function such as (5), it
1s assumed that carryover is dependent only on
r, regardless of the periods in which the
fertilizer making up r; was applied. Bowden and
Bennett (1974) and Godden and Helyar (1980)
have suggested more complex multiperiod
functions in which the proportion of applied
fertilizer which is carried over to another
period is dependent on the number of periods
of carryover, j. Denoting the carryover
proportion by w, the available fertilizer in
period i is

r=a+ :Z W 4, (6)

ivi-j Y-

x_,= S w. .a 7
=

Bowden and Bennett (1974) suggested
w; = 1/(1 + ), and Godden and Helyar (1980)
w, = uAu+j) where u is a constant. To
incorporate (6) and (7) in a dynamic
programming framework, fertilizer applications
in all periods prior to i have to be state
variables. Suppose m is large enough that, for
practical purposes, w, for j > m can be taken
to be zero. If the objective is to maximize the
present value of net returns the recursive
functional equation is

VA U N
maax [ep)y{r}-Pla,+ a it s al]
‘ (i=n.... 0, (8

subject to
a=0
(i=n ..., 1),

m
r=at ?‘:wm—j+lai+jfm—-1

with
X, given

j;1+l{an~m+l""’an}:0‘

Noting from (6) that dr/da;, = 1, the first-
order condition for the term in square brackets
to be an interior maximum is

op’dy,/da, - p/+ adf,, ,/da, = 0
i=1..,nm. (9
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The unknown is df,, ,/da;, Differentiating
(8) with respect 1o the state wvariables
iy e e e s a;_ ;. and after some substitution
and manipulation, it is found that

i+J

df.. ,/da; = nila/wip-‘;+/8y,+,/30‘
j=
(i=1....n-1). (10)

Substituting (10) in (9) leads to one way of
expressing the condition for optimality as

aptfayi/aa[ +,i ot [W'P},t:( .ay” '/6ai+ - p{
iz J i J j

G=i....,n-10. (1)

The condition states that for a, = g the present
value of the crop produced in all periods from
an additional unit of fertihzer applied 1n period
i must equal the price of fertilizer in period i
Equation (11) 1s a set of n m-or-lower-order
diffcrence cquations. Optimal values of dy,/dq,
for i=1... ... n may be found in terms of
W DLpo pl and « by
using the matrix  method of solving
simultancous equations. The solution is the
same as that obtained by Kennedy (1981)
through a process of induction, and 1s most
casily expressed as®

ap)layl/aal = p{ - 'Zl a"[))_;pff/
j=

i 1,....,n-1 (12)

kel
where 8, = w, and B, = w; - xglﬁk’-‘ w fork> 1.

If the terminal value of all residual fertilizer 1s
zero. df, 1 /da, = 0, and it follows directly from
(9) that for the final decision period

ap%ayn/adn :an .

In this way of expressing the optimality
condition. «” docs not depend on future product
prices or response functions. Although the
right-hand side of (12) looks a lot more
complicated than that of (4). 1t can sull be
rationalized as the opportunity cost of the
marginal unit of applied fertilizer. It 1s first
necessary 10 sce that f8; is the fertilizer saved A
periods into the future through applying an
additional unit now. It cquals something less
than w. because by adding a unit now, less will
be added over cach of the next A— 7 periods if
the optimal rulc 1s followed. That 1s, 8, = w,
is saved next year. ff, = \1'3—11',3 the following
vear, and so on. The reduction in fertilizer
available after & carrvover periods 1s thus
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Biwi-r + Bawea + ...
- ﬁka» 1*/32Wk—2—... .
The right-hand side of (12) is therefore the
price of fertilizer in period 4, less the present
value of savings in applied fertilizer over all
subscquent periods in the planning horizon
resulting from the application of an additional
unit in period 4.

. Hence Bi = wi

If crop and fertilizer prices and response
functions remain unchanged over all future
years, it is simple to find the optimal dy/da for
an infinite planning horizon. In this stationary
case optimal dy/da will be the same for all
vears. It follows from (11) that

ap* dy/da = pli(l + Elafwl.).
J=

Stochastic Analysis

The problems considered so far have been
deterministic, but in practice the response and
carryover functions are stochastic and prices
are uncertain. Suppose the objective is to
maximize the present value of expected net
returns. Taylor (1983) considered the case of a
stochastic response function, a single-period
carryover function which is a stochastic version
of (3), and crop and fertilizer prices which have
a first-or-higher-order Markovian structure. He
showed that the optimality condition is the
same as (4), but with stochastic variables and
functions set at their expected values. Taylor
used the method originally suggested by
Kennedy er al. (1973), of first finding the
optimality condition for the final period in the
planning horizon, then for the penultimate
period, and so on. The optimality condition for
all periods but the last is found by inductive
logic. The result for the stochastic case can be
obtained more directly by the method used
above for the deterministic case.

The recursive functional equation is:
fitx.pipit = m(?x [E(ep)y,ir,€} - Pla,

vof,, g dr. €3 05, . Pl D)
(i=n,..., 1) (13)

*In the original exposition by Kennedy (1981, p.,
2035}, the upper limit in the corresponding equation
(10), should be “»— /" instead of m. The relevant
planning horizon remains r periods, and is not
truncated to 1 periods as suggested in proposition
(1) on p. 206.



subject to a=0
(i=n...,1
ri = xi + ai
with X, given

f,H,{x,H,,PJ;”,»P{“,} =0.

where €, and €% are random variables affecting
yield and carryover respectively.

Because next period’s crop and fertilizer
prices depend on the current period’s prices,
current prices (assumed known) are included in
the optimal return function. It is useful to refer
to E(y {r, €}) as y,{r}, and to E(g{r, €5}) as
g,{r;}. Note that E@dy,/dr) = dy,/dr, and that
dr,/da, = dr,/dx, = 1. Again making the usual
assumptions about concavity and that a’ ;>0 for
all 4, the first order condition for a maximum is

apdy;/da, - p/+ a E(df,, ,/9g) (3g,/dr)) = 0
(i=1,....n). (14)

Partially differentiating (13) with respect to X;
gives

3,/8x, = ap}dy /da, + a B3, /3, (9g,/9r))
(i=1...,n (15

From (14) and (15) it follows that

of,/9x; = of/dg; , = p|
(i=1....n. (16)

Substituting (16) in (14) gives

apidy fda, - pl+ aE(p/, (9g,/9r)) =0
(G=1L....n-1)

Assuming that fertilizer price and carryover are
independent, the condition for optimality
simplifies to

o’ 3y /9a,= pl- o(E(L. ,| p|)) d or,
(i=1,...,n-0.

That is, at the optimum, the discounted value
of the expected marginal product of applied
fertilizer equals the expected opportunity cost
of the marginal unit of applied fertilizer. If the
terminal value of carried-over fertilizer is Zero,
the optimal rate for the final decision period is
ap; dy/da, = p/. In the case of a multiperiod
carryover function, a similar approach can be
employed to derive a *‘certainty equivalent”
version of (12).

KENNEDY: OpTIMAL FERTILIZER CARRYOVER

An additional factor likely to affect
fertilizer carryover to period /, besides fertilizer
available in period i— I, is the crop yield in
period i— 1, and possibly earlier periods. For
the deterministic case, where carryover function
(5) applies, this conceptually does not introduce
further complexities provided the function is
based on data from experiments with the crop
in question produced in every period. If yield
is a function of a random variable such as
rainfall, crop yield in period / may be low
because of low rainfall, leading to low fertilizer
uptake, and leaving more fertilizer than usual
to be carried over to period i+ /. Again this is
not a problem if all of the random variables
which affect crop vield are included
appropriately in the carryover function. There
1s then no need for crop yields in previous years
to be additional state variables in the recursive
equations,

The fertilizer decision problem may not be
Just how much fertilizer to apply cach year but,
also, whether to apply any. Application costs
may be high enough to make it more economic
to apply fertilizer infrequently at high rates.
Stauber et al. (1975) have shown that this
problem 1s equivalent to the inventory problem
of when and how much to re-order, and
therefore has the same type of solution. They
used stochastic dynamic programming
numerically to find optimal nitrogen
fertilization policies for seeded £rasses in semi-
arid regions in the U.S.

Implications for Practice

What hinders the greater use of the rule
for optimal fertilizer application in the case of
carryover? There would be an obvious
impediment if the net returns from using the
optimal rule for a carryover case (R1) were little
higher than from using the optimal rule for the
no-carryover case (R0) in a situation in which
there actually was carrvover. Doll (1972)
presented evidence to show that, in the context
of no carryover, net returns are insensitive 10
large variations in fertilizer application around
the optimal level, and Jardine (1975) argued
that this result is not dependent on the
parameters of some response functions such as
the quadratic and square root. This suggesls
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that for such functions, in the absence of
carryover, the optimal application of fertilizer
is highly sensitive to the ratio of fertilizer to
product prices. From (4) and (12), the optimal
rule for the carryover case may be viewed as
the optimal rule for the no-carryover case with
the price of fertilizer discounted to an extent
dependent on the degree of carryover. Thus it
might be supposed that for such functions the
carryover rule might imply quite different
optimal fertilizer levels and net returns.

Consider the calculation of benefits in a
very simple case: the carrvover function is the
same as that used in (1) with v, constant for all
i, the discount rate is zero (i.e. @« = 1) and the
steady-state annual net return is to be found
after (i) RO and (ii) R1 have been implemented
over a large number of periods. For the steady-
state situation, subscripts can be dropped so
that x = v(a+x) and therefore

r=x+a=all—v).

Note that, whereas ér/oa; = 1, drlda =
1/1—v) which takes account of the change in
steady-state carryover, x, resulting from a
change in applied fertilizer, a. Application rates
under RO and R1 are therefore probably best
given in terms of dy/dr instead of dy/da. The
steady-state application rate under RO is a® = »¢
which satisfies

pravidr = p. (17

From (4) the steady-state application rate
under Rl is a' =rl—x=rl—rlv=ri(1-v)
which satisfies

prdv/dr = pi{(1—v). (18)

Let the net return from following rule R;
be
b = prvia/(l—v)} — pa
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where j = 0 or 1. The percentage gain from
using the carryover rule is

G = ((b"/6°%)—1)x100.

It follows from (17) and (18) that if the
response function is concave as assumed, then
rl > r? = g% however, whether, af > a¢
depends in general on model parameters. This
indeterminacy, occurs because a/=r/(1—v) with
v > 0, so that a/<r/ In other words, the
requirement of the optimal carryover rule that
more fertilizer should be made available does
not necessarily mean that more fertilizer should
be applied. The optimal rate of application is
the optimal rate to be made available, less
calculated carryover. Thus the difference
between a’ and a4 is not so great as might
initially be supposed.

As a rough guide to the gain from using R1
over RO when there is carryover, values of G
are presented in Table 2 for the four crop
response functions and price parameters
described in Table 1.

Values of the carryover fraction v
obviously depend on site-specific
characteristics. Fuller (1965) estimated a value
of about 0.32 for the cropping situation to
which response function (3) applies. Kennedy
et al. (1973) considered that v was in the range
0.2 to 0.4 for their study of sorghum production
in the Northern Territory. The value of v
implied by the multiperiod carryover function
used by Godden and Helyar (1980) for the
cropping situation to which response function
(4) applies is about 0.7. Consequently the range
of v in Table 2 is from 0.2 to 0.8.

Table 1: Selected yield-fertilizer response functions and prices

Bt =

Quadratic vy = —7.51 + 0.584r — 0.0016+7
Square root? y = —5.68 — 0.316r + 6.3512r05
Exponential? y = 107.7 — 73.4(0.69")
Mitscherliche  p = 2129(1 —exp(—0.04r + 8.8))

« Based on equations 14.2 and 14.3 in Heady and Dillon (1961) with zero phosphate levels. y is bushels of corn
per acre, r is pounds of available nitrogen per acre, p¥ = US$1.30 per bushel and p/ = US$0.12 per pound.

# Fuller (1965, equation 13). y is bushels of corn per acre, r is 40 pound units of available nitrogen per acre,
p* = US$1.00 per bushel and p/ = US$6.00 per 40 pounds.

¢ Godden and Helyar (1980, Table 1). v is kilograms of sorghum per hectare, r is kilograms of phosphorus per
hectare, pr =AS$0.80 per kilogram and p’ = A$0.83 per kilogram.



The results in Table 2 show that for the
functions other than the quadratic the gains
from using R1 and RO are modest for values of
v.up 0.4. On the other hand, gains are
spectacular in the case of the quadratic
response function. Of course, these results

KENNEDY: OPTIMAL FERTILIZER CARRYOVER

fertilizer. In the stochastic formulation of the
problem the random disturbance term ¢ in the
carryover function would include measurement
error. This type of feedback-control process has
been discussed by Lanzer and Paris (1981).

Table 2: Percentage gain in net returns through following the optimal carrvover rule R1 over the single-
period rule RO

Response Carryover fraction (v)
function
0.2 0.4 0.6 0.8
. Quadratic 5.4 57.6 T ¥
2. Square root 0.6 4.0 20.1 576.5
3. Exponential 0.2 1.3 4.8 13.4
4. Mitscherlich 0.3 1.7 5.6 13.7

T Infeasible result. @* under RO gives r = a*/(1—v) so large that ¥ is negative,

depend on the selected price ratios pip»- If R1
and RO are applied using a discount rate of 10
per cent, the percentage gains in net revenue
are slightly reduced. If net revenue were
calculated after deducting fixed costs, the
percentage gains in net revenue would be
accentuated.

The results are sufficient to show that there
is a risk of foregoing significant benefits by
using RO instead of R1, particularly for v > 0.4,
Lanzer and Paris (1981) provide one piece of
empirical evidence supporting this conclusion.
They showed that arranging for optimal
carryover for wheat-soybean cropping in
Southern Brazil would result in significant
increases in net returns, primarily through
reduced fertilizer costs.

For all of the four response situations
examined in Table 2 the level of fertilizer
applied was lower under R1 than under RO.
The percentage reduction compared with the
amount which would be appiied under R0
varies from 20 to 36 per cent across the four
response situations for v= 0.4,

Another impediment to implementing the
carryover rule 1s the additional information
required. This consists of forecasts of fertilizer
prices, fertilizer carryover functions and
residual fertilizer carried over from previous
years. If the residual fertilizer can be described
by one state variable then it may be economic
to estimate residual fertilizer on the basis of soil
tests instead of previous applications of

Conclusion

The problem of determining the optimal
sequence of fertilizer applications across
seasons when there is carryover is a multistage
problem which can be solved in various ways
using dynamic programming. The method used
in this article for deriving optimal rules makes
use of the information obtained by
differentiating the relevant recursive equation
with respect to the state variable, fertilizer
carried over or fertilizer previously applied. It
is more direct than the inductive method used
previously. It enables the rules to be derived
more simply when carryover is proportional to
fertilizer available.

The rules which emerge for the optimal
fertilizer application over time when there is
carryover have a straightforward economic
rationale. The value of the marginal product of
fertilizer applied in the current period consists
of the present value of additional product not
only in the current period but also in all future
periods. If fertilizer is optimally applied in all
future periods, it also equals the present value
of additional product in the current period plus
the savings in fertilizer applications in all future
periods. With these interpretations of the value
of the marginal product of fertilizer, the
optimal rule is the same as the one usually
stated: Apply fertilizer to the level at which the
present value of the marginal product of
fertilizer equals the price of fertilizer. If
carryover and yields are stochastic, the same
rule applies, but couched in terms of expected
values.
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The evidence for significant increases in
net returns from using the optimal multiperiod
rule over the single-period rule is mixed. For
some types of response function the gains are
quite low. However, for all of the response
functions the optimal level of fertilizer
application was lower if there was carryover.
Anderson (1967) pointed out that various real-
world considerations such as limited funds,
discounting, uncertainty and carryover effects
lead to lower optimal fertilizer levels than the
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