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Rainfall during the germination, growing and flowering periods is a major

determinant of wheat yield. The degree of uncertainty attached to a wheat-yield

prediction depends on whether the prediction is made before or after the rainfall in

each period has been realised.  Bayesian predictive densities that reflect the different

levels of uncertainty in wheat-yield predictions made at four different points in time

are derived for five shires in Western Australia.
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1. Introduction

Shire level forecasts of wheat yield provide useful information for those

involved in wheat transportation, storage and marketing.  In the absence of micro-

level data on soil moisture, the nutrient content of the soil, the presence of weeds and

pests, etc., a reasonable method for modelling shire-level wheat yield is via an

equation that relates yield to a trend term (to accommodate technological change), and

to rainfall at different times during the year (Coelli 1992 and references therein).  In

what follows, we consider three rainfall periods, germination (May and June),

development (July and August) and flowering (September and October).  We are

concerned with forecasting wheat yields before and after each of these periods.  When

a rainfall variable is an explanatory variable in a regression equation designed for

forecasting yield, having to forecast before that variable has been observed raises a

methodological problem.  It is this methodological problem that is the main focus of

this paper.

Suppose that a yield forecast is to be made after rainfall at flowering has been

observed.  Since the other rainfall periods precede the flowering period, this forecast

is made with complete knowledge of all regressors.  Conventional regression

forecasting methodology is applicable.  However, making a forecast prior to the

flowering period means that uncertainty about rainfall during that period must be

recognised in the forecasting procedure.  Making a forecast prior to the development

period means that rainfall uncertainty in two periods must be recognised.  Similarly, a

forecast prior to germination means that rainfall uncertainty in all three periods must

be captured.  The four possible forecast times and their relationship to the rainfall

periods are depicted in Figure 1.  We are concerned with the development of

techniques that recognise the different levels of uncertainty associated with the timing

of the forecast.

Timing of Forecast

                    1                             2                            3                             4

Germination Development Flowering

May-June July - August Sept - Oct

Figure 1: Forecast Times and Rainfall Periods
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The forecasting tool that we employ in conjunction with the linear regression

model is the Bayesian predictive probability density function (predictive pdf).  This

tool has the advantage of providing a unified approach that conditions only on past

data and the chosen model.  Uncertainty about regression coefficients, about unknown

future rainfall, and about the unknown parameters of the rainfall distribution, are all

captured in the predictive pdf.  Distinctions between forecasts made after and before

rainfall has been observed are readily made by conditioning, or not conditioning, on

that rainfall.  Another advantage of the Bayesian approach is the scope for improving

predictions by including prior information on the regression coefficients.  In the shires

that we consider, it is reasonable to insist that the response of yield to rainfall,

evaluated at the sample mean of rainfall, is positive.  Inequality restrictions of this

kind can be readily incorporated into the analysis.

The literature on crop yield forecasting is vast, ranging from studies that use

micro-level data from experimental plots to those, like our study, that use more

limited aggregate data.  For an extensive review, see Stephens (1995); for a more

restrictive review, but one with more focused relevance to what follows in our paper,

see Coelli (1992).  In contrast, the literature on regression-model forecasting with

uncertain regressors is somewhat limited.  Some efforts have been made in the time-

series arena (e.g., Baillie 1979).  Recognising an inconsistency described by Feldstein

(1971), McCullough (1996) suggests using the bootstrap to obtain consistent forecast

intervals.  Various approaches to obtaining forecast intervals for a range of models

have been reviewed by Chatfield (1993).  In this paper we illustrate how Bayesian

principles can be readily applied to obtain forecasts and forecast intervals that reflect

uncertainty from unknown regressors and the consequent uncertainty from the timing

of the forecast.

In Section 2 we describe the model and data. Some notation is introduced in

Section 3, and the predictive pdf’s that are the subject of the paper are discussed.

Section 4 is concerned with modelling rainfall; the model is described, the estimation-

prediction procedure is outlined, and results for the five shires are presented. In

Section 5 we describe how to obtain posterior pdf’s for the regression coefficients;

corresponding results are presented. The results obtained in Sections 4 and 5 are

drawn together in Section 6 and utilised for forecasting. This utilisation requires some
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theory to unify the earlier parts; the forecasting results are then presented. Some

concluding remarks are made in Section 7.

2. Model and Data

To illustrate the methodology, five shires are chosen from the northern part of

the Western Australian wheat belt: Northampton, Chapman Valley, Mullewa,

Greenough and Irwin.  The paper by Coelli (1992) motivated the methodology that we

develop; the chosen shires are a subset of those that he considered.  Extensions of our

methodology to allow for hierarchical priors and spatial autocorrelation are currently

being considered by Newton (2001).  Rainfall data were obtained from the Western

Australian office of the Bureau of Meteorology.  The rainfall for a given shire was

taken as the measured rainfall at a site considered representative of that shire.  These

sites were Northampton P.O. (for Northampton shire), Chapman Research Station at

Nabawa (for Chapman Valley shire), Mullewa (for Mullewa shire), Geraldton airport

(for Greenough shire), and Dongara (for Irwin shire).  Data on area of wheat planted

and production of wheat by shire were obtained from Coelli (1992) for the early years

and from the Australian Bureau of Statistics for the later years.  Yield data were

obtained by dividing production by area.  A total of 47 observations were used for

estimation, covering the period 1950-1996.  The forecasting problem is to predict

1997 yield in each of the five shires.  Forecasts are made with, without, and with

partial information on 1997 rainfall data.  Realized yields in 1997 are compared with

forecasts.

To explain wheat yield in year t, denoted by ,tY  the following model was

specified for each of the shires

(2) (3) 2 2 2
1 2 3 4 5 6 7 8 9 10t t t t t t t t t t tY T T T G G D D F F e= β +β +β +β +β +β +β +β +β +β +

(2.1)

It was assumed that the error term te  was distributed as independent 2(0, );N σ  tests

for autocorrelation, heteroskedasticity and non-normality did not provide evidence to

the contrary.  The terms (2) (3), andt t tT T T  describe a cubic trend designed to capture

technological change, such as improved varieties and changes in farming practice.

The inclusion of a trend for this purpose is common practice; Coelli (1992) cites
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several examples.  A cubic trend was chosen on the basis of goodness-of-fit, after

experimenting with other trends including linear, quadratic and exponential.  Time

was indexed as 1,2,..., 47t =  and the trend terms were scaled as /1000,tT t=

(2) 2 /1000tT t=  and (3) 3 /1000.tT t=

The variables , andt t tG D F  are rainfall variables, referring to rainfall in the

germination, development and flowering periods, respectively.  They are expressed as

ratios, relative to average rainfall over the sample period.  As mentioned in the

introduction, germination period rainfall is taken as that rainfall during May and June,

the development period refers to July and August and flowering refers to September

and October.  Yield is specified as a quadratic function of rainfall in each of the three

periods to allow for a decreasing or an increasing marginal yield.

3. Notation and Predictive pdf’s

Before developing the required methodology, it is convenient to introduce

some notation.  Because each shire is treated separately, the same notation is used to

refer to any of the five shires.

{ | 1,2,..., 47}tY Y t= = = observed yields over the sample period 1950-1996.

*
48Y Y= =  the 1997 yield value that is being forecast.

{( , , ) | 1,2,..., 47}t t tX G D F t= = = observed rainfalls over the sample period.

*
48G G= =  rainfall during the 1997 germination period.

*
48D D= =  rainfall during the 1997 development period.

*
48F F= =  rainfall during the 1997 flowering period.

1 2 10( , ,..., ) 'β = β β β =  the vector of unknown regression coeficients.

Bayesian inference, whether it be for estimation or forecasting, is concerned with the

derivation and estimation of conditional probability density functions (pdf’s). In some

of the conditional pdf’s that we utilise, it is convenient to economise on notation.

Since the trend terms are always nonstochastic and known, they will not be written

explicitly as conditioning variables. Where required, their presence is implicit. Also,
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since knowledge of *G  (say) implies knowledge of 2*G , derivation of a pdf for *G ,

or conditioning on *G , will be regarded as sufficient; explicit recognition of 2*G  is

not necessary.

The Bayesian predictive pdf for a yield summarises what we know about

possible future values of that yield and their likelihood of being realized.  Because we

are interested in predicting yields with and without knowledge of the rainfall variables

* * *, andG D F , different predictive pdf’s are required for the predictions made at

different points in time.  Using (.)f  as generic notation for a pdf, the predictive pdf’s

of interest are:

** * *( | , , , , )f Y Y X G D F = the predictive pdf for yield after rainfall at flowering

has been observed,

** *( | , , , )f Y Y X G D = the predictive pdf for yield at the end of August (before

flowering rainfall has been observed, but after

development rainfall),

**( | , , )f Y Y X G = the predictive pdf for yield at the end of June (before

development rainfall has been observed, but after

germination rainfall),

*( | , )f Y Y X = the predictive pdf for yield before germination rainfall has been

observed.

Note that each of these pdf’s is conditional on the sample values of yield ( )Y  and

rainfall ( ),X  and on the observed rainfalls in the forecast year.  They are not

conditional on the unobserved rainfalls in the forecast year, nor the unknown

parameters ( , ).β σ   When forecasting, the consequence of uncertainty about

unobservables is captured by a predictive pdf that is not conditional on these

unobservables.

Each of the four predictive pdf’s is obtained for each of the five shires, with

and without imposing inequality constraints on the regression coefficients.  Thus, a

total of 4 5 2 40× × =  predictive pdf’s are computed.  To reduce presentation of the

results to manageable proportions, complete predictive pdf’s are graphed for only
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selected cases.  Means and standard deviations of the predictive pdf’s are tabulated for

all cases.  Proceeding with and without the inequality restrictions gives us the

opportunity to assess the effect of prior information that insists the response of yield

to rainfall (at mean rainfall) is positive.

4. Modelling Rainfall

For forecasting yield prior to realization of rainfall in one or more of the 1997

rainfall periods, it is necessary to have a model for predicting rainfall.  In what

follows we consider predicting *G ; similar methodology is used for predicting

rainfall in the development and flowering periods.  We treat * * *, andG D F  separately

because tests for independence did not reveal any significant correlations between the

rainfalls in different periods.  Nor was there any significant year-to-year

autocorrelations.

We assumed that rainfall in a given period follows a truncated normal

distribution, truncated from below by zero.  Chi-square goodness-of-fit tests on the

sample observations did not suggest this assumption was unrealistic.  Let 47T =  and

let 1 2 47( , ,..., ) '.G G G G=   Denote the location and scale parameters of the truncated

normal distribution as µ  and τ , respectively.  The joint pdf for G is

/ 2 2
2

1

1
( | , ) (2 ) exp ( )

2

T T
T T

t
t

f G G
−

− −

=

 µ    µ τ = π Φ τ − − µ   τ τ    
∑          (4.1)

where (.)Φ  is the standard normal cumulative distribution function.  The predictive

pdf for *G , that becomes important for forecasting yield when *G  is unknown, is

given by

* *

*

( | ) ( , , | )

( | , ) ( , | )

f G G f G G d d

f G f G d d

= µ τ µ τ

= µ τ µ τ µ τ

∫∫
∫∫

          (4.2)

In this expression ( , | )f Gµ τ  is the posterior pdf for ( , )µ τ .  The pdf *( | , )f G µ τ  is

the truncated normal distribution; it is not necessary for this latter pdf to be

conditioned on G because rainfall is independent from year to year.
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Generally (and certainly in our case), the integrals that define *( | )f G G  are

intractable.  However, we can proceed via simulation.  What turns out to be important

for forecasting yield is that we are able to draw observations on *G  from the

predictive pdf *( | )f G G .  We can do so by first drawing values ( , )µ τ  from their

posterior pdf ( , | )f Gµ τ ; then for each pair ( , )µ τ , a value of *G  is drawn from

*( | , )f G µ τ .  Simple acceptance-rejection sampling is satisfactory for drawing from

the truncated normal distribution *( | , )f G µ τ .  That is, draws are made from a normal

distribution that is not truncated and, if a negative value for *G  is obtained, it is

discarded and a replacement draw is made.  To obtain the posterior pdf for ( , )µ τ , we

need to first specify a prior pdf and to then apply Bayes’ theorem.  As a prior, we use

the conventional noninformative prior 1( , )f −µ τ ∝ τ .  Application of Bayes’ theorem

yields the posterior pdf

( 1) 2
2

1

( , | ) ( | , ) ( , )

1
exp ( )

2

T T
T

t
t

f G f G f

G
−

− +

=

µ τ ∝ µ τ µ τ

  µ    ∝ Φ τ − − µ   τ τ     
∑

          (4.3)

Because this pdf is not of a recognisable tractable form, we use a Metropolis-Hastings

algorithm to draw observations from it.  Details are in an appendix.  A total of 50,000

draws were made, with 5,000 being discarded as a burn-in.  For each of the retained

45,000 draws of ( , )µ τ , a draw of *G  was made.  How these draws are used to

forecast yield is discussed in Section 6.

The posterior means and standard deviations for ( , )µ τ  as well as the means

and standard deviations of the predictive pdfs for *G , * *andD F , for each of the

five shires, are given in Table 1.  These values are estimates obtained from the 45,000

draws.  With the exception of flowering rainfall for Mullewa, the posterior standard

deviations for andµ τ  are all relatively small, indicating that we are accurately

estimating these parameters.  The truncation of the distribution at zero does have an

effect, but not a severe one.  The magnitude of the truncation can be assessed by

comparing the posterior mean of τ  relative to that of µ , and by examining the

amount by which the predictive mean for rainfall exceeds the posterior mean for µ .
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The variation in rainfall is similar for all shires; flowering rainfall is more variable

than that during germination and development.

5. Estimating Regression Parameters

5.1  Without prior inequality restrictions

Two sets of posterior pdf’s for the regression parameters ( , )β σ  were obtained,

one using a noninformative prior pdf and one using a prior pdf that includes inequality

restrictions.  The noninformative prior pdf that we employ is the conventional one

1( , ) .f −β τ ∝ σ   It is well known (see, for example Judge et al 1988, p.318) that the

marginal posterior pdf for β , obtained after applying Bayes’ theorem and then

integrating out σ  is

( ) / 2

2

'
( | , ) 1 ( ) ' ( )

K v
Z Z

f Y X b b
vs

− + β ∝ + β − β −  
          (5.1)

In this expression, Z is the (47 10)×  matrix that contains the sample observations on

the constant, the time trend, the rainfall variables and their squares.  We are using X to

denote the set of rainfalls in the sample period and Z to denote the complete regressor

matrix.  The terms b and 2s  refer to the least squares estimator 1( ' ) 'b Z Z Z Y−=  and

the error variance estimator 2 ( ) '( ) / ,s Y Zb Y Zb v= − −  where v T K= − , and 10K =

is the dimension of .β   The pdf ( | , )f Y Xβ  is a multivariate t- distribution with mean

b and covariance matrix 2 1( /( 2)) ( ' ) .v v s Z Z −−   It is the elements in b and the square

roots of the diagonal elements of 2 1( /( 2)) ( ' )v v s Z Z −−  that provide the posterior

means and standard deviations reported in Table 2.

The marginal posterior pdf for σ , obtained by applying Bayes’ theorem and

then integrating out β  is

2

1 2

1
( | , ) exp

2v

vs
f Y X +

  σ ∝ − 
σ σ  

          (5.2)

This pdf is an “inverted gamma” distribution (see Zellner 1971, p.371); its posterior

mean and standard deviation are ( )( )1/ 2
( | , ) [( 1) / 2]/ ( / 2) / 2E Y X v v v sσ = Γ − Γ  and
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( ) ( )22 1/ 2[ /( 2) ( | , ) ]v v s E Y X− − σ , respectively.  These values are also reported in

Table 2.

From Table 2 we observe that:

1. The trends for all shires have similar shapes although there is some variation

in the coefficients of the trend terms across shires.  An example of the shape of

the trend is given in Figure 2 for Greenough shire.

2. Using the posterior means as estimates, the yield response to rainfall is

substantially different for the five shires, despite the fact that all shires have

comparable average rainfalls with the exception of Mullewa whose rainfall is

lower.

3. With the exception of the flowering period in Greenough and the development

period in Irwin, the posterior means exhibit a decreasing marginal response of

yield to rainfall for all rainfall periods in all shires.  In Greenough’s flowering

period there is an increasing marginal response.  In Irwin’s development

period we have the counter-intuitive outcome of a negative response of yield

to rainfall except at very high rainfalls.  The posterior standard deviations of

the offending coefficients are relatively high, however, and so the existence of

more realistic outcomes is not precluded.

Further remarks will be made after introducing the inequality restrictions.

5.2  With prior inequality restrictions

To introduce the inequality restrictions on yield response to rainfall, we begin

by noting that the response of yield to germination rainfall, for example, is

5 62
Y

G
G

∂ = β + β
∂

By construction, the sample mean of G is one.  Thus, the inequality restriction that

yield response to rainfall must be positive at mean sample rainfall can be represented

as 5 62 0.β + β >   Using a similar argument for the other rainfall periods, we can

define a feasible parameter region as

{ }5 6 7 8 9 10( ) | 2 0, 2 0, 2 0R β = β β + β > β + β > β + β >           (5.3)
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Furthermore, let ( )RI β  be an indicator function that equals 1 when ( )Rβ∈ β  and 0

otherwise.  Then a prior pdf  for ( , )β σ  that restricts β  to the feasible region, but is

otherwise noninformative is given by

( )
( , | ) RI

f R
ββ σ ∝

σ
          (5.4)

Applying Bayes’ theorem and integrating σ  out of the joint posterior pdf, gives the

marginal posterior pdf for β

( ) / 2

2

'
( | , , ) 1 ( ) ' ( ) ( )

K v

R
Z Z

f Y X R b b I
vs

− + β ∝ + β− β − β  
          (5.5)

To distinguish this case from that without the inequality constraints, we have included

R as a conditioning “variable” in (5.4) and (5.5).  The pdf in (5.5) is a truncated

multivariate t-distribution.  Using it to find marginal posterior pdf’s for each of the

single parameters in β , and their posterior means and standard deviations, is not

straightforward.  Also, because it involves multiple inequality restrictions, sampling

from it using a simple acceptance-rejection algorithm is not efficient.  We use a

Metropolis-Hastings algorithm instead.  See the appendix.  After discarding 5,000

draws for a burn-in, 45,000 draws are retained for analysis.  The posterior means and

standard deviations reported in Table 3 are estimates from these 45,000 draws.

The marginal posterior pdf for σ  can no longer be written in the inverted-

gamma form that was given in equation (5.2).  To appreciate why, note that

( , | , , ) ( | , , , ) ( | , , )f Y X R f Y X R f Y X Rβ σ = β σ σ          (5.6)

It is possible to show that the conditional posterior pdf ( | , , , )f Y X Rβ σ is a truncated

normal distribution.  Because it is truncated, its normalising constant includes an

unpleasant multivariate normal integral.  This integral is a function of σ .  If the joint

posterior pdf ( , | , , )f Y X Rβ σ  is separated into its conditional and marginal

components as in equation (5.6), then the truncation integral needs to be included in

the denominator of ( | , , , ).f Y X Rβ σ   Correspondingly, it appears in the numerator of

( | , , )f Y X Rσ , implying that this pdf is no longer an inverted gamma.  We consider

instead the conditional posterior pdf ( | , , , )f Y X Rσ β .  It can be written as
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1 2

1 ( ) '( )
( | , , , ) exp

2T

Y Z Y Z
f Y X R +

− β − β σ β ∝ − σ σ 
          (5.7)

Like equation (5.2), this pdf is an inverted-gamma pdf.  For each value of β  drawn

from the truncated t pdf in equation (5.5), we can draw a value of σ  from (5.7).

Proceeding in this way is equivalent to drawing σ  from its marginal pdf.  The

posterior means and standard deviations reported in Table 3 are estimated from draws

obtained in this way.

Before discussing the results in Table 3, it is instructive to re-examine Table 2

in light of the inequality restrictions.  In five out of the fifteen rainfall period/shire

combinations, the posterior means violate the restrictions.  However, the violations

are not so severe that they cast doubt on the validity of the inequalities.  Given the

noninformative prior, we can use the t-distribution in (5.1) to compute the probability

that an inequality restriction holds.  These probabilities are presented in Table 4.  The

five cases where the probability is less than 0.5 correspond to the cases where the

posterior means violate the restrictions.  If we are prepared to believe the inequality

restrictions must hold, then the scope for improving estimation is considerable.  The

restrictions will have an impact not only when those posterior means from the

noninformative prior violate the restrictions; the results will change as long as the

probabilities in Table 4 are less than unity.  Nevertheless, the largest effects of the

restrictions do occur in the periods with posterior-mean violations.  In Table 3 the

posterior means from the inequality-restricted prior differ most from those in Table 2

for the germination and development periods in Northampton and Irwin, and the

germination period in Greenough.  The development period in Irwin now exhibits

positive and decreasing marginal response to rainfall at the mean-rainfall point.

Overall, the introduction of the inequality restrictions has tended to lower the

posterior standard deviations, but this change is not universal.  The small changes in

the posterior means for σ  are one indication of a lack of conflict between the prior

information and the information from the data.

6. Forecasting

To develop the forecasting methodology, it is useful to introduce notation to

distinguish between 1997 rainfalls that have been observed at the time the forecast is

being made, and those that have not.  We will use x for observed rainfalls and *x  for
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unobserved rainfalls.  The elements in and dimensions of these vectors vary

depending on the time the forecast is made.  Thus, a single representation of the four

predictive pdf’s listed in Section 3 is *( | , , )f Y Y X x .  A theoretical representation of

how this pdf is obtained is

** * *( | , , ) ( , , , , , | , , )f Y Y X x f Y x Y X x d d dx d d= β σ µ τ β σ µ τ∫ ∫ ∫ ∫ ∫         (6.1)

The definitions of andµ τ  are broader in this equation.  They need to be viewed as

vectors with dimension equal to the number of unobserved rainfall components.  The

joint pdf on the right hand side of equation (6.1) involves all unknown quantities

(future yield, regression parameters, future rainfalls, the parameters of the rainfall

distribution), and conditions on known quantities (yields and rainfalls during the

sample period, observed 1997 rainfall).  The marginal pdf on the left hand side of the

equation is obtained by integrating out of the joint pdf the unknown quantities that are

not of direct interest.  By integrating out these unknowns, rather than conditioning on

them, or estimates of them, we are obtaining a marginal predictive pdf for yield that

reflects uncertainty in all unknown quantities.  It is not possible to evaluate every

integral in (6.1) analytically.  However, a mix of analytical integration and estimation

of integrals is possible.  The draws of *x , obtained in Section 4, and the draws of

( , )β σ  obtained in Section 5 are useful for estimation.

6.1  With known rainfalls and no inequality restrictions

Not surprisingly, when 1997 rainfall in every period has been observed,

equation (6.1) simplifies considerably.  It becomes

** * * * ** *( | , , , , ) ( , , | , , , , )f Y Y X G D F f Y Y X G D F d d= β σ β σ∫ ∫           (6.2)

This predictive pdf makes provision for uncertainty in ( , )β σ ; no provision for rainfall

uncertainty is necessary.  The next step depends on whether or not the inequality

restrictions have been imposed.  Without inequality restrictions analytical integration

is possible yielding (see, for example, Zellner 1971, p.72)

( 1) / 2
* *

* * **
2 1

( ) '( )
( | , , , , ) 1

(1 ( ' ) ')

v
Y zb Y zb

f Y Y X G D F
vs z Z Z z

− +

−
 − −∝ + + 

          (6.3)
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where is a (1 10)z ×  row vector containing the constant, the trend terms for 1997, and

the observed rainfalls and their squares.  This pdf is a t-distribution with v degrees of

freedom and mean and variance given by

* * **( | , , , , )E Y Y X G D F zb=           (6.4)

2 1* * **var( | , , , , ) (1 ( ' ) ')
2

v
Y Y X G D F s z Z Z z

v
− = + − 

          (6.5)

6.2  With known rainfalls and inequality restrictions

After introducing the inequality constraints, and conditioning on R to make

introduction of the inequality region explicit, we obtain * * **( | , , , , , )f Y Y X G D F R  by

estimating the integral in (6.2).  The mean and variance of the predictive pdf are also

estimated.  To describe this estimation procedure, we first note that

* ** * * ** *( , , | , , , , , ) ( | , , , , ) ( , | , , )f Y Y X G D F R f Y G D F f Y X Rβ σ = β σ β σ

In this and later equations, where we write a joint pdf as the product of conditional

and marginal pdf’s, we omit conditioning variables that are redundant.  Now, the

conditional pdf * * **( | , , , , )f Y G D Fβ σ  is a normal distribution with mean

* * **( | , , , , )E Y G D F zβ σ = β          (6.6)

and variance

2* * **var( | , , , , )Y G D Fβ σ = σ          (6.7)

Furthermore, in Section 5 we obtained draws ( ) ( )( , ),i iβ σ  1,2,...,i M=  (with

45,000M = ) from the posterior pdf ( , | , , )f Y X Rβ σ .  Because a marginal pdf can be

estimated as an average of conditional pdf’s, it follows that an estimate of the

predictive pdf is given by

( )

( ) ( )* ** * * ** *

1

2( )*
( ) 2( )

1

1ˆ ( | , , , , , ) ( | , , , , )

1 1 1
exp

22

M
i i

i

M
i

i i
i

f Y Y X G D F R f Y G D F
M

Y z

=

=

= β σ

 = − − β σ σπ  

∑

∑
          (6.8)

A graph of this pdf can be created by evaluating (6.8) over a suitable grid of values

for *Y .
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An estimate of its mean is given by

( )* * **

1

1ˆ ( | , , , , , )
M

i

i

E Y Y X G D F R z z
M =

= β = β∑          (6.9)

Noting that an unconditional variance is equal to the average of the conditional

variances plus the variance of the conditional means, an estimate of the variance is

given by

2( ) ( ) 2* * **

1 1

1 1
ˆvar( | , , , , , ) ( )

1

M M
i i

i i

Y Y X G D F R z z
M M= =

= σ + β − β
−∑ ∑         (6.10)

Other summary quantities can be obtained.  For example, the probability that *Y  lies

in a given interval can be obtained by averaging the conditional probabilities that *Y

lies in that interval.  To obtain a predictive interval with, say, 95% probability content,

one can draw values *Y  from the normal distribution ( ) ( )* * **( | , , , , )i if Y G D Fβ σ , for

1,2,..., ;i M=  the 0.025 and 0.975 empirical quantiles from these draws give an

estimate of the required interval.

6.3  With unknown rainfalls and no inequality restrictions

Turning now to the case where rainfall in one or more of the 1997 rainfall

periods is unobserved, we write the joint pdf in equation (6.1) as

* ** * *( , , , , , | , , ) ( , , | , , , ) ( | , ) ( , | )f Y x Y X x f Y x x Y X f x f Xβ σ µ τ = β σ µ τ µ τ

(6.11)

Given a noninformative prior without inequality constraints, it is possible to

analytically integrate ( , )β σ  out of this expression so that the predictive pdf for yield

can be written as

** * * *( | , , ) ( | , , , ) ( | , ) ( , | )f Y Y X x f Y x x Y X f x f X dx d d= µ τ µ τ µ τ∫ ∫ ∫
(6.12)

where the pdf * *( | , , , )f Y x x Y X  is identical to the t-distribution given in equation

(6.3) for the observed rainfall case.  Thus, to estimate *( | , , )f Y Y X x , we can proceed

as follows:
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1. Draw ( ) ( )( , ), 1,2,..., from ( , | ).i i i M f Xµ τ = µ τ

2. Draw ( ) ( )( )* *, 1,2,..., from ( | , ).i iix i M f x= µ τ

3. For a grid of points for *Y , average the t-distribution ( )* *( | , , , )if Y x x Y X

over the draws ( )* ix .

The methodology and results for steps 1 and 2 were given in Section 4.  Step 3 can be

written as

     

( 1) / 2( ) ( )* *
*

2 ( ) 1 ( )( ) 1 ( )
1

1 ( ) '( )ˆ ( | , , ) 1
(1 ( ' ) ')1 ( ' ) '

vM i i

i ii i
i

Y z b Y z b
f Y Y X x k

vs z Z Z zz Z Z z

− +

−−
=

   − − = +   ++   
∑

where

2 1/ 2

[( 1) / 2]

( / 2) ( )

v
k

v vs

Γ +=
Γ π

       (6.13)

and ( ) is a (1 10)iz ×  vector containing the constant and trend terms, the observed

1997 rainfalls and their squares, and the draws of the unobserved rainfalls ( )* ix  and

their squares.  Estimates of the posterior mean and variance are given by

( )*

1

1ˆ ( | , , )
M

i

i

E Y Y X x z b zb
M =

= =∑         (6.14)

( )
2

( ) 1 ( ) ( ) 2*

1 1

1 1
ˆvar( | , , ) 1 ( ' ) ' ( )

2 1

M M
i i i

i i

vs
Y Y X x z Z Z z z b zb

v M M
−

= =

 
= + + − − − 

∑ ∑

(6.15)

Other summary quantities such as the probability that *Y  lies in a given interval, or a

predictive interval with probability content of 0.95, can be obtained along the lines of

the discussion below equations (6.8) to (6.10).

6.4  With unknown rainfalls and inequality restrictions

The final case that we consider is where one or more rainfalls are unobserved

and inequality restrictions are imposed on the regression coefficients.  We proceed as

we did for the earlier inequality-restricted case (where rainfall was observed), except
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that we now average over the draws for both *( , ) and xβ σ .  The integral being

estimated (see equation (6.1)) can be rewritten as

** *

* *

( | , , , ) ( | , , , ) ( , | , , )

( | , ) ( , | )

f Y Y X x R f Y x x f Y X R

f x f X d d dx d d

= β σ β σ

µ τ µ τ β σ µ τ
∫ ∫ ∫ ∫ ∫         (6.16)

Again, redundant conditioning variables have been omitted.  Equation (6.16) clarifies

the sequential way in which draws are made from the various pdf’s and the integral is

estimated.  Starting from the far right of the equation, ( , )µ τ  are drawn from

( , | )f xµ τ ; given these draws, *x  is drawn from *( | , )f x µ τ . Draws ( , )β σ  are made

from ( , | , , )f Y X Rβ σ .  Then, the normal pdf * *( | , , , , , )f Y x x Y Xβ σ  is averaged over

the draws ( ) ( ) ( )*( , , )i i ixβ σ , 1,2,..., .i M=   Specifically,

( )2( ) ( )* *
( ) 2( )

1

1 1 1ˆ ( | , , , ) exp
22

M
i i

i i
i

f Y Y X x R Y z
=

 = − − β σ σπ  ∑         (6.17)

The estimated mean of the predictive pdf is

( ) ( )*

1

1ˆ ( | , , , )
M

i i

i

E Y Y X x R z z
M =

= β = β∑         (6.18)

The estimated variance is

2( ) ( ) ( ) 2*

1 1

1 1
ˆvar( | , , , ) ( )

1

M M
i i i

i i

Y Y X x R z z
M M= =

= σ + β − β
−∑ ∑         (6.19)

6.5  Results

The means and standard deviations of the predictive pdf’s for 1997 yield for

each shire and for each forecast time are given in Table 5.  Realised yields and

rainfalls are in the same table. Yields are in units of tonnes per hectare.  Rainfall is

measured relative to the sample average.  We can make the following observations:

1. Predicted yield is highest for Irwin, followed by Northampton, Greenough,

Chapman Valley and Mullewa.  The average May-October rainfalls for these

shires, in millimetres, are 385, 400, 395, 377 and 251, respectively.  Thus,

with the exception of Irwin, a ranking of shires on the basis of predicted yield

corresponds with a ranking according to average growing-season rainfall.
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2. Realised yields in 1997 are all greater than their corresponding predictive

means with the exception of Irwin where the realisation is less than predicted.

All realisations are within the effective ranges of their corresponding

predictive pdf’s.  This fact can be confirmed for Mullewa and Irwin by placing

their yields of 1.799 and 1.934, respectively, on Figures 3 and 4.  Further

discussion about these figures appears below.

3. In the remaining points we make observations on how the predictive means

and standard deviations change as rainfall uncertainty is reduced, and relate

some of these changes to whether realised rainfalls are above or below

average.  The effect of the inequality constraints is also mentioned.  We

conclude that the predictive pdf is an effective device for capturing regressor

uncertainty introduced via the timing of the forecast, and prior information on

regression coefficients. However, it is worth making the general observation

that, for this data set, the timing of the forecast and the presence or otherwise

of the inequality restrictions do not have relatively large effects on the

predictive pdf’s.  Overall, rainfall is reliable; variations attributable to rainfall

uncertainty are much less than variations attributable to the random error in

the regression model.  Similar remarks can be made about the inequality

restrictions.  They do correct some perverse directions of change, but their

impacts are not of substantial magnitude relative to uncertainty in the error

term.

4. To examine the effect of timing of the forecast on the mean of the predictive

pdf, consider, for example, the inequality prior column for Mullewa.  Before

any rainfalls have been observed, the predictive mean is 1.629.  After

observing a below average germination rainfall of 0.578, the predictive mean

falls to 1.530.  Following an above average development-period rainfall of

1.329, it increases to 1.584.  Then, an above average flowering rainfall of

1.038 increases it further to 1.650.

5. As expected, in all cases, extra rainfall uncertainty increases the standard

deviation of the predictive pdf.  This is illustrated in Figure 3 where the

inequality-restricted pdf’s are graphed for Mullewa.  Note that the pdf’s

become less flat as more rainfalls are realised.  Also, in line with point 4, the

mean first shifts to the left and then back to the right.
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6. The general effect of the inequality restrictions has been to reduce the

predictive standard deviations in Northampton, Chapman Valley and

Mullewa, and to increase the predictive standard deviations in Greenough and

Irwin.  The larger standard deviations in Greenough and Irwin can be

attributed to the larger posterior means for σ  that occur in the inequality-

restricted case.  Given that error uncertainty is large relative to coefficient

uncertainty, it is relatively easy for an increase in σ  to outweigh any

improvements in the precision of estimation of the coefficients.

7. The inequality restrictions can make the relationships between predictive pdf’s

more realistic.  Consider the noninformative prior results for Irwin shire.

After observing a below average germination rainfall of 0.665, the predictive

mean increases from 2.262 to 2.304.  This unexpected outcome is corrected in

the inequality-restricted case where the predictive mean decreases from 2.225

to 2.218.  A comparison of the two Irwin pdf’s, with and without inequality

restrictions, and after observing germination rainfall, appears in Figure 4.

7. Concluding Remarks

Because rainfall at different times during the growing season is a major

determinant of wheat yield, and yield forecasts need to be made before one or more

rainfall periods have been realised, the forecasting problem can be viewed as a

regression forecasting problem with uncertain regressors.  By conditioning on

observables, and averaging over unobservables, Bayesian inference provides a

consistent and unified approach to this forecasting problem.  Changes in the level of

uncertainty that occur naturally through the timing of the forecast can be explicitly

introduced into the predictive probability density function.  This methodology has

been developed and illustrated using shire level data for 5 shires in Western Australia.

Appendix: Metropolis-Hastings Algorithm (Random Walk Version)

Let θ  be a vector of unknown parameters.

(1) Set θ  equal to some starting value (0)θ  and compute the corresponding posterior

pdf value ( )(0) | dataf θ , apart from the unknown normalizing constant. Any

initial value, 0θ , in the feasible set can be used but it is usual to set (0)θ  equal to
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the maximum likelihood estimate in order to make the algorithm more efficient in

terms of the number of draws necessary to produce a reasonable characterisation

of the posterior pdf.

(2) Commencing with 0n = , compute a potential (candidate) value

* ( )n vθ = θ +

for draw { 0,1,...}n n =  where ~ (0, )v N kV . V  is chosen as the maximum

likelihood covariance matrix, but other covariance matrices could be used. The

parameter k  is chosen by trial and error to give an acceptance rate (defined

below) of about 50%.

(3) Check whether *θ  lies in the feasible region. If it does not, ( )nθ  becomes a draw

( )( 1) ( )n n+θ = θ ; increment n and return to step 2. Otherwise, proceed to step 4.

(4) Compute ( )* | dataf θ  and

* ( )( | data) ( | data)nr f f= θ θ

the ratio for the candidate draw to that for the previous draw. If 1r > , the new

draw is closer to the mode of the distribution and, conversely, 1r <  implies the

new draw is further in the tail of the posterior pdf.

(5) If 1r > , *θ  becomes a draw ( )( 1) *n+θ = θ , increment n  and return to step 2. If

1r < , proceed to step 6.

(6) Generate a uniform random number, say ε , from (0,1) . If 1rε ≤ < , *θ  becomes a

draw; set ( 1) *n+θ = θ  and return to step 2. If r < ε , ( )nθ  becomes a draw

( )( 1) ( )n n+θ = θ ; return to step 2. Thus, if 1r ≥ , the new value is accepted as a

draw. When 1r < , the algorithm does not necessarily move towards the tail of the

distribution. Thus, more draws occur in regions of high probability, and fewer

draws occur in regions of low probability.

Repeat the algorithm, say 50,000 times. The acceptance rate is the proportion

of times *θ  is accepted as a draw. Markov Chain Monte Carlo theory guarantees that,

after a large number of draws, say 5,000, the remaining draws will be from the
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posterior pdf ( )| dataf θ . These draws are not independent, but, from the law of large

numbers, can nevertheless be used to consistently estimate to required pdfs and their

moments. For further details, see for example, Geweke (1999).
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Table 1: Predictive and Posterior Means and (Standard Deviations) for Rainfall and its
              Parameters

Shire

Northampton Chapman
Valley

Mullewa Greenough Irwin

Germination

*G 1.000 0.998 1.000 1.000 1.000

(0.385) (0.365) (0.394) (0.397) (0.370)

µ 0.993 0.995 0.990 0.990 0.995
(0.059) (0.055) (0.062) (0.062) (0.056)

τ 0.387 0.366 0.399 0.400 0.373
(0.046) (0.043) (0.050) (0.050) (0.043)

Development

*D 1.002 1.005 0.997 1.003 1.001
(0.377) (0.383) (0.425) (0.328) (0.354)

µ 0.993 0.992 0.983 0.997 0.997
(0.057) (0.059) (0.068) (0.048) (0.053)

τ 0.378 0.387 0.438 0.323 0.354
(0.044) (0.047) (0.056) (0.036) (0.042)

Flowering

*F 1.002 1.000 0.997 1.002 0.999

(0.461) (0.429) (0.669) (0.412) (0.420)

µ 0.966 0.980 0.490 0.985 0.983
(0.082) (0.072) (0.567) (0.067) (0.068)

τ 0.487 0.445 0.930 0.420 0.431
(0.069) (0.058) (0.271) (0.054) (0.055)
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Table 2: Posterior Means and (Standard Deviations) for Regression Parameters
              with a Noninformative Prior

Variable Northampton Chapman
Valley

Mullewa Greenough Irwin

constant 0.144 0.089 -0.313 0.404 0.968
(0.315) (0.319) (0.291) (0.274) (0.454)

T 36.078 22.274 22.709 32.420 37.907
(22.068) (22.172) (22.404) (18.968) (24.855)

(2)T -1.951 -1.372 -1.538 -1.557 -2.585
(1.066) (1.058) (1.092) (0.916) (1.186)

(3)T 0.038 0.028 0.030 0.029 0.050
(0.015) (0.014) (0.015) (0.012) (0.016)

*G 0.660 0.889 1.007 0.299 0.244

(0.290) (0.339) (0.464) (0.259) (0.412)

2*G -0.341 -0.435 -0.397 -0.201 -0.178

(0.113) (0.147) (0.205) (0.103) (0.171)

*D 0.135 0.217 0.309 0.391 -0.329
(0.330) (0.347) (0.280) (0.350) (0.543)

2*D -0.075 -0.072 -0.091 -0.182 0.088
(0.134) (0.147) (0.114) (0.153) (0.225)

*F 0.496 0.201 0.511 -0.004 0.137
(0.307) (0.338) (0.160) (0.309) (0.349)

2*F -0.187 -0.015 -0.131 0.075 -0.030
(0.148) (0.159) (0.052) (0.141) (0.169)

σ 0.181 0.168 0.185 0.159 0.205
(0.022) (0.020) (0.022) (0.019) (0.025)
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Table 3: Posterior Means and (Standard Deviations) for Regression Parameters
              with an Inequality-restricted Prior

Variable Northampton Chapman
Valley

Mullewa Greenough Irwin

constant -0.152 -0.024 -0.326 0.141 0.085
(0.272) (0.305) (0.290) (0.245) (0.379)

T 40.857 21.028 22.385 29.857 40.439
(21.116) (22.093) (22.592) (18.990) (25.855)

(2)T -2.114 -1.273 -1.521 -1.356 -2.535
(1.026) (1.050) (1.089) (0.905) (1.215)

(3)T 0.039 0.026 0.030 0.026 0.048
(0.014) (0.014) (0.015) (0.012) (0.017)

*G 0.897 1.014 1.011 0.647 0.768

(0.221) (0.298) (0.463) (0.201) (0.364)

2*G -0.417 -0.472 -0.399 -0.304 -0.358

(0.099) (0.140) (0.205) (0.094) (0.173)

*D 0.308 0.249 0.343 0.452 0.440
(0.273) (0.295) (0.264) (0.310) (0.391)

2*D -0.120 -0.077 -0.101 -0.187 -0.192
(0.124) (0.133) (0.111) (0.145) (0.187)

*F 0.481 0.208 0.495 -0.075 0.241
(0.301) (0.325) (0.157) (0.302) (0.377)

2*F -0.187 -0.021 -0.126 0.106 -0.067
(0.147) (0.154) (0.051) (0.140) (0.184)

σ 0.182 0.167 0.185 0.163 0.218
(0.022) (0.020) (0.022) (0.020) (0.026)
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Table 4: Posterior Probabilities for the Inequality Regions Given a Noninformative
              Prior.

Shire

Northampton Chapman
Valley

Mullewa Greenough Irwin

Germination 0.408 0.587 0.991 0.101 0.157

Development 0.439 0.795 0.924 0.619 0.118

Flowering 0.964 0.993 1.000 0.980 0.829
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Table 5: Means and (Standard Deviations) from Predictive pdf’s for Yield and Yield and Rainfall Realisations

Northampton Chapman Valley Mullewa Greenough Irwin

Unknown Noninf Inequality Noninf Inequality Noninf Inequality Noninf Inequality Noninf Inequality
rainfalls prior prior prior prior prior prior prior prior prior prior

none 2.129 2.161 1.793 1.759 1.649 1.650 1.999 1.914 2.321 2.279
(0.235) (0.225) (0.212) (0.206) (0.236) (0.233) (0.198) (0.198) (0.246) (0.260)

*F 2.084 2.116 1.759 1.726 1.580 1.584 1.977 1.898 2.295 2.241
(0.249) (0.240) (0.229) (0.222) (0.282) (0.279) (0.211) (0.212) (0.254) (0.272)

**,D F 2.072 2.114 1.738 1.700 1.531 1.530 1.966 1.894 2.304 2.218

(0.252) (0.244) (0.233) (0.225) (0.289) (0.287) (0.215) (0.217) (0.269) (0.276)

* **, ,G D F 2.120 2.125 1.775 1.761 1.630 1.629 1.935 1.947 2.262 2.225

(0.257) (0.258) (0.246) (0.243) (0.311) (0.308) (0.225) (0.227) (0.281) (0.287)

Realised yields

2.232 1.843 1.799 2.235 1.934

Realised rainfalls (relative to sample average)

*F 1.051 1.181 1.038 1.213 1.296

*D 0.838 1.181 1.329 0.848 0.985

*G 1.504 0.554 0.578 0.484 0.665
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F igure 4:  U nrestr icted and  Inequality  R estr icted 
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