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Abstract 

Regional management of endemic pests of trade significance typically requires a surveillance 

system, border controls, eradication protocols and conditions for market closure and 

reopening. An example is the systems for managing Queensland fruit fly (Qfly) in south east 

Australia where the preferred approach for intensive production areas is an Area Wide 

Management (AWM) scheme.  An AWM, such as the Greater Sunraysia PFA (GSPFA) in 

northern Victoria and western New South Wales, depends for its recognition amongst trade 

partners on an effective and credible surveillance system that identifies outbreaks rapidly, 

notifies exporters of trade restrictions and initiates eradication. These ‘market rules’ are 

fundamental to the economics of surveillance: they define an outbreak and thus the 

probability of market closure, the expected time to eradication, and consequent time to 

market reopening. This paper uses a spatial and dynamic bioeconomic model of Qfly 

infestation and spread to determine the expected optimal investment in surveillance and 

eradication capacity of the AWM.  
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1. Introduction 

Area Wide Management of Queensland fruit fly involves designating intensive horticultural 

production regions as pest free areas.  Once established, a pest free area (PFA) status is 

maintained by a set of regulations and protocols that designate border controls, surveillance 

and eradication, termed here as ‘market rules’.  The establishment of a PFA is a ‘public good’ 

that benefits most producers in a region.  PFAs in South Australia, Victoria and New South 

Wales benefit producers through a price premium on export and interstate produce, reduced 

cost of pesticides and pest damage and reduced costs of post-harvest treatments.  This paper 

presents a bioeconomic analysis of the surveillance, eradication and post-harvest treatment 

measures that underpin The Greater Sunraysia Pest Free Area (GSPFA) biosecurity system, 

and how the analysis is influenced by the market rules. 

The GSPFA region covers approximately 2.5 million hectares across northern Victorian and 

western New South Wales, and was established in 1996 as a zone within the less intensively 

protected Fruit Fly Exclusion Zone (FFEZ).  The maintenance of the Qfly free status of the 

GSPFA is a constant battle between, on the one hand, evolving patterns of pest invasion and, 

on the other, technological developments in surveillance and control method.  In 2006, under 

new management arrangements, the GSPFA was jointly funded by Victorian and NSW 

governments and the three key horticultural industries, citrus, stone fruit and table grapes. The 

revised management methods are consistent with international Standards for Phytosanitary 

Measures 26 (IPSM 26 2006) 

The public cost of GSPFA has meant that the scheme has been the subject of regular benefit 

cost analyses (BCA).  The earliest BCA estimated an industry benefit for the FFEZ of up to 

$14.5 million and a benefit to cost ratio (BCR) of 2.5:1 (Bateman 1991).  They also indicated 

that most of the benefits accrued to growers and exporters.  The most recent has been DPI 

Victoria’s (2010) BCA for the Victorian portion of the GSPFA, estimating annual benefits as 

$33 million with      of costs deriving from avoided post-harvest treatments of fruit for 

both domestic and export markets.  The annual costs were $14.4 million 

(PricewaterhouseCoopers 2001), of which Qfly control by DPI Victoria and producers 

accounted for     of the total (Ha et al. 2010, Table 13, data for Option 3).  The BCR over 

twenty years was estimated as 2.35:1.  In a separate analysis, the total costs of the fruit fly 

program for the DPI Victoria are given as $4.685m per annum, of which $2.49m is for 

surveillance and $1.157m for eradication, including sterile insect (SIT) technology (Ha et al. 

2010, Table 2).  The GSPFA is supported by two key technologies.  First a system of 

surveillance traps that: demonstrates to regulators in sensitive export markets that fruit from 

the region are Qfly free; identifies outbreaks quickly; and, demonstrating successful 

eradication following eradication.  Secondly, a capacity for eradication that responds 

immediately to a declared outbreak. 

All the BCAs of the FFEZ and PFA schemes indicated a significant return to public funds. 

This paper takes a different approach: instead of measuring the efficiency gains from the 

whole scheme this paper applies a bioeconomic model to assess the benefits of marginal 

changes in the intensity of surveillance. This turns out to be a particularly challenging 

problem as the effectiveness of the whole PFA management system rests on the ability of the 

surveillance system to detect otherwise unobserved pest populations. 

The remainder of this paper is organized as follows.  The next section describes the aspects of 

Qfly biology that are relevant to the economic problem.  Section 4 introduces a theoretical 

economics model a deterministic model and then a stochastic model, discussing how market 



rules influence these models.  Section 5 describes the data for the Sunraysia.  Section 6 

presents results and Section 7 concludes. 

2. Queensland Fruit Fly Ecology 

The Queensland fruit fly (Qfly; Bactrocera tryoni) is endemic to tropical and subtropical 

Queensland and New South Wales. Qfly was first reported as a horticultural pest in the 19th 

century.  It is now known to have over 200 cultivated fruit and vegetable hosts. It is a risk to 

all of Australia’s horticultural produce, but is excluded from Tasmania, Western Australia and 

South Australia through quarantine and eradication measures  

The ecology of Qfly is well-documented, with the rate of population generation highly 

dependent on day degree accumulation and the availability of moisture (Yonow et al. 2004). 

Qfly populations are sensitive to sustained cold temperatures and hot dry environments. This 

limits the ability of Qfly to persist in much of southern Australia due to its Mediterranean to 

temperate climate. The exceptions are generally production and residential areas, where there 

is an abundance of year round food sources and moisture from irrigation. The exclusion of 

Qfly from these areas is economically viable as surrounding areas of pasture and grain 

production are unsuitable for Qfly and provide a natural geographical barrier to local 

population movements. 

The greatest risk to the maintenance of the AWMs, such as the GSPFA, are (i) the transport 

into the zone of Qfly infested fruit produced from outside by human travelers; and, (ii) in the 

long term, climate change extending the wet summer subtropics southwards. The current rate 

of transport and steady expansion of endemic Qfly populations into the GSPFA is accentuated 

following unusually wet years.  The previous literature on invasive pests overlooks weather 

variability and seasonality as key issues. In fact there is a tendency to treat the problem as 

having seasonally invariant population growth and/or dispersal (Carrasco et al. 2009; Cacho 

et al. 2010; Carrasco et al. 2010). 

The economic viability of regional pest management strategies depends critically on the 

ecology of the pest. To establish an outbreak the pest incursion has to pass through a number 

of ecological filters: successful dispersal from a source population, climatic suitability of local 

habitat at the point of arrival, local availability of food sources, and availability of sufficient 

mates (an allee effect). These ecological filters can vary both spatially and temporally, while 

the sensitivity of Qfly to these filters may also vary over time. All of these filters determine 

the probability of an outbreak, when and where it occurs in a landscape and its severity and 

duration. Consequently, these filters define a heterogeneous ecological risk to the success of 

the management strategy. 

3. Literature Review 

A theoretical literature on pest management, often linked to empirical models has started to 

emerge during the 1990s, for instance (Olson & Roy 2002; Olson & Roy 2008).  The focus of 

these studies has been on the invasion of exotic pests rather than repeated invasions of 

endemic pests excluded from a region.  The pest is treated as a stock of a ‘natural bad’ to be 

analysed in a way equivalent to a natural resource such as a fish stock, with eradication 

equivalent to harvesting.  Population dynamics have been extended to account for dispersion 

(see Kot and Schaeffer, 1996 for a review).  The economic importance of dispersion is that 



widely spread, but sparse, pest outbreaks may have a low probability of observation and a 

relatively high cost of eradication.  In contrast, densely populated confined outbreaks have a 

relatively high probability of detection and relatively low cost of eradication. 

The economics of pest surveillance is a neglected topic and, to our knowledge, the only 

systematic treatment in relation to a biosecurity problem is that presented by Kompas and Che 

(2009) for Papaya fruit fly invasions. Their model is based on a dynamic, but non-spatial 

model of population spread associated with a time to detection. 

4. Theoretical Model 

The objective of AWM is to minimise expected costs in terms of control, surveillance and 

market access.  The following sections give the surveillance costs, eradication cost function 

and the overall optimization problem including state equations, while discussing the influence 

of market rules on economic analysis. 

4.1 Surveillance Cost Function  

For a defined are the number of fruit fly traps deployed depends on trap density of the grid 

according to: 

          (1) 

where Q is the total number of trapping sites in area A spaced α metres between trap grid 

points. Traps are checked regularly by inspectors. The number of inspectors employed 

depends on the total traps monitored and the number monitored in a day.  In turn the traps 

checked per day depends on the travel time between traps v, and the time spent at each trap β.  

We assume the grid is traversed efficiently. The average number of traps an inspector can 

check in a given period of time x: 
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where h is the number of hours worked per inspector per period . Total inspectors   is given 

by: 

         
 

 
  
       

 
  (3) 

where z is the frequency of trap checking during a period. The total annual cost of 

surveillance activities is: 

  
                z) (4)  

where    is the cost of trap site maintenance per year per site; wI the total cost per inspector 

including wages, transport and overheads (Florec et al. 2012).  

4.2 Population Growth Function 

Qfly control protocols are initiated in patch s when an outbreak is detected.  Following Olson 

and Roy (2002), control depletes the population through time either until it is eradicated or no 

longer viable.  From this relationship it is possible to specify an expected time to 

eradication   .  Let       represent the size of a pest invasion at time t in patch s. The size of 



the pest invasion when it is discovered       depends on how early the pest is detected, and 

this time to detection depends on the intensity of surveillance. 

Let       represent the control undertaken at time t in patch s. Distinguishing between the 

uncontrolled population and the controlled population through     
        

       
   .  

The invasion that remains at the end of period t following control and dispersion is given by 

the following integro-difference equation (Kot and Schaefer, 1996): 

    
           

       
              

where       is the growth function and        .is the probability of dispersal from s* to s.  

Control measured as the biomass of insects removed from a locality is given by the 

production function: 

          
       

            

where   
     is the labour input and   

      is the capital input for eradication pat s.  The 

annual control cost for patch s are is given by: 

  
                        

         
               

       
            (5) 

The expected time to eradication can be defined as the minimum time required to reduce the 

population at location s to a point where it is controlled. 

Define a Hammerstein operator
1
 as (Kot & Schaffer 1986): 

             
 
                  (6) 

where j is the number of periods since arrival of the pest population. The time to detection is 

thus defined by: 

                              

where        is the minimum population threshold for the declaration of an outbreak given 

the   level of surveillance. The time to eradication from population arrival is: 

                          

where            is the duration of eradication given a fixed control protocol        (see 

Florec et al. 2012).  

4.3 Market Access Costs 

A declared Qfly outbreak often results in restricted access for produce from affected patches 

to sensitive markets without post harvest treatment. The restriction on market access invoked 

by a declared pest incursion depends on the import rules applied by export markets (domestic 

or international) and the duration of market closure. The Qfly-free period required for the re-

instatement of area-freedom status depends on the export market (see Section 4.5). 

                                                 

1
 The Hammerstein operator simplifies the representation of the integrodifference equation by giving the 

population in patch s after j periods. 



Trading partners may be separated into two categories: sensitive and non-sensitive markets. 

Sensitive markets require that the fruit comes from a pest free area and impose conditions to 

restrict market access to fruit grown when there is an outbreak. These markets may require the 

fruit to be disinfested while an eradication campaign is conducted, or impose a complete ban 

on produce grown in the infested area until it is eradicated. Non-sensitive markets are those 

that attach little importance to area-freedom status and accept fruit at all times. Produce can 

still be sent to these markets when the fly is known to be present or even when the PFA is 

abandoned.  

In some cases, infested produce sent to markets that remain open (sensitive or non-sensitive) 

must be disinfested. Hence, some host produce has to be treated during both the eradication 

campaign and the period until PFA status is restored to the outbreak zone, through the market 

criteria recognised by trading partners. The total revenue losses generated by reduced market 

access and disinfestation treatments are then given by  

           
                               

                

   (7) 

where           is a cost due to a loss of market access;     is a vector of price differences 

between sensitive and non-sensitive markets; and,       is a vector of products by patch.  The 

cost of market access is positive following detection and prior to eradication.  Prior to 

detection and after eradication it is zero. 

 

4.4 Deterministic non-spatial model 

This section aims to illustrate the theory of optimal surveillance with the simplified case of 

one patch and a fixed frequency of inspection. Consider one patch and a production season 

that at most can have one outbreak of size   .  Further assume the outbreak occurs in the first 

week of the season.  The duration of the season is T weeks.  The surveillance grid, initially, is 

fixed and in response to a detected outbreak there is a fixed control response   .  The outbreak 

grows according to      and once the population reaches its detection limit      it is detected 

with certainty.  Following detection at    control commences.  The importance of 

surveillance is that delaying the time to detection means that eradication commences with a 

larger outbreak and takes longer to control, giving   .  A simplified optimization problem for 

a single season is given where the cost function gives the present-value of costs for the whole 

season.  The frequency of trap inspection has been fixed at   , thus the only decision variable 

remaining is trap density, Q : 

                                                      (8) 

Subject to: 

                                

                    

       



Taking derivatives  of (8) with respect to Q, the density of surveillance, yield the following 

first-order condition for an internal solution: 

  
      

    
   (9) 

Optimal surveillance is defined as a point where the present value of the marginal cost of 

surveillance   
  equals the marginal reduction in the present value of eradication costs    

  

plus the marginal reduction in market access costs    
 . 
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Figure 1. The Effect of Surveillance and Eradication on Population Number Following 

an Outbreak [after Kompas and Che 2009] 

 

The sequence of events is illustrated in Figure 1.  Assume that there is a high investment in 

surveillance       leading to a relatively early detection of flies at          . The pest is 

then controlled along the state path ab and when the population hits the minimum viable level 

X
min 

eradication is complete and markets reopen (or reopen after a delay depending on the 

market access protocol).  A lower investment in surveillance at      delays detection and 

hence eradication.  If there is no surveillance then there is a natural rate of detection at     ). 

In this example, it is assumed eradication is incomplete at the end of the season, but simply 

there is no carry over into the next season (path fg). 

  



4.5 Market Rules 

Market access rules agreed to by individual trading partners are one of five types in the AWM 

of Qfly: 

i) Biosecurity Constraint: the minimal level of surveillance below which no trade 

occurs.  

ii) Recertification Rule: the number of generations of Qfly that must elapse before 

market access can be resumed following an outbreak. This is temperature driven 

given that Qfly phenology may be measured by accumulated day-degrees, and so 

will vary with location and season. Examples include: one generation and 28 days 

or 12 weeks, whichever is more (exports to NZ); or, three generations (citrus 

exports to the USA). 

iii) Areal Rule: the size of the trade suspension zone as a radius from the declared 

epicentre of the outbreak. It varies with market (15 km for NZ; 80 km for 

Tasmania), and may be extended following further captures within the suspension 

zone (to 30 km from 15 km for USA). 

iv) Treatment Rule: either no trade is permitted with the suspended area by the 

destination market rule, or trade is permitted with post-harvest treatment of 

produce. This latter option is predominately the case. 

v) Capture Rule: the number of Qfly captures, and the pattern of how they are caught 

locally both spatially and temporally, that is used as the criterion to declare an 

outbreak. Largely, the capture rule is as described above: at least five male Qfly 

captured within 1 km  and two weeks, or one gravid female or larvae. 

As the treatment and capture rules are relatively consistent across trading partners then the 

first three rules are of greater current interest. The recertification and areal rules operate 

similarly and can increase significantly the post-harvest treatment costs, namely because the 

recertification rule extends the duration of a declared outbreak, occasionally into the next 

harvest season, while the areal rule determines the volume of production subject to suspension 

on average. In contrast, the biosecurity constraint determines participation in the market of 

trading partners: if there is no surveillance there is no AWM and no trade with those markets. 

Furthermore, the biosecurity constraint operates differently from the other rules in how it 

influences a BCA of an AWM (Figure 2). 

Total revenue    is constant for constant produce price regardless of whether an AWM 

scheme is present or not. The key difference is that in the absence of an AWM scheme then 

trade characteristically still continues, but requires post-harvest treatment cost of all produce. 

Similarly, there are no surveillance or eradication costs to be incurred.  Hence path ab 

describes total variable costs up to the biosecurity constraint, coincident with maximum post-

harvest costs (Figure 2). Note that in the absence of a biosecurity constraint then each post-

harvest treatment, eradication and surveillance costs are continuous functions of surveillance 

level  , as indicated by the dashed lines. Importantly, these ‘natural’ cost functions are 

realised whenever the biosecurity constraint is satisfied. 

Define the biosecurity constraint as   . Then the optimal level of surveillance    in the 

presence of a biosecurity constraint satisfies the following conditions: 

                               

       
  
     

  
   

  
                

       
  
     

  
   

  
                

 



 

Figure 2. The Biodiversity Constraint and Optimal Surveillance 

 

where  
  
  is the marginal cost evaluated at the budget constraint. The dependency of the 

component costs on   is omitted here for simplicity, and monotonicty of the cost functions 

with respect to   is assumed. The condition      implies there is no AWM. In summary, it 

is optimal for the AWM manager to voluntarily undertake a level of surveillance greater than 

the minimal level required for AWM (i.e., the biosecurity constraint) whenever the marginal 

benefit of avoided post-harvest treatments is greater than the sum of the marginal costs of 

surveillance and eradication at the biosecurity constraint. Figure 2 illustrates the third case of 

a voluntary increase in surveillance. 

4.6 The Stochastic Spatial-Dynamic Optimization Problem 

In this section we bring together the various components of the regulator’s problem and 

recognize that it is spatial, dynamic and stochastic.  The regulator determines a level of 

investment to solve the following problem expected avoided cost minimization problem:  

                       
                                        (10a) 

                                  (10b) 

                              (10c) 

     (10d) 

where    is the discount factor;    is the probability of detecting a Qfly within the locality of 

a trap;   
     is a time and location dependent probability of outbreak; and    is the capture 

rule detailing the minimum number of captures required for the declaration of an outbreak 
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(and may involve a sum of captures in recent weeks and in neighbouring traps). The waiting 

times    and    are now stochastic realizations, as detection at each time point is treated as 

binomial trials of the current population size              . The term          is 

computed as              . 

In general,   
     is an ecologically determined parameter driven by climate, however it is in 

part defined also by the market rules. For instance, both the recertification and capture rules 

will alter this probability: a longer recertification period will mean that fewer outbreaks are 

declared as the implied long durations of outbreaks overlap and ‘hide’ some of the outbreaks 

that would have been declared for a shorter recertification period; the capture rule determines 

when an outbreak is declared, and hence the size of the initial population when eradication 

measures are begun, thereby altering consecutively        ,    ,        ,    and   .  

Similarly, increases in the ecologically based parameters of time to detection, time to 

eradication and probability outbreak will predictably lead to increased costs, but are correlated 

non-linearly with surveillance effort. For example, increasing surveillance may lead initially 

to a greater number of outbreaks being declared before plateauing to a maximum number of 

possible outbreaks, as the surveillance system becomes more effect in picking up those 

populations that would have normally self-extinguished through population allee effects. This 

is particularly the case with Qfly as 71% of captures do not involve declarations of an 

outbreak. By increasing surveillance the benefits of reducing the time to detection and hence 

post-harvest treatment costs need to be traded off against the extra costs of increasing the 

probability of outbreak. In fact these complex dependencies built into the model may risk 

non-convexities in the eradication and market cost functions of surveillance, violating the 

assumption of monotonicity of Section 4.5. 

5. Empirical Model 

The elements of (10) to be estimated include: i) costs; ii) a population growth diffusion model 

over local landscapes        ; and iii) a probability of outbreak model   
 . Both ii) and iii) 

are driven by time varying climate indices. The calibration of the spatio-dynamic economic 

model from limited data therefore entails a number of estimation and calibration steps.  The 

strategy employed here was to use the data available from existing Qfly trapping experiments 

to estimate   
 , and to use other readily available data on the population ecology of Qfly to 

infer the parameters of the growth model. An overview of how costs link to the bioeconomic 

model are given in Figure 3. 

5.1 Definition of Landscape 

The FFEZ region was represented as a pixelated landscape with 1 arcminute resolution (~1.84 

km). For each pixel a number of spatial attributes were recorded: road density (m/ha); landuse 

(5 landuse classes); membership and distance to the PFA and FFEZ management boundaries 

(km); elevation (m); surface roughness (st. dev. of elevation); distance to coast (km); and 

number of active cuelure Lynfield traps. Temporal covariates recorded on a weekly time step 

were derived from daily temperature, rainfall and evaporation using the Climex model based 

on phenological parameters for Qfly (Sutherst et al. 2007).The model was applied to the 936 

weeks from January 1993 to December 2010, and considers 5402 pixels where either 

horticultural production or residential areas are located (Figure 4). 

 



 

Figure 3. Flow Diagram of BCA model. 

 

 

Figure 4. Map of The FFEZ Region in South Eastern Australia 
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5.2 Cost of Surveillance    
The cost of surveillance      was taken to be a function of both trapping grid density     and 

frequency     of trap inspection (Figure 5). The cost surface was derived from costs for 

labour, trap maintenance and travel time, and is multiplied by the number of traps in the 

landscape. A grid cell was assigned a trap if the sum total of vine, fruit tree, other horticultural 

and residential land uses exceeded 0.28 of total pixel area, a threshold derived from the 

PestMon trap data.  

 

 

Figure 5: Surveillance Isocost Surface: Grid Density and Frequency of Trapping ($/km
2
) 

 

5.3 Probability of Outbreak   
     

The study utilised the PestMon database held by Industry and Investment, NSW, recording 

weekly Qfly captures for 1650 permanent and temporary Cuelure traps across the NSW 

portion of the FFEZ.  A market rule of at least five flies trapped within two weeks and 1 km 

was used to declare 135 outbreaks from June 1998 to December 2010. Calculation of the 

duration                    of an outbreak (eradication plus market recertification) 

required: i) at least one generation to lapse following the completion of a 12 week eradication 

period, with no Qfly caught during that time; ii) if Qfly were subsequently caught then the 

one generation rule was imposed again when less than five Qfly were caught;  iii) if at least 

five Qfly were trapped then 12 weeks of eradication were imposed, followed by a 

reinstatement of one generation rule. 
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The Qfly trapping events were regressed on the spatio-temporal factors using generalised 

additive models (Wood, 2006). Drought stress, distance from the PFA boundary (Figure 6), 

and increasing density of roads and residential areas were found to be the key drivers of the 

probability of captures. A relative risk of outbreaks to capture events was derived from the 

data and then used to compute outbreak occurrence during simulation runs over the entire 

FFEZ. 

 

Figure 6. PFA Border and Drought Stress Effects on the Probability of Qfly Captures 

5.4 Cost of Eradication    

The cost of eradication is a function of the duration of the outbreak, with outbreaks of longer 

duration more likely to require multiple eradication efforts. A single eradication effort was 

estimated to cost $120,546 (2010 value), and considered the cost of labour, chemical usage, 

and of sterile insect technology (SIT) releases following the initial two week period of 

chemical application. The Qfly model fixes the eradication period at 12 weeks for all 

outbreaks, in common with eradication practice on the ground, regardless of surveillance 

effort      . What varies in the model is the number of eradication efforts required during 

any recertification period, taken as an empirically derived stochastic function of outbreak 

duration. Note that outbreak duration is itself a stochastic function of the initial population 

captured at the time of detection (equating to the unobserved   ), with the eradication cost 

incurred solely at the spatial epicentre of the declared outbreak.  Hence,    is a function of 

effort       through it’s indirect dependence on    (e.g.,    increases with decreasing  , 

leading to greater   ; Figure 1). 

5.5 Market Costs    

Market costs were defined as the post-harvest costs incurred from the time of declaring an 

outbreak to the declaration of pest free status following satisfaction of the one generation rule, 

and covering all production within a 15 km radius of the outbreak. Post-harvest costs per 

tonne of table grapes, citrus and stone fruit were on average given as $127, $93.25 and $50, 

respectively, by major packing sheds in the region. These numbers differ from the $50 per 

tonne for each produce included in the BCA of (Ha et al. 2010). 
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The per week tonnage of production for each crop for each map pixel was computed from 

land use data, provided by the Bureau of Rural Services as a 1:50,000 vector map. The 

temporal pattern of production for each crop type is known for the region from Australian 

Bureau of Statistics data, as are the tonnes production per hectare per year (Figure 7). The 

proportion of vine crops and fruit trees (both irrigated and rain-fed for each crop type) for 

each pixel was computed, and fruit tree production further split into citrus and stone fruit by 

assigning the regional mix of production for each pixel, given that the land use map did not 

give that level of differentiation. Knowing the area of production for each pixel and each crop 

type permitted a production curve to be assigned to each pixel, with weekly post-harvest costs 

computed accordingly. The average proportion of each pixel’s production and post-harvest 

costs already counted or incurred by one or more outbreaks in neighbouring pixels can be 

rapidly computed, using the geometry of independent intersections. Market costs are incurred 

for so long as the outbreak endures, and are thus dependent on the time to detection and 

surveillance effort        . 

 

Figure 7. Time-Varying Production 

5.5 Linking Surveillance Design and Benefits 

Valuing the benefits of surveillance in terms of early detection required implementation of an 

integro-difference population model in a local raster landscape. The probability of capture, 

and population diffusion and growth parameters were calibrated from data presented in the 

existing Qfly literature (Sadler et al. 2011). The growth parameter was time-varying, 

dependent on the same Climex-derived climate indices as the probability of outbreak model, 

and inferred from an existing stage structured population model (Yonow et al. 2004). 

Inferring the unobserved time of population arrival and initial population number from the 

numbers of Qfly initially trapped when an outbreak was declared, with random locations of 

population arrival, required a simulated likelihood approach (Diggle & Gratton 1984). The 

comparison between model and data involved: 

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Day of Year

S
ca

le
d 

P
ro

du
ct

io
n 

(k
t)

Citrus

Table Grapes

Stone Fruit

0 100 200 300

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Day of Year

P
ro

ba
bi

lit
y 

of
 O

ut
br

ea
k 

(w
ee

kl
y)

Table Grape Citrus Stone Fruit

%
 o

f P
ro

du
ct

io
n 

to
 M

ar
ke

t

0
2

0
4

0
6

0
8

0
1

0
0

Domestic Domestic Domestic

Hong Kong

Hong Kong

Hong Kong

U.S.A.

Other

Other

Density of Traps (traps/km^2)

W
ee

kl
y 

#
 o

f T
ra

p 
In

sp
ec

tio
ns

 0.05 
 0.1 

 0.2 

 0.3 

 0.4 

0 5 10 15 20

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

 11.1 

 10.8 
 10.5 

 10.2 

 9.9  9.6 



i)  backward simulation of the integro-difference model from the current time period 

and observed captures; 

ii) Defining surveillance grids of differing density and frequency of inspection, and 

for each grid the integro-difference model was forward simulated from each initial 

population and time start.  

iii) The number captured at any point in time in cells containing a surveillance point 

followed an independent binomial distribution given by the simulated population 

number and probability of detection.  

iv) Forward simulation was ended, and consequently the time to detection defined, 

when simulated captures exceeded the capture rule    of at least five Qfly within 

two weeks and one kilometer.  

The benefits of monitoring could then be defined as the post-harvest costs saved through 

earlier detection. The number of Qfly initially captured, which correlates well with time to 

detection, was then used to predict the duration of outbreaks through a regression model 

derived from the PestMon data.  In this way simulated Qfly captures provide a time-varying 

distribution of the duration of outbreaks dependent on prevailing climatic conditions (i.e., 

growth rate parameters) that, in turn, determines post-harvest costs. 

6. Results 

The total potential annual benefit of the PFA scheme can be valued at $39.3 million, which is 

the total value of post-harvest treatments within the Sunraysia region in a scenario where no 

outbreaks occur.  Any costs are then deducted from this benefit (Table 1, Scenario 1). The 

variable cost of maintaining the current surveillance was estimated at $0.79 million, with 

$0.79 million eradication ($0.08 million standard error) and $5.4 million of incurred post-

harvest costs ($4.6 million standard error), averaged over a 20 year period. Most of the 

variability in post-harvest costs was due variable timing of outbreaks, and hence variable 

durations of outbreaks, where as the mean number of outbreaks per year was relatively stable. 

Total net benefits were thus estimated to be $32.4 million per year of maintaining the 

combined FFEZ/PFA scheme as it currently stands (Table 1, Scenario 2). The total net 

benefits are greater than those previously reported primarily because our per unit post-harvest 

treatment costs are estimated to be higher than elsewhere.  

If the trap density is varied in different simulation runs, but applied homogeneously across the 

landscape, then per pixel net benefits can be calculated. Figure 8 sums these benefits across 

the PFA pixels only, examining a range of trap spacings from 40 to 5000 m. Effects below 

240 m trap spacings are poorly estimated, being greater than the maximum observed trap 

densities recorded in the PestMon database, and should be ignored. The key result is that it is 

optimal to surveil at the lowest possible level if undertaking surveillance over the landscape at 

a single rate. However, non-linear effects are evidenced in the interaction between a rapid 

detection and hence rapid eradication at low trap spacings (high density) and the number of 

outbreaks declared. Critically, non-convexity of the post-harvest treatment cost function is 

evidenced, with a local minimum occurring at      m trap spacing. In contrast, both 

surveillance and eradication costs decrease monotonically for trap spacings larger than 240 m. 

  



 

Figure 8. Total Costs of Area Wide Management with Surveillance Effort 

 

The solution without a biosecurity constraint tends to no surveillance when the Sunraysia 

region is monitored at the one homogeneous surveillance rate. However, the optimal trap 

spacing ranges between 700 and 1000 m over the Sunraysia region, if the maximum allowable 

trap spacing due to market regulation is assumed to be 1000 m (i.e., the biosecurity 

constraint), and the optimal trap spacing allowed to vary on a per pixel  basis (Figure 9). This 

solution has been spatially smoothed with cubic regression splines (i.e., regularized), 

implying that locally a near homogeneous surveillance rate is preferred, with smoothing 

parameter chosen through generalized cross-validation. This rate of surveillance can be 

readily afforded, as the net benefits of engaging in AWM over the entire region far outweigh 

the costs, even with the biosecurity constraint in place.  
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Figure 9. Spatially Optimal Surveillance Effort 

 

While Table 1 provides a sum of costs by region (PFA or non-PFA FFEZ, NSW or Victoria), 

mean post-harvest costs can also be estimated for each pixel in the landscape. The result is 

also smoothed (i.e., regularized) and identifies a ‘hotspot’ in costs around the Mildura 

production region, corresponding to both the region of greatest production value within the 

PFA and the highest rates of optimal surveillance (Figure 9). Consequently, the optimal level 

of surveillance is predicted well by the local value of postharvest treatments (adj-       , 

p-value       ), with increased surveillance (lower trap spacings) correlating with higher 

production values (even if marginally).  

Marginal surveillance costs and post-harvest costs are large below a 400 m trap spacing, with 

surveillance costs dominating post-harvest costs as the surveillance effort increases. This 

evidenced when post-harvest costs are increased or surveillance costs per trap are greatly 

reduced through a sensitivity analysis, with the ‘smoothed’ optimal strategy becoming 

increasingly heterogeneous spatially.  With post-harvest costs doubled, the optimal spacing of 

surveillance traps can decrease to 320 m in regions of high production value (i.e., around the 
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Mildura ‘hotspot’). This would be the scenario under market rules requiring greater time 

period to elapse before permitting market recertification (e.g., the three generation rule for 

citrus exports to the USA), or under a scenario when comparatively cheap post-harvest 

treatment options are lost (such as current chemical controls). 

In the absence of an AWM scheme post-harvest costs are incurred on all production across 

the FFEZ (Table 1, Scenario 1). These annual costs are significant and total $146 million, and 

do not include the value of either wine grapes, dried grapes (together 85% of total grape 

production in the region) or juicing citrus production (50% of citrus production). The majority 

of these costs are borne in the non-PFA regions of the FFEZ, predominately within NSW, and 

hence do not feature in the BCA as they are considered the counterfactual case.  While the net 

benefit of the current AWM strategy is $32.4 million per year (Table 1, Scenario 2) the net 

benefit of allowing surveillance to vary optimally across the Sunraysia PFA, while 

surveillance is kept to its current schedule across the remainder FFEZ, is only $0.6 million 

above that of Scenario 2 (Scenario 3). Immediately it can be seen that the benefits of 

introducing new post-harvest treatment are potentially greater than the benefits of introducing 

new surveillance technologies, due to the fact that post-harvest treatment costs are 

ubiquitously incurred over the non-PFA regions of the FFEZ. Similarly, the potential benefits 

of expanding the current PFA are large, given that avoided post-harvest treatment costs far 

outweigh surveillance and eradication costs if the current rate of outbreaks and their declared 

duration can be held constant. The priority of new sites for inclusion into new PFAs within 

the FFEZ region may be predicted reasonably well by their potentially avoided post-harvest 

treatment costs or production value in the first instance, and through simulation of the Qfly 

bioeconomic model in the second instance. 

7. Summary 

This paper sets out the structure of a bioeconomic model of AWM for Qfly in the GSPFA.  

The model is spatial and dynamic and allows for surveillance costs, eradication costs and 

market access costs.  The purpose of this model is to estimate the returns to different aspects 

of AWM design, in particular the investment in surveillance, control effort, spatial extent and 

R&D.  The approach taken is to understand the GSPFA as a bioeconomic system, thereby 

allowing an exploration of the current system of management and an assessment of the 

potential return to new developments in surveillance and control. Critically, trade agreements 

and market rules play an integral role in defining net benefit, and the optimal rate of 

surveillance across a landscape. 
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Table 1. Benefit Cost Valuation of Different AWM Scenarios 

Red: cost; Black: benefit; calculated as net cost or benefit over ‘Scenario 2: Current 

AWM 

 

 

 

 COSTS (AUD) / year
1
 (000’s) 

Surveillance Eradication Post-

harvest
2
 

Total/Difference 

Scenario 1: 

 

No AWM 

 

NSW PFA 0 0 11397 11397 

FFEZ 0 0 95765 95765 

Total 0 0 107162 107162 

VIC PFA 0 0 27908 27908 

FFEZ 0 0 38958 38958 

Total 0 0 66866 66866 

Total PFA 0 0 39306 39306 

FFEZ 0 0 106814 106814 

Total 0 0 146120 146120 

1. Red: cost; Black: benefit 

2. Post-harvest costs for regions outside of the PFA estimated using the mix of land uses 

within the PFA. 

 

Scenario 2: 

 

Current 

AWM 

Extent 

 

Current 

Monitoring 

NSW PFA 38 91 9832 9704 

FFEZ 411 181 0 592 

Total 449 271 9832 9119 

VIC PFA 188 15 24104 23901 

FFEZ 157 506 0 663 

Total 345 521 24104 23239 

Total PFA 226 106 33937 33605 

FFEZ 568 686 0 1254 

Total 794 792 33937 32350 

Red: cost; Black: benefit; calculated as net cost or benefit over ‘Scenario 1: No AWM’ 

 

 

Scenario 3: 

 

Current 

AWM 

Extent 

 

Optimal 

Monitoring 

NSW PFA 17 ~0 219 202 

 FFEZ 0 ~0 0 0 

 Total 17 ~0 219 202 

VIC PFA 17 ~0 393 409 

 FFEZ 0 ~0 0 0 

 Total 17 ~0 393 409 

Total PFA ~0 ~0 610 611 

 FFEZ 0 ~0 0 0 

 Total ~0 ~0 610 611 
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