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REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS
Vor. 48, No. 1 (April, 1980)

A Survey of Methods for Determining
A Planning Horizon

P. L. Nuthall*

In multi-period farm planning problems involving uncertainty, the usual case in
the real world, planning must involve a continuous process of re-evaluation. In this
dynamic situation it is necessary to know the number of periods to include in the
decision model to ensure optimality. This is referred to as the planning horizon.
In practice, planning models used are frequently simplifications of reality so the ability
to determine the planning horizon under a range of situations is an important facet of
planning. This paper contains a survey of methods of determinipg the horizon and
offers comments on the approach necessary to resolve the cases for which methods have
not been developed.

1 Introduction

Farm planning in the real world should usually account for the non-certaint
and dynamic environment in which farms exist. Consequently decision
models must, in theory anyway, be stochastic and multi-period in nature.
Decisions made for other than the first period may never be implemented due
to changing conditions. Effectively, planning should be regarded as a con-
tinuous process so it is pointless to construct decision models containing more
periods than are necessary to ensure first period decisions are optimal. The
number of periods that needs to be included in the model to ensure this is
generally called “the planning horizon™ in normative planning theory. This
discussion contains a review of the problem of determining what is an appropri-
ate planning horizon and of methods of calculating this horizon. Use of the
correct horizon is a pre-requisite to obtaining optimal decisions as if too few
periods are considered, sub-optimal first period actions will occur, whereas,
on the other hand, if a greater number of periods than are necessary are used
planning costs will not be minimized. Hence an optimal planning horizon
exists. This horizon can constantly change in length as conditions change
and should be constantly updated as re-planning continues.

In reality formal continuous planning probably never occurs. Most
re-planning involves intuitive adjustments to formally or informally made
long term plans. The reasons for this include the lack of readily available
formal data, the extreme complexity of multi-period stochastic models and the
lack of proof indicating that formal planning has a pecuniary advantage over
intuitive reasoning. This means that most formal planning utilizes simplified
models so it is important to consider methods of determining the planning
horizon for a range of situations including cases involving the assumption of
certainty in the variables.

* Lincoln College, New Zealand.
L A term used to encompass both risk and uncertainty.
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Unfortunately, for some cases it is not possible, at least under current
knowledge, to determine “the” planning horizon. Nor is it possible to find

what can be called “a” planning horizon where this is regarded as a total number
of periods which is at least as great as “the” planning horizon.

It is only in recent years that any real recognition has been given to the
question of a planning horizon in theories of a firm. This has stemmed from
the non-acceptance in the formal theories of the dynamic (both in a non-certain
and time sense) nature of the planning and implementation situation. Even
currently it is only in specialized cases (e.g., Hillier & Lieberman 1967) that the
question of a planning horizon is discussed in detail, Usually modern texts
(e.g., Naylor and Vernon 1969; Baumol 1972) make only passing reference
to the problem indicating the need for a general theory in this area. Similarly,
agricultural research workers have tended to ignore the planning horizon
problem. For example Renborg (1970), in reviewing concepts and models of
firm growth, does not refer to the question at all, and Day (1977), in discussing
the literature on economic optimization, also fails to mention the problem.
Frequently, where a decision on the number of periods to include in a multi-
period model is necessary an arbitrary decision is made (e.g., White 1959;
Throsby 1962; Cocks 1965; Scobie 1967; Clark and Kumar 1978).

‘The review contains, firstly, a more detailed discussion on what is meant
by “the” planning horizon. Secondly, methods of determining a planning
horizon for a range of planning situations are reviewed and, finally, some
comments are offered on where a general theory might lie. Reference is made
to work outside the agricultural economics literature as there has tended to be
a greater emphasis on the planning horizon problem in other fields. Likely
reasons for this are that many general business problems are less complex and
the larger size of firms in the secondary and tertiary sectors means a very real
reward to the successful development of operational models is possible.

2 Planning Horizon Concepts

While the main discussion revolves round a normative horizon, it should
be noted that reasons why farmers do in fact use a particular planning horizon
have been proposed. The horizon used can be regarded as the positive horizon
and it is probably determined in an intuitive way without a knowledge of
dynamic decision theory.

Shackle (1961) suggests entrepreneurs, when considering investment
decisions, estimate the maximum loss possible from a system for different
periods. As future periods get “less certain”, this will increase. Shackle
maintains the maximum loss is based on what the decision maker would be
“very surprised” could occur in any eventuality (called the “focus of loss™).
Once this maximum loss, which increases with time, reaches a level equal to
the maximum loss the decision maker is prepared to accept, the horizon is
cut off for planning purposes. Similar concepts are defined for minimum
gain situations. While the ideas were developed specifically for capital invest-
ment situations, they clearly have potential implications to all forms of forward
planning (Haring 1961). Subjectively estimated distributions may be given a
greater range with time so that maximum losses are exceeded and minimum
gain requirements not met2,

* The “focus-loss™ concept has also been applied to static planning. An example is given
by Boussard and Petit (1967).
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Shackle considers the existence of a positive horizon is a reaction to non-
certainty. This is also stressed by Svennilson (1938) and Naylor and Vernon
(1969). Svennilson uses a slightly different approach to Shackle by suggesting
that at some future time the decision maker loses confidence in his own ability
to anticipate outcomes and so cuts off the horizon. Naylor and Vernon make
the point that alternative investments may have different ““‘degrees of non-
certainty” and so in estimating their worth different horizons are used for each.
Similarly, Brownlee and Gainer (1949) noted that farmers had greater con-
fidence in their ability to predict technical outcomes rather than price outcomes
so that plans were based on technological considerations. In these cases the
period over which plans are made could well be that necessary, in the farmer’s
opinion, to ensure the technical success of the operation.

Returning to the question of a normative horizon, Modigliani and Cohen
(1961) discuss the idea in some detail. They note that planning must consider
future periods as first period decisions may affect the opportunities open to a
firm in later periods. Accordingly definitions of relevant and irrelevant para-
meters are made which then lead to defining a planning horizon. Their
sufficient conditions for a parameter to be irrelevant are—

“A parameter p of a given future constraint is conditionally irrelevant
within some stated range if and only if the optimal value of every
component of the first move (first period decisions) is unchanged, no
matter what value p might take in the stated range; it is unconditionally
irrelevant if the stated range includes all a priori admissable values of
p-’5
Conversely, a relevant parameter is one which does affect the first period
decisions. While the definition is in a constraint context, Modigliani and Cohen
also discuss relevance with respect to the objective function. Essentially
their second theorem states that where the total payoff can be expressed in
terms of two sub-outcomes and the first largely depends on first period decisions
and the second only on later decisions, then decisions relating to the second
pay-off component can be ignored provided decisions relating to the first
component do not affect opportunitics of obtaining the second component.
Thus, a separable objective function is a pre-requisite.

Besides defining conceptual relevance they also introduce practical
irrelevance. A parameter is said to be practically irrelevant where either
implementation inaccuracies mean the parameter is not significant, or where
the additional gains occurring from allowing for the parameter are small,
or where the solving costs associated with its inclusion do not warrant its
inclusion.

Noting that “plans are not decisions about future courses of action”,
the theorem on irrelevance lead Modigliani and Cohen to state that “the latest
time period for which plans are made can be called the relevant planning
horizon”. Effectively they are saying that decisions must be made regarding
which parameters are relevant so that the nearest future period in which all
parameters are conditionally irrelevant can be isolated. The time up to and
including the previous time period then becomes the relevant planning horizon.

In terms of an operational system for determining the planning horizon,
the ideas of relevancy provide only broad principles and are only capable of
direct use in a limited number of particular cases. Such cases occur where
resources available for productive uses at some future period are in no way
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affected by any possible actions during the preceding periods or, through initial
simple exploration, it is clear that the possible optimal decision set will not be
influenced by previous actions. These cases seldom occur. Cases where the
objective function is separable are common but the problem of later period
physical actions being affected by first period actions means this separability
cannot be exploited. Thus, while Modigliani and Cohen’s principles provide
a general conceptualization of the problem, particularly the idea of conditional
irrelevancy, other methods must be developed for solving the planning horizon
problem.

3 Methods Used in Determining a Planning Horizon

3.1 A Simple Theory

Planning in a dynamic and non-certain situation is conceptually simple
where the marginal value products (MVPs) of all resources that might be held
at the end of the first period are known. It is only necessary to determine the
decisions which maximize the sum of the return from the first period plus the
total value of resources held at the end of the period given the initial state or
bundle of resources. The problem, of course, is that seldom are the MVPs
known. Furthermore, doubt surrounds resource valuation theories, parti-
cularly in non-certain and intertemporal situations (see, for example, Upton
1976; Layard and Walters 1978, chp. 12). However, investors do in fact
make some kind of assessment and the availability of, at least, expected present
worth figures is likely to be useful in this context.

To overcome the lack of knowledge about the MVPs at the end of the
first period a number of workers have developed specialized myopic search
techniques for a variety of cases. Essentially the requirement is for techniques
giving the MVPs in some period, or at least for putting narrow bounds on the
MVPs, without the need to consider the total time period the business might
potentially operate. In some cases the total value of resources of some state
may dominate all others and this may be discernable without actually calculating
the MVPs.

The purpose of this section is to consider the various cases for which
solutions are obtainable. In reviewing the cases it is useful to categorize the
types of planning problems and to consider each in turn. In all cases it is
assumed the total horizon or time period over which a firm is prepared to stay
in business is greater than a planning horizon. If this is not the case the
planning horizon equals the total horizon.

Cases are classified according to two factors, the first being whether
certainty exists, or is assumed to exist, with respect to all future prices, costs
and technology. Any case in which at least one variable is non-certain is
classified as a non-certainty case provided use of expected values does not effec-
tively reduce it to a certainty case. The second factor relates to whether con-
ditions in cach future period are changing relative to previous periods. If
prices, costs and technology, whether the certain values or the density func-
tions, change from period to period, the case is called the non-stationary case
and vice-versa. It is also assumed the objective function does not change for
the stationary case to exist.
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Within some combinations of these two factors it is also necessary to intro-
duce two sub-classifications. The first relates to whether the maximum time
span of any investments possible enables particular investments to be repeated
within the effective total horizon. The possibility of repeatability depends on
the type of investments possible where an investment in this context refers to the
purchase of any resource no matter what its expected maximum life is. Repeat-
ability is also related to the concept of a stable policy. A stable policy is defined
as a set of decisions which are sequentially implemented in identical form. The
length of period to which the set of decisions applies can vary and effectively
can involve any number of sub-periods. Thus, for repeatability the time span
of any investments must be short enough to enable the stable policy to be
applied several times within the total horizon (the exact number will depend
on the case). If repeatability is not possible a stable policy cannot exist.
Further, as one year is frequently used as the accounting period, in assessing
investments with a time span greater than a year the form of the consumption
function is important, particularly with respect to time preference (the particular
objective function used in any case implies a specific consumption function).

The second factor relates to whether it is physically possible to instantan-
eously adjust the system to any other state within the total set of possible states.
Whether a non-constant cost or return is associated with the change is also
important.

3.2 The Case of Certainty and Stationarity

If repeatability exists and a large number of repetitions are possible it is
not necessary to consider the total horizon since a simple myopic search system
1s possible (e.g., at the start of the growing season on a cropping farm where
previous crops do not influence future responses). The problem is to find the
optimal stable policy and then to implement it immediately. Determining the
optimal policy involves the use, for example, of a static linear programming
model where the length of the production systems are fixed. Where the dur-
ation of the production period is variable the optimal policy consists of re-
petitions at the time maximising net present worth (where marginal present
worth equates with average net worth per period).

If time and cost are associated with changing from the current state to the
starting state of the optimal stable policy then initial period decisions may not
be the stable policy decisions. Thus, it is necessary to consider a number of
periods. The problem consists of determining the optimal stable policy and
then, given the current state, setting up a model with a sufficient number of
periods such that the decision set of the last period is the same as the stable
policy. To test for this condition it is clearly necessary to predetermine the
stable policy. Effectively, the stable policy provides MVPs. Once the resource
valuations obtained for the last period of the planning model are the same as
those in the optimal policy sufficient periods have been considered. Grinold
(1971) rigorously develops a proof of this system based largely on a linear
model. This case assumes, of course, that the objective function does not
change and that there are a sufficient number of periods for the MVPs to
converge.

Where repeatability is not possible, the concept of an optimal stable policy
cannot be used. Included in this case are problems where repeatability can
occur but the number of repetitions are insufficient for the apparently stable

G 79838B—3
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policy to be, in fact, optimal even towards the end of the total horizon. This
will occur where the starting state is sufficiently different from the starting state
of the stable policy to make it sub-optimal to use the policy. This will occur
where continual additional investment or growth is possible and desired.

Attempts to find a myopic search system in this case have rested on the
turnpike idea. Tsukui (1966, p. 396) explains the turnpike concept in the
following statement:

“. . . suppose a balanced growth path (the turnpike) of the stock of
goods is uniquely determined in a closed reproduction system. Then
the efficient time-path of stocks, starting from any given common initial
stocks and attaining in the terminal period (¥) a Pareto-optimum in
the possible set of stocks, will have the following properties:
(a) if N is sufficiently large, all efficient paths of stocks may stay
outside of a properly selected neighbourhood of the turnpike
for at most a certain period N, determined independently of .
(b) all efficient paths of stocks remain consecutively in the neighbour-
hood of the turnpike except for certain period at the start and
the termination.”

Radner (1961) was one of the first workers to prove the existence of a turnpike.
With respect to the planning horizon problem, the turnpike concept says that,
in a growth situation, no matter what the starting state and the desired ending
state, the optimal policy consists of making for the turnpike and staying on this
until somewhere near the total horizon. Thus, provided a sufficient number of
periods are considered to ensure that the system has reached the turnpike,
the optimal first period decision will have been determined.

Boussard (1971) has applied the concept to farm planning. The assump-
tions necessary, however, are very limiting. Boussard assumes there are no
constraints other than the initial cash supply and that a linear consumption
function exists. This means a given proportion of each period’s income is
invested in capital stocks giving a growth situation. Using this simple function
the objective is to maximize the total value of assets held at the end of the total
horizon since if terminal assets are maximized so will consumption in each
period. (In that the only capital good used was land, problems of depreciation
are not considered). To overcome the problem of determining the correct
valuations, Boussard turned to the turnpike concept and attempted to rely
on the fact that if the total horizon is long enough it is not necessary to actually
know the optimal final state. The problem is to ensure that a sufficient
number of periods is included in the model (a linear programming formulation
was used) so that it can be guaranteed that the turnpike has been reached.
However, the number of periods necessary may give matrix size problems so
Boussard notes that provided the correct values are placed on the possible
ending states then the model can be truncated. His procedure was, therefore,
to set up the model for a limited number of periods and to solve for the optimal
solution with the land held at the end of the last period valued at subjectively
estimated maximum and minimum values. If the first period solution was
the same for both solutions it was assumed the first period action must be the
optimal first move in approaching the turnpike. In agricultural investment it
is doubtful whether farmers exhibiting a linear consumption function and, more
importantly, facing investment situations that are not constrained, do in fact
exist. This means the approach has little practical use. Further, it relies on
subjective valuations so it cannot be proved that the first period decision is
the optimal first period move to attain the turnpike.
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Boussard attempts to introduce non-certainty through using Shackle’s
(1961) “focus of loss” concept. In that some of the alternative within-period
actions may not satisfy the minimum loss requirement, he notes that the action
set is reduced and therefore it may take longer to reach the turnpike. The
conclusion is that the planning horizon will be shorter as with fewer alternative
actions less periods will be needed in the model to give the same first period
decision for the maximum and minimum valuations.

3.3 The Case of Certainty and Non-Stationarity

Given the expectation that conditions will continually change, the concept
of a stable policy cannot be used in a myopic search technique. In this case
a common approach is to solve the problem with a range of planning horizons
and, if the first period solution is constant, to accept this as being optimal.
The work of Rae (1970) and Byrne and Healy (1969) are two examples of this
approach. (This approach can be used in any of the cases). Rae, in using a
model of an horticultural property, found that the first period decision set
did not change when the planning horizon was altered from four to five years
and so accepted the first period solution as being optimal. Byrne and Healy
came to the same conclusion after comparing the first period solution to a sheep
replacement problem from eight and sixteen year period models. Use of this
approach cannot, however, guarantee an optimal first period decision as there
is no proof that adding additional periods will not, at some stage, lead to a
change in the first period decision.

The only objective myopic search techniques developed involve the general
inventory planning problem. While this only involves one product it will be
discussed as it is an example of how specific conditions can lead to an easily
identified planning horizon using a limited search. It is also the problem for
which the first objective planning horizon rules were developed (Modigliani
and Hohn 1955). Of the work in this area, that of Charnes, Dreze and Miller
(1966) is used as it also introduced a non-certainty case and is therefore referred
to later.

For the deterministic case Charnes ez al. consider the problem of determin-
ing the optimal quantity (X7) of a good to purchase and sell ( ¥;) in time period
J given a warehouse of known capacity (8) and known future prices and costs
(P; and C; independent of quantity) over a total horizon of N periods. The
initial inventory is designated s, Where By is the per unit value of any
inventory on hand at the total horizon, the problem is to find X; and Y; values
which

maximize fy + By Ay
subject to

(i) ¥; < by

) iy < B j=12,...N
(iii) X7 ¥; >0

where:

J
fi = = (PiYi'—CiXi)=f_;'_1+PjI’J'HCjX"

i= |

i
hy = hy + 'El(Xi— Y)=l 1+ X;— Y;
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Thus, sales occur from inventory and must not exceed inventory at the end of
the previous period and inventory at the end of a period must not exceed
warehouse capacity. Considering the last period, due to the linear price,
cost and terminal value functions, it is profitable to go to the extremes, depend-
ing on the conditions of buying and selling that the mventory level and the
warehouse capacity allow. For example, if Py < Cy < By it is profitable to
keep any inventory on hand and to purchase to build up the terminal inventory.
Thus, given these conditions, the optimal decision is to set Yy = 0 and to
purchase sufficient to make up the inventory to B. Similarly, the possible
relationships between Py, Cy and 8y lead to distinct decision rules. Charnes
et al. summarize these in a table which is given below:

gg;’;fg; Terminal Assets .
Event Value of Terminal Assets
ven of Terminal
Ky Ya | by S
1. By < Py, Cy O  \hxa| O | fya + Pyhy fw_1+ Pahy 1
2. CN < BN, PN B hN—l B fN—l + PNhNﬁl _— CNB fN_l + PNhN—.l + B(BN _ CN)
3. Pv < Cy < Bx|B—hya| O | B |fva~ Co(B — hy_1) |fya + Cxhy_1 -+ BBy — Cx)
4. Py <fBy < Cy| O O |hy_1| fyr Ja Ol

It will be noted that in all four cases the value fy + 8yhy is a linear function
of initial last period assets (fy_y, Ay—;) and of B. Thus, using Py, andgy_,
as the coeflicients of /,_, and B respectively, the following equality holds:

Sn + Byhy = fy-1 + By hy1 + gn-1 B

The table indicates that By_; and gy_, will have specific values depending on
the price, cost and value relationships. Effectively, 8,_, is the implicit value
of a unit of inventory carried into period N and gn—-1 i1s the ‘evaluator’ of a
unit of warehouse capacity. Examination of the table indicates:

By—1 = max [Py, min (Cy, Bl

Furthermore, it can be shown that this relationship holds recursively for
N-2, N-3 ..., ... 2. Thus, the table can be used to give the optimal decision
provided W is replaced by N-1, and so on. Further:

Sn-1 + Br—1 fin—1 = fy-2 + By—2 Ay_o + qn-2 B

so that for some period ;:

N—1
In + Byhy = f; + Bih; + B_EAQi

P=j
where
By = max [Py, min (Cyyy, Bjyy)]
and
g; = max [0, (Bjyy — Cipy)]
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Given the By, the table indicates the optimal values of X; and ¥;. However,
8; depends on future periods so to develop a myopic search technique it is
necessary to see whether 2; can be determined from a limited search. From

(@) B; = max Py, min (Cjpq, Biyq)
and
(b) max (Cj+1, Pj+1) > Ly = Pj+1

(that is unit value of inventory lies within the bounds of the purchase and sale
prices in the following period) if:

() Piyy > Cjyy, then 8y = Py
or

(i) Pjiy > max (Cjyy, Pjyy), then Ppyy > By, and 8; = Py,
or

(i) Piiy < Ciyy < Ppyy, then Py g < Cyy Byey and 8 = Cpy

In all other cases §; cannot be uniquely determined without reference to more
periods. These results occur as, given specific conditions, 8; depends only
on the next period’s conditions in the case of (i), and on the next two periods
in the case of (ii) and (iii).

The planning horizon significance of the 8; determining rules is that if
some period j exists such that &; is uniquely determined by examining the next
two periods, then an optimal first period decision can be made without recourse
to periods beyond j + 2. If the above conditions do not occur further periods
must be considered,

This inventory model has been considered in detail as it clearly demonstrates
the principle that in some cases a limited search may uniquely determine the
valuations and so lead to a planning horizon. Whether this will occur depends
on the nature of the problem. Necessary and sufficient planning horizon
conditions have been developed for other types of inventory problems within
the certainty-non-stationarity case. They all depend on the various price
relationships, which are relatively simple to explore for the single product
situation. Examples are (a) Eppen, Gould, Pashigian (1969) who consider
the problem of deciding on period production levels of a single product to
meet known demands where set-up costs, holding costs and production costs
vary with time, (b) Kunreuther and Morton (1973) who consider a similar
problem but with an additional cost being related to the differences in production
levels in each period (production smoothing), and (c) Lieber (1973) who con-
siders the problem where backlogging can occur at a known cost in each period.

3.4 The Case of Non-Certainty and Stationarity

If the total horizon is Jong enough for repeatability the concept of an
optimal stable policy can be used. With non-certainty that cannot be reduced
to a certainty equivalent form, an optimal stable policy consists of a set of
decision rules rather than a single policy. For each of the condition sets that
can occur, one of the decision rules applies. Given instantaneous adjustment
is possible, the myopic procedure is to determine the optimal stable policy
and to immediately implement this in the first period. Shapiro (1968) considers
such a problem for cases where an ‘“unique optimal stationary strategy”
exists. He uses the turnpike concept by noting that, provided the total
horizon is long enough, the infinite horizon stable policy can be used in the
initial periods.

29



REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS

Where instantaneous adjustment is not possible, the more likely case, the
transition problem of reaching the optimal stable policy must be considered.
Essentially, the myopic system of determining the stable policy and then setting
up a model with a sufficient number of periods to give a final period solution
the same as the stable policy can be used. Thus, a priori knowledge of the
stable policy indicates when a planning horizon has been reached. Due to
the non-certainty, the actual solution to the stable policy problem is not simple
in most cases. Burt and Allison (1963) provide a typical example of the
methods used.

Burt and Allison consider the Markovian decision problem of whether
to plant a crop of wheat or to leave the field fallow in a semi-arid region.
Actions and events in the immediately preceding year (wheat or fallow and
rainfall) determine the soil moisture level at planting. Response in the current
period depends on this moisture level and the rainfall. The decision on whether
to plant or fallow depends on soil moisture and the rainfall probabilities as
well as the prices and costs.  For a given starting soil moisture level and decision
there are a set of probabilities for the possible end of season soil moisture levels.
Therefore, for a particular soil moisture level decision rule, a matrix of transition
probabilities is defined, each row of which holds for one of the starting soil
moisture levels. If R is defined as a column vector with components being the
one period return for each starting state, B the discount factor, P the matrix of
transition probabilities and f (n) a column vector with components being the
present worth of following the given policy for each starting state to infinity,
then:

D f(m) = R+ BPf(n —1) = R + 8PR + BPf(n — 2)
= R+ BPR + B2p* R + BPf(n — 3)
= (I + BP + B2p% + ... + g1 pn-hR

(i1) forn —> o0
f() = (U —pP)yR

Thus, the present worth vector of a constant policy over infinity can be deter-
mined by solving this single matrix equation.® Each component of the vector
is the present worth of following a particular policy for one of the soil moisture
states. In order to solve the transition problem, and so obtain the first period
decision, Burt and Allison set up a dynamic programming formulation for the
actual starting state for a limited number of total periods. This was solved
and re-solved with additional periods until a constant policy was implemented
over the last few periods. Then using the suggested constant policy to obtain
f (n) above, and therefore the state values, the original problem was effectively
resolved using the derived values as the ending state valuations. If the same
constant policy occurs, the first period decision is optimal no matter how many
additional periods might be used and thus a planning horizon determined.

and

Where the problem features do not permit repeatability, the optimal
stable policy cannot be used. The only methods used in this case have been
to either use the total horizon or to use a subjectively determined system. One
method is to add periods to the model until it appears the first period solution
is stable. There can be no guarantee, however, that the addition of further
periods will not alter the solution. Another method is to argue that the market

® Provided the Markov chain has ‘ergodic states’ (see Hillier and Lieberman 1967, p. 413).
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determines correct marginal value products of resources making up the ending
state and, therefore, to use a limited number of periods with the ending values
being set at the market values, assuming they can be predicted in some way.
Trebeck and Hardaker (1972), in considering the problem of spatial diversifi-
cation of beef production, use this latter approach in a model involving several
periods totalling one year. However, in most cases the market valuations do
not reflect the true marginal value products to an individual farmer. There can
be many reasons for the discrepancy including the fact that farmers’ objectives,
fixed factors, total horizons, and managerial ability vary. Market factors such
as “cost plus” pricing and rigidities can also lead to discrepancies between
the MVPs and actual market prices. Accordingly the use of market prices in
valuing resources held at the end of a period is unlikely to reflect the true pro-
ductive value and so may lead to a sub-optimal first period decision set.

3.5 The Case of Nen-Certainty and Non-Stationarity

This is likely to be the most common case assuming the model used re-
presents reality. The non-stationary characteristic means a optimal stable
policy will not exist. In some cases, however, the extent of change between
periods and over the total horizon will be sufficiently minor to put them into
the non-certainty/stationary case.

Solving approaches must either use the total horizon or use planning
horizon rules which guarantee a planning horizon can be isolated. Due to
the non-stationarity, workers involved in such problems have had to search
for special conditions giving a planning horizon. The only cases where necess-
ary and sufficient conditions have been isolated are the single product inventory
problems. In other cases the subjectively assessed approximate methods of
Trebeck and Hardaker (1972) and Rae (1970) have been used.

The inventory problem discussed by Charnes ef al. (1966) is a case where
limited planning horizon rules can be proved given specific forms of non-
certainty are introduced into the problem. The method used in devising the
rules is similar to that used in the certainty case. It is assumed that the product
purchase and sale prices in any period follow a joint density function but that
once a particular period is reached the prices are known with certainty, They
also consider the case where future price distributions depend on current
prices (serial dependence). Effectively, the system involves taking a limited
number of periods with the terminal f; set at either plus or minus infinity.
If the two E(B,) derived in each case give values which satisfy conditions similar
to those in their certainty decision rule table (section 3.3), then the optimal
first period purchase and sale decisions are uniquely determined. If not, the
number of periods is increased. With price non-certainty the simple certainty
rules cannot be used as they rely on known prices. Other examples of in-
ventory type problems are given by Veinott (1968), who considers a production
scheduling problem where demands are stochastic and in which more explicit
horizon rules can be determined, and Symonds (1962) who considers a similar
problem in which backlogging can occur (but at a cost).

3.6 Combinations of the Cases

Cases may exist, at least approximately, in which there are groups in which
any one of the cases defined may occur. Tt is possible, for example, for a
decision maker to make estimates of future conditions which reflect non-
certainty and non-stationarity for the initial periods and non-certainty and
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stationarity for the remaining periods. Depending on the case it may be
possible to use the stable policy concept. The work of Hopkins (1971), in
solving the equipment replacement and capacity expansion problem of a single-
product firm, provides an example. He considered the certainty case in which
non-stationarity eventually gave way to stationary conditions. This meant
that valuation could be obtained using the stable policy approach for the periods
beyond the non-stationary section of the total horizon. This valuation was
then used to value terminal stocks at the end of the initial non-stationary section
of the horizon.

4 Conclusion

The survey of solving methods indicates that under stationarity it is possible
to determine the optimal first period decision without explicitly determining
“the” planning horizon. For the more generally realistic non-stationary case
planning horizon rules have been developed for a limited number of relatively
simple problems. As Charnes et al. (1966) note (p. 308), “no generally appli-
cable methodology has vet been devised . . . for locating horizons”. As
many problems fall within the non-certainty/non-stationary case there is a
need for exploring objective methods of determining the planning horizon.
Furthermore, even cases where stationarity enables an optimal first period
decision to be uniquely determined, a method of determining the planning
horizon may remove the need for estimating the stable policy where this is a
complex problem. Faced with any particular problem, however, a decision is
required on whether simplifications are justifiable which will then enable, for
example, the stable policy concept to be used where its determination is relatively
simple.

As the problem of incorporating a planning horizon into continuous
planning appears to revolve around the valuation of resources, (the dual
problem) future work aimed at developing methods for the unresolved cases
should consider valuation methods. Emphasis on the associated primal
approach would appear to be less rewarding as valuation information provides
a convenient and simple link between periods in a multi-period planning frame-
work.

Systems that give MVPs, or perhaps put narrow bounds on them, without
having to take into account the total horizon are required. The inventory
problem quoted (Charnes et al. 1966) is a perfect example. Of course, whether
formal continuous planning incorporating any methods that might be developed
will give superior payoffs compared with subjective and simplified methods is
another question. This assessment must await new developments.

Systems to estimate MVPs must rely on the relationships between MVPs
and the parameters of the problem as well, of course, on a clear understanding
of the relevant objective function and therefore the basis for valuations.*
The MVP of inventory in the simple certainty case depended on specified price
relationships. Similarly the MVPs in realistic problem situations will depend
on defined relationships between prices, resource availabilities, technological
considerations and so on. It is these relationships which must be researched
in future so that MVPs can be predicted.

4 As pointed out earlier, there are many unresolved questions in capital theory.

32



NUTHALL: METHODS FOR DETERMINING A PLANNING HORIZON

Research into the development of theories and methods for solving the
planning horizon and dynamic planning problems will raise many challenges.
As the real world is dynamic and non-certain the problems of quantifying
objectives and formulating forecasts under these conditions must be overcome
if directly useful theories and models are to be developed. The alternative
is to continue using subjective approaches. In fact some workers maintain
that there will never be an alternative to subjective estimation and planning.
At the individual farm level, information and planning costs will be important
factors in resolving these issues as, also, will be the major interests of farmers.
Harle (1974) maintains that farmers are more concerned with technical achieve-
ments than questions of profit because of, at least in part, the difficulties of
profit planning in a non-certain environment. It seems clear, however, that
until more research is carried out many of these issues cannot be settled.
While research in these areas will not be easy it is useful to remember that
many problems to which reasonable answers are currently available were
either not thought of, or were regarded as major stumbling blocks, by the
early farm management and agricultural economics workers.
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