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Agri-environmental schemes are found in most European countries and now account for 

approximately 4 per cent part of EU expenditure on UK agriculture.  A significant part of 

that expenditure is the cost of monitoring farmer compliance with input restrictions.  This 

paper analyses the design of monitoring schedules for long duration agri-environmental 

schemes where the aim is to reinstate preferred ecosystems using a Partially Observed 

Markov Decision Process (POMDP).  The approach has much in common with the Arrow-

Fisher-Henry model of irreversible land development where there is uncertainty over 

environmental value. Uncertainty in the Partially Observed Markov Decision Process 

(POMDP) model analysed here, relates to the current vegetation state, stochastic 

transitions between vegetation states and monitoring accuracy.  It applies to both 

irreversible changes and changes subject to varying degrees of reversibility. Results from 

this model present a scheme for monitoring which depends upon the regulators prior 

probability of vegetation states.  Over time, monitoring resolves the uncertainty the 

regulator has about the vegetation state.  For some prior probabilities monitoring is 

repeated for a number of periods for others no monitoring or one period of monitoring is 

optimal 
 

 

Keywords:  biodiversity, conservation, irreversibility, MDP, POMDP 

 

JEL Classification:  Q0, Q2, C6 

mailto:ben.white@ncl.ac.uk


2 

 

1. Introduction 

The last twenty years have seen a rapid expansion of the agricultural area in the UK 

entered into agri-environmental schemes.  These include national schemes such as the 

Sites of Special Scientific Interest and schemes partly funded by the EU under Regulations 

2078/92 and 746/96 (European Union, 1992, 1996). Over the period 1993 to 1997 

compensation payments totalled £378 million  for the 410,000 ha entered into the 

Environmentally Sensitive Areas (ESA) Scheme and the 92,600ha in the Countryside 

Stewardship Scheme (Falconer and Whitby, 1999, p64).  Both schemes compensate 

farmers for restricting input use and reducing the extent of certain land uses.  Public 

accounts for the ESA and Countryside Stewardship schemes include monitoring costs 

under the general administrative costs schemes.  A recent study (op cit, p94) estimates 

administrative cost in the UK at 48 per cent of compensation payments, an average of £45 

million per annum for  1993 to 1996.  A significant part of this cost is due to monitoring 

(National Audit Office, 1997). 

 

The principle aim of these schemes is to increase biodiversity in semi-natural vegetation: 

as such agri-environmental schemes procure public capital goods in the form of increased 

biodiversity.  However, measuring progress towards a ‘target’ vegetation is costly and 

prone to errors (Hooper, 1992).  Monitoring plays two roles: first it ensures that the 

vegetation is following the expected transition: second it acts as an incentive for farmers to 

comply with input restrictions as they run the risk of losing income if they are ejected 

from the scheme. 
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The next section describes the model in a number of stages.  The first sub-section reviews 

the Markov processes of vegetation transitions and how they might be used to measure the 

degree of reversibility associated with a vegetation change.  Second the Markov Decision 

Process (MDP) is described as a component of the partially observed Markov decision 

process (POMDP).  Section 3 applies the POMDP to agri-environmental schemes.  

Example 1 is for a two period planning horizon and it establishes a range of different 

valuations for a scheme depending upon assumptions about the time when uncertainty 

about the vegetation state resolves.  Example 2 is a monitoring study for a farm in the 

Cambrian Mountains Environmentally Sensitive Area in Wales it uses an approximate 

infinite horizon solution to present the results.  Section 4 concludes. 

 

2. The Model 

The literature on irreversible environmental change under uncertainty commences with 

Arrow and Fisher (1974) and  Henry (1974) (also see Fisher 2000 for a recent review).  

The Arrow, Fisher and Henry (AFH) model identifies the option value generated by 

delaying an irreversible development so that uncertainty about the environmental value of 

land resolves.  The decision problem analysed here has similarities with the AFH model, 

but also introduces a difference in emphasis and a number of generalisations.  First the 

uncertainty in the model derives from the stochastic process which governs vegetation 

change not uncertainty over environmental value.  In most cases there is uncertainty over 

the value of enhanced plant biodiversity, but this is not the focus here.  Second, unlike the 

change in land use in the AFH model, changes in natural vegetation due to agriculture may 

vary from immediately reversible to completely irreversible depending upon the stochastic 

process which governs transitions between vegetation communities.  Third an implicit 

assumption of the AFH model is that uncertainty resolves without cost through time, in 
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fact the regulator is uncertain, without actively monitoring, as to which vegetation state 

the land is in.  Fourth, ecological monitoring tends to be inaccurate, in that the vegetation 

state can be misclassified (Hooper, 1992).  Fifth, the original AFH model was for two-

periods. Changes in the vegetation state can be very gradual, for instance reinstating 

heather moorland may take ten to twenty years to reinstate (Ball et al, 1978).  For this 

reason agri-environmental schemes are typically for five years often with provision for 

further extensions.   Over the planning horizon there are opportunities for the regulator to 

discontinue agreements, monitor, start or restart agreements.   

 

This paper shows how the regulation of an agri-environmental scheme can be represented 

by a Partially observed Markov Decision Process (POMDP).  The key assumption is that 

the transition between vegetation states is a Markov process.  The advantage of this 

assumption is that Markov transition matrices are widely used in applied ecology (Horn 

1976; Balzer, 2000) and can be estimated from field studies (Rushton et al, 1996) and 

algorithms are available to solve Multi-period POMDP problems (Smallwood and Sondik 

1973; Monahan 1982 and Cassandra, 1995). 

 

2.1 Markov Process for Vegetation Dynamics 

This Section gives a brief review of those aspects of Markov processes relevant to 

describing vegetation dynamics (see Ross (1999) for a general review and Balzar (2000) 

for a review of applications to ecology).  A Markov model of vegetation dynamics defines 

a finite number of vegetation states.  If st=i the process is in state i at time t and there is a 

fixed transition probability pij that it will be in state j at t+1.  The transition probabilities 

satisfy: 
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 pij 0  1
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j

ijp  i,j =0,1,...,I 

Where P is a matrix of transition probabilities.  Given the initial (1xI) vector of state 

probabilities 0 we can calculate the probability for m-steps ahead: 

 m = 0 (P)
m

. 

Vegetation states are recurrent, if a process is in state i and will return to i, transient if the 

process is in state i there is a positive probability of the process never returning to i or  

absorbing where pii=1.  Define m

ijf  as the probability of the first passage from state i to 

state j after m-steps.  This can be calculated recursively as: 

 km
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m

k

k
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m
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m

ij pfpf 
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If we define: 

 





1m

m

ijij ff  

then fij denotes the probability of ever making a transition into state j, given that the 

process starts in i.  Thus a state is recurrent if 1jjf  and transient otherwise.  In ecology 

the absorbing state represents a climax vegetation community where there is no further 

succession, while a transient vegetation state is a part of a succession towards the ‘climax’ 

community. 

 

Transition probability matrices also provide a measure of the degree of reversibility for a 

vegetation transition.  If the first transition time is infinite then a state change is 

irreversible, if it is finite then a state change is reversible.  Mathematically: 
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where ij denotes the expected time from state i to state j and is used here as a measure of 

reversibility. 

 

 

2.2 Partially Observed Markov Decision Process 

A POMDP model is a generalisation of a Markov decision process (MDP), originally 

developed by Bellman (1957) and Howard (1960).  A MDP consists of a set of states si, a 

set of actions ai and a reward structure defined for each state-action pair.  Actions  form 

policy vectors n where each element is a function returning the action to be performed in 

each state.  Thus n(si) gives the action to take in state si.  For example, actions may 

include continue an agri-environmental scheme or stop.  Net social benefits depend upon 

the vegetation state and the action:  the action continue generates a non-market benefit in 

terms of preserving a valued vegetation state and cost in terms of the social cost of farmer 

compensation and the net value of lost agricultural production; the action stop involves 

benefits in terms of increased agricultural production and reduced public expenditure and 

a non-market cost in terms of land switching to a less valued vegetation state.  Section 3.1 

describes the objective function in more detail. 

 

Selecting the optimal policy is a problem is stochastic dynamic programming Bellman’s 

equation is: 

 )]([)( 1

1

)()(

jn

j

s

ij

s

ijin sVwpsV nininn 
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)( in sV n gives the present-value of following a policy n over the stages remaining in the 

planning horizon, n.  The term 
)( in s

ijw


 gives the reward for following action )( in s  while in 

state si and moving to state sj where 
)( in s

ijp


 is the probability of moving to state j from 

state i given action )( in s .  Note that the transition probabilities depend upon the action 

taken.  The term  is a discount factor.  The optimal policy 

n is one where for any state 

)()( inin sVsV nn 




.   

 

The partially observed Markov decision process, POMDP, generalises a MDP to allow for 

uncertainty about the current state. For an agri-environmental scheme, this means the 

regulator bases decisions upon the expected vegetation state and engages in monitoring to 

reduce uncertainty.  POMDP extends the MDP model by including a set of observations  

and an observation  probability matrix R
a
, where a

jr   gives the probability that we observe 

  when in state sj at n when our last action was a. Thus the matrix R
a 

gives the accuracy of 

monitoring.  The immediate reward for taking an action in a particular state is a

ijw  this 

gives the reward for taking action a in state si, moving to state j and observing .  In this 

form of the POMDP model observations are made after actions are taken.  This allows 

time to complete monitoring. 

 

Before Sondik (1974) developed a solution algorithm, even small POMDP proved difficult 

to solve.  Sondik’s approach was to define a belief state which is a vector of state 

probabilities },, ,{ 10 I  where I is the number of states.  After each action and 

observation the belief state is updated by Bayes’ rule: 
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where T(.) is the posterior probability of observing state j given observation .  In a MDP 

model, a policy is a mapping from states to actions and since the number of states is finite, 

then the optimal policy can be determined by recursion.  The solution to a POMDP, 

problem maps belief states into actions, but instead of having a finite number of belief 

states each element in  can take any value over the range 10  i  i subject to 

1
i
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The value function is given by: 
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The optimal value function )(* nV  over belief states is made up of the expected immediate 

reward, the first term on the right hand side, and the expected reward for future periods, 

the second term.  The approach to solving this problem relies on the fact that there are a 

finite number of actions and each action generates a vector k of expected rewards across 

the I states.  The solution involves finding a set of vectors which are optimal for some 

belief state.  In fact )(* nV is piecewise linear and convex where the vectors k  represent 

the line segments or hyperplanes (Sondik and Smallwood, 1973).  Thus the value function 

can be represented by: 

 )(max)(* nV k

i

i

i
k

n    

where each vector )(nk

i  gives the rewards for a particular action in  state i.  Using the 

vector notation (1) becomes (Sondik and Smallwood, 1973): 
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that is ),,(  a  is an index of vectors that maximises ),|((*

1  aTVn .  The solution to 

POMDPs involves (Cassandra, 1995) generating vectors starting at n=1, and checking that 

each new vector is non-dominated, that is, represents an optimal solution for a subset of 

belief states. 

 

3.  POMDP Examples  

3.1  Objective Function 

This section applies the POMDP model to an agri-environmental scheme.  The immediate 

payoff to the regulator is given by: 

 )()1( aa

ij

a

ij

a

ij

a

ij

a

ij Rcbmgw     

where a

ijg   is the non-market benefits and a

ijm   market benefits, less the social cost of 

public funds as the transfer payment a

ijb  , weighted by the shadow price  and the social 

cost of monitoring )()1( aa

ij Rc  . 

 

Compensation is set to satisfy the individual rationality constraint of the farmer, in the 

empirical examples it is equal to the profit foregone.  This form of the objective function 

(1) represents a cost benefit analysis framework, where transfer payments represent a cost 

in terms of the deadweight loss due to taxation (Laffont and Tirole, 1993).  Monitoring 
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costs are a resource cost, but must be covered by taxation so these costs are weighted by 

)1(  . 

 

Monitoring cost is given by the function )( aa

ij Rc  .  The likelihood matrix aR  represents 

the accuracy of forecasting.  Monitoring effort can result in a matrix which lies between 

two extremes: an identity matrix implies monitoring is perfectly accurate; conversely a 

uniform matrix where all elements equal 1/I is uninformative.  The cost of monitoring is 

defined as a function of the observation probabilities, in general C(R).  Assume )( aa

ij Rc   

takes a maximum value when R is an identity matrix and 0)( aa

ij Rc   when  R is uniform 

distribution.  Further assume that the cost of monitoring only depends upon the diagonal 

elements of R.  Thus, in the absence of other information we assume that: 

 m

aaa

ij cRdiagRc )()(   

where diag(R
a
) gives the diagonal of matrix R

a
 and cm is a cost coefficients.  In a further 

simplification  R
a
 can be represented by a single scalar value where all the diagonal 

elements are identical I, irra

ii ...,1  and all off diagonal elements are give by (1-r)/(I-1).  

This is a strong assumption as it implies that the probability of misclassification is the 

same for all states.  In practice mistaken identification is more likely between similar 

vegetation states.  However, this assumption simplifies the sensitivity analysis presented 

in Section 3.4. 

 

3.2  Example 1 a Two-period Model 

A scheme has been designed to reinstate a traditional hay-meadow (HM) from agricultural 

grassland (AG) by compensating farmers for reducing cattle and sheep stocking rates.  The 
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scheme runs for two years.  The social net benefit of actions in the two vegetation states 

are given in Table 1. 

Table 1 about here 

The regulator can take one of three actions:  continue (a=1) the scheme without 

monitoring, stop (a=2) the agreement and third monitor compliance (a=3).  The effects of 

these policies is represented through changes in the transitional probabilities P
a
 and the 

observation probabilities R
a
.  Where the decision is to continue the transition probabilities 

are 
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2.08.0
1
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1
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1

12
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111

pp
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P  

HM is denoted by subscript 1 and AG by subscript 2. If the regulator decides to stop the 

land converts to AG with certainty, thus the effective transition matrix is  
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10
2P  

in other words the subsequent state is AG with certainty.  Monitor transition probabilities 

are the same as for continue thus P
3
=P

1
. 

 

The matrix of observation probabilities for the monitor action is: 

 


















85.015.0

15.085.0
3

22

3

21

3

12

3

113

rr

rr
R  

For instance, if the state is HM there is a 0.85 probability of observing heather but a 0.15 

probability of mistakenly observing AG.  Where the actions are continue or stop then R
a
  

is uniform.  These actions provide no further information on the vegetation state than is 

obtained from the transition probabilities. 
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The solutions to the model depend upon the information available to the regulator.  If we 

assume that the regulator knows the vegetation state at each stage, then the solutions is an 

MDP.  If the land starts in the hay meadow state HM then we have the following problem: 

 })max{}max{(][ 212111

1

11

1

2

a

a

a

a

qpqpqsV        (2) 

note that the regulator can chose the action which maximises the payoff in each state at 

state n=1.  In this example this is equivalent to a POMDP model where the initial belief 

state is that =1 (where  is defined here as the probability of the initial state being HM) 

and monitoring is perfect and at zero cost. 

 

If the regulator is myopic and takes no account of the additional information revealed over 

the first period, or no further information is avaialble over the first period then the best the 

decision maker can do is: 

 }{max][ 212111

1

11

2

2

aa

a
qpqpqsV         (3) 

this is equivalent to the case where monitoring is uninformative.  The difference between 

(2) and (3) 

 0][][ 2

2

22

1

2  sVsV  

from the convexity of the maximum function and Jensen’s Inequality.  This difference is 

the option value (Albers et al, 1996).  From Table 2, the option value for case (a) is 

£95=£2773-£2678 

Table 2 about here 

For POMDP case (b) the regulator can only obtain information on the vegetation state by 

monitoring.  The decision to continue when there is uncertainty about the initial state is 

given by: 
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In case (b) =1 thus (4) simplifies to (3) and the POMDP solution (b1) is equivalent to a 

myopic MDP solution (a2) , see Table 2.  For this belief state it is optimal to continue 

without monitoring. 

 

The expected value of monitoring is given by: 

)})(1(                
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12222121221122111121

12212121121121111111
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1

3
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  (5) 

where 

iq indicates that the regulator chooses the best action for the state observed.  In case 

b equation (5) simplifies to (2).  Notably the MDP solution with perfect information a2 is 

equivalent to the POMDP solution with perfect monitoring b2 after an adjustment for 

monitoring costs. 

 

Cases c shows the net social benefit per ha when there is an equal probability that the land 

is in either state.  Case d illustrates the point that the expected return to monitoring is 

reduced as the monitoring accuracy is reduced, d1 should be compared with c2.  In this 

belief state it is optimal to monitor, this will have the effect of reducing the uncertainty 

about the vegetation state.  If =1 it is optimal to continue, if =1 it is optimal to stop. 

 

There are two ways of describing POMDP solutions.  First, where there are three or less 

states the initial optimal action can be shown as a plot between the initial  belief state and 

the optimal intitial vector 
),,(  a

j .  Second, as a sequence of decisions in a policy graph.  

Figure 1 gives the expected value of the agri-environmental scheme.  Where the prior 

probability of HM is low, 0.309 stop is optimal.  Over a range of probabilities 
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0.3090.412 monitor is optimal.  The value of monitoring is the difference between the 

expected value of monitoring and the next best policy, the value of monitoring depends 

upon the belief state.  For 0.412 continue is optimal. Figure 2, a policy graph, gives a 

sequence of optimal actions.  It is optimal to continue at n=2 it is optimal to continue at 

n=1.  If it is optimal to stop at n=2 it is optimal to stop at n=1.  The decision taken after 

monitoring at n=2 depends upon what is observed, if HM is observed (=1) then it is 

optimal to continue at n=1 if AG is observed (=2) it is optimal to stop. 

Figure 1 and Figure 2 

 

3.3 Example 2 Cambrian Mountains Environmentally Sensitive Area 

The Cambrian Mountains Environmentally Sensitive Area (ESA) aims to reinstate the 

heather dominated vegetation community H12 in Mid-Wales from U4 (low intensity 

agricultural grassland) and an intermediate community H18.  The classifications refer to 

the British National Vegetation Classifications (Rodwell, 1991, 1992) The transition 

matrix P
1
 in Table 3 was estimated from data collected from a 5-year field scale 

experiment at Pwllpeiran experimental husbandry farm in Mid-Wales (Rushton et al, 

1996).  Without monitoring the long-run equilibrium is one where there is a probability of 

all vegetation states being observed, but the highest probability is that the land will revert 

to U4.  It is assumed that monitoring influences the behaviour of farmers so that they 

comply with input restrictions, thus the transition probabilities are modified so that H12 is 

an absorbing state and the probability of transitions from H12 to H18 and from H18 to U4 

are zero.  The natural ecological succession at low sheep grazing intensity is from U4 to 

H18 to H12.  Monitoring involves an annual assessment of vegetation by field survey and 

observing farm activities at key times during the production cycle.  In practice the 

Ministry of Agriculture engages in monitoring using field surveys and aerial photographs 
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to assess vegetation states and regular visits by project officers to assess compliance 

(Hopper, 1992).  The assumption her is that a farmer knows that monitoring is taking 

place and during that year is compliant with the terms of the scheme.  In years where there 

is no monitoring they are only partially compliant.  The effect of monitoring is reflected 

by an ad hoc adjustment to the transition matrix. 

Table 3 and Table 4 

All three P
a
 matrices are ergodic, that is they converge to a single long-run matrix.  Where 

there is no monitoring the expectation is, irrespective of the initial state, the U4 vegetation 

state will dominate.  With monitoring the desirable state H12 is an absorbing state. 

 

The economic parameters for the problem are given in Table 4, the estimates of non-

market value are modified from a contingent valuation study by Garrod and Willis (1994).  

The measure of irreversibility a

ij  gives the expected first passage of time from state i to j.  

In this example we are interested in the expected time taken to return to H12.  With no 

monitoring, the expected return time from U4 to H12 is 1

13 =105.88 years and from H18 

to H12, 1

23 =55.88 years.  This represents a high degree of irreversibility. With monitoring 

the expected return time is reduced to 137.182

13  and 94.22

23  . 

 

The solution to this POMDP problem consists of 26 vectors )(nk  each of which is 

optimal for a range of belief states.  The solution converged after 493 year long steps and 

approximates an infinite time horizon solution. If contracts with farmers are of short 

duration it is also possible to run the problem for a finite horizons.  In fact the sub-stages 

of the infinite horizon problem provide the optimal decisions for finite horizon problems.  
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However, the advantage of an infinite horizon solution is that the optimal vectors are time 

dependent. 

Table 5 

Figure 3 represents the optimal vectors given in Table 5 as a function of belief states using 

a triangular plot, where the optimal initial action is given for a fine grid of probabilities 

(0.02 intervals).  This locates where most vectors are optimal, but not all, some vectors are 

optimal for such a small range of probability values that the grid misses these points.  

Overall, the belief state is divided into three regions, a continue region a monitor region 

and a stop region.  The continue region is where the optimal initial action is to continue  

and this includes vectors 1 to 6 and 23 to 25.  From Figure 4, this region falls in the upper 

left hand segment of the diagram where the probability of H18 and H12 together are 

greater than the probability of U4.  The stop region is defined by a single vector 26 and 

this action is optimal where the probability of H18 and U4 together exceed that of H12.  

The monitor region where vectors 7 to 22 are optimal is found  where the probability of 

each state is equal, but extends back to the p1 to p3 axis. 

Figure 3 and Figure 4 

Figure 3 gives the initial actions which are optimal across belief space, but vectors which 

have the same initial actions may lead to quite different sequence of actions.  The 

sequence of actions can be traced in Vector n-1 section of Table 3.  For instance, vector 1 

is followed by vector 3 then 5 and 8.  Vector 8 is to monitor and the subsequent action is 

conditional upon the observation.  If 1 is observed the optimal action is to stop if 2 or 3 are 

observed it is to continue but using different vectors.  A policy graph clarifies the decision 

sequence (Figure 4).  If vector 1 is optimal then it is optimal to continue for three years 

using vectors 1, 3 and 5, after three years it is then optimal to monitor using vector 8, stop 

if U4 is observed, return to 1 if H12 is observed and if H18 is observed continue for 4 
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years and then stop.  The last of these alternatives implies that, in the short-run, it is 

worthwhile benefiting from the non-market value, but as the probability of U4 increases 

then it is optimal to stop.  Some actions, for instance vector 18, indicate repeated 

monitoring when H18 is observed.  Monitoring, by modifying the belief state, is reducing 

the ‘entropy’ associated with the vegetation state until a belief state is reached where 

either continue or stop are optimal actions (Kaelbling et al, 1998). 

 

3.4 Sensitivity Analysis  

Here we analyse sensitivity of the optimal solution to selected parameters, of particular 

interest is the monitoring decision.  As the accuracy of monitoring increases as measured 

by r, the frequency of monitoring increases and the range of belief states over which 

monitoring is an optimal initial action increases.  In the extreme case where r=1 (perfect 

monitoring)  monitoring occurs every three years after an initial decision to continue and it 

is the action with the widest probability range.  This result is represented in Figure 5 and 

Table 6, note that the range of probability values over which vectors that involve 

monitoring (1, 2, 3) is expanded compared to Figure 3  Conversly , if r is reduced to 0.6 

then monitoring is never optimal and the agri-environmental scheme stops after 8 years 

whatever the belief state. 

 

Table 6 

 

The frequency of monitoring increases as the discount rate falls, this indicates that 

monitoring is of more value at low discount rates. Monitoring is a form of investment in 

that it increases the efficiency of future actions thus as the discount rate increases the 

value of monitoring falls. 
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Figure 6 

 

4. Conclusion 

 

Monitoring is an essential component of schemes designed to conserve or enhance 

biodiversity.  Such schemes are now a central part of European agricultural policy, but are 

also found in forestry management, wildlife management and marine conservation.  A 

characteristic of these policies is that they offer relatively long term contracts to farmers to 

conserve or reinstate a particular ecosystem.  To date the literature has had relatively few 

contributions on the subject of optimal dynamic monitoring.  The original Arrow Fisher 

Henry model is concerned with information gathering, but as a passive function of time 

passing and is limited to two-periods.  The POMDP framework presents a flexible 

approach to determine actions where the stochastic process is represented by a Markov 

chain.  It allows a link to ecology where  Markov chains are applied to model transitions in 

vegetation states.  It also allows a classification of vegetation transitions along a 

continuum from reversible to irreversible. 

 

Evidence from UK agri-environmental schemes suggests that monitoring is necessary and 

costly (Falconner and Whitby, 1999).  In this paper we propose a POMDP as a framework 

for analysing monitoring patterns.  The results show the complexity of the monitoring 

decision which depends upon the prior probability of a vegetation state.  A general result 

is that monitoring tends to be optimal where there is more uncertainty about the target 

state and repeated monitoring might be used before making an irreversible decision. 

 



19 

References 

Albers, H. J., Fisher, A. C., Hanemann, W.M., 1996.  Valuation and management of 

tropical forests implications of uncertainty and irreversibility.  Environmental and 

Resource Economics 8, 39-61. 

Arrow, K.J. and A. C. Fisher, 1974. Environmental preservation, uncertainty, and 

irreversibility, Quarterly Journal of Economics, 88 312-319. 

Ball, D. F., J. Dale, J. Sheail and O. W. Heal,  1982. Vegetation change in upland 

landscapes. NERC/ITE, London 

Balzer, H.  2000.  Markov Chain Models for Vegetation Dynamics, Ecological Modelling, 

126, 139-154. 

Cassandra, A. R.  1995.  Optimal Policies for Partially Observable Markov Decision 

Processes.  Department of Computer Science Brown University. 

EC. 1992.  Council Regulation EEC No 2078 on agricultural production methods 

compatible with the requirements of the protection of the environment and the 

maintenance of the countryside 'The Agri-Environment Regulation', Official 

Journal of the European Communities L215/85.  

EC. 1996.  Council Regulation EEC 746/96 laying down the detailed rules for the 

application of 2078/92, Official Journal of the European Communities L102/96 

Falconer, K.  and Whitby, M.C.  1999.  Transactions and Administrative Costs in 

Countryside Stewardship Policies:  An Investigation for Eight European Member 

States.  Newcastle University Centre for Rural Economy Research Report.  

Fisher, A. C. 2000. Investment under uncertianty and option value in environmental 

economics.  Resource and Energy Economics, 22, 197-204. 

Garrod G. D., Willis K. G., 1994. Valuing biodiversity and nature conservation at a local-

level. Biodiversity and Conservation 3, 555-565. 

Henry, C., 1974. Investment decisions under uncertainty, American Economic Review 

64,1006-1012. 

Hooper, 1992. Measurement and perception of change:  filed monitoring of environmental 

change in the Environmentally Sensitive Areas, in: M. C. Whitby ed Land Use 

Change and it Consequences. HMSO, London 

Horn, H. S.  1976.  Succession.  In May R. M. Ed.  Theoretical Ecology.  Principles and 

Applications .  Saunders :  Philadelphia, pp 187-204. 

Monahan, G. E.  1982.  A Survey of Partially Observable Markov Decision Processes:  

Theory Models and Algorithms, Management Science, 28, 1-16. 

National Audit Office 1997.  Protecting Environmentally Sensitive Areas.  

London:HMSO. 

Laffont, J-J. and Tirole, J. 1993.  A Theory of Incentives in Procurement and Regulation.  

Cambridge, Massachusetts:  MIT Press. 

Rodwell J S. 1991.  British Plant Communities: Volume 2 Mires and Heaths. Cambridge: 

Cambridge University Press. 628 pp. 

Rodwell J S. 1992.  British Plant Communities: Volume 3 Grassland and Montane 

Communities. Cambridge: Cambridge University Press. 540 pp. 

Ross, S. M., 1996. Stochastic Processes 2
nd

 Edition.  Wiley, New York 

Rushton, S.P and R. A. Sanderson, J Wildig and  J. P. Byrne, 1996. The effects of grazing 

management on moorland vegetation: a comparison of farm unit, grazing paddock 

and plot experiments using a community modelling approach, Aspects of Applied 

Biology 44, 1-8. 

Smallwood, R. D. and Sondik, E.J. 1973.  The Optimal Control of Partially Observable 

Markov Processes Over a Finite Horizon, Operations Research, 21, 1071-1088. 

 



20 



21 

Table 1 Immediate Rewards and Optimal Solution per ha 

          Current State: 

Action: 

Agricultural 

Grassland (AG) 

Hay meadow (HM) 

Immediate rewards ( a

ijw  ):   

Continue 200 1500 

Stop 700 0 

Monitor 0 1300 

Optimal Policy Vectors ( k )   

n=1   

Continue 200 1500 

Stop 700 0 

n=2   

Continue 390 2678 

Stop 1365 665 

Monitor 693.75 2487.75 
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Table 2  Results for Example 1 For Specific Points in Belief Space 

a. 0c ,1 ,1 m2211  rr  £ Net Social Benefit per ha 

a1. MDP (perfect information) continue £2773 

a2. MDP (myopic) continue £2678 

a3 MDP stop £665 

b 200c ,1 ,1 m2211  rr   

b1 POMDP continue £2678 

b2 POMDP monitor  £2573 

b3 POMDP stop £665.0 

c 200c ,1 ,5.0 m2211  rr   

c1 POMDP continue 1534 

c2 POMDP monitor 1619 

c3 POMDP stop 1015 

d 200c ,85.0 ,5.0 m2211  rr   

d1 POMDP monitor 1490.75 
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Table 3  Markov Transition Matrix  

 
Markov Matrix P

a 
Long-run Markov 

Matrix 

Observation Matrix 

(R
a
) 

Action U4 H18 H12 U4 H18 H12 U4 H18 H12 

Continue  

(P
1
) 

         

U4 0.98 0.02 0 0.87 0.07 0.06 1/I 1/I 1/I 

H18  0.17 0.66 0.17 0.87 0.07 0.06 1/I 1/I 1/I 

H12  0.1 0.1 0.8 0.87 0.07 0.06 1/I 1/I 1/I 

Monitor (P
2
)          

U4 0.94 0.03 0.03 0 0 1 0.8 0.1 0.1 

H18  0 0.66 0.34 0 0 1 0.1 0.8 0.1 

H12  0 0 1 0 0 1 0.1 0.1 0.8 

Stop (P
3
)          

U4 1 0 0 1 0 0 1/I 1/I 1/I 

H18  1 0 0 1 0 0 1/I 1/I 1/I 

H12  1 0 0 1 0 0 1/I 1/I 1/I 
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Table 4  Payoff Matrix for Example 2 £ per ha 

 

               States: 

Actions: 

U4 H18 H12 

1. Continue 49.17 99.17 149.17 

2. Monitor -10.83 39.17 89.17 

3. Stop 89.4 89.4 89.4 

Parameters:  Gross margin from sheep £44.7 per ewe; stocking rate 1.25 ewes pe ha for ESA 2 

ewes per ha profit maximising.  Non-market values U4 £0, H18 £50, H12 £100 per ha.  

Monitoring cost £50 per ha.  The shadow price of public funds is £0.2. 
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Table 5 Results for Cambrian ESA Case Study 

 
 Reward Vector () Vector n-1 

Vector No Action 1 (U4) 2 (H18) 3 (H12) 1 2 3 

1 1 1566.35 1808.84 1959.28 3 3 3 

2 1 1574.85 1812.36 1957.37 4 4 4 

3 1 1597.03 1811.66 1955.64 5 5 5 

4 1 1605.98 1816.05 1951.46 6 6 6 

5 1 1629.33 1810.07 1947.01 8 8 8 

6 1 1638.75 1816.57 1939.52 23 23 23 

7 2 1662.52 1799.54 1933.05 26 5 1 

8 2 1663.32 1802.56 1932.34 26 6 1 

9 2 1665.41 1793.81 1931.72 26 7 1 

10 2 1665.48 1795.30 1931.65 26 8 1 

11 2 1665.66 1790.89 1931.60 26 9 1 

12 2 1665.66 1791.64 1931.59 26 10 1 

13 2 1665.68 1789.42 1931.58 26 11 1 

14 2 1665.68 1789.80 1931.58 26 12 1 

15 2 1665.68 1788.69 1931.58 26 13 1 

16 2 1665.68 1788.87 1931.58 26 14 1 

17 2 1665.68 1788.32 1931.58 26 15 1 

18 2 1665.68 1788.41 1931.58 26 16 1 

19 2 1665.68 1787.95 1931.58 26 19 1 

20 2 1665.69 1791.06 1931.57 26 21 1 

21 2 1665.73 1794.17 1931.48 26 22 1 

22 2 1666.29 1800.42 1930.47 26 23 1 

23 1 1673.24 1813.57 1919.88 24 24 24 

24 1 1709.55 1807.05 1890.30 25 25 25 

25 1 1747.77 1797.77 1847.77 26 26 26 

26 3 1788.00 1788.00 1788.00 26 26 26 

 

Action 1 continue, 2 monitor, 3 stop 
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Table 6 Results for Cambrian ESA Case Study – Perfect Monitoring 

 
 Reward Vector () Vector n-1 

Vector No Action 1 (U4) 2 (H18) 3 (H12) 1 2 3 

1 1 1630.26 1855.02 2005.05 2 2 2 

2 1 1664.30 1856.07 2001.90 3 3 3 

3 2 1700.14 1850.55 1993.97 4 2 1 

4 3 1788.00 1788.00 1788.00 4 4 4 

 

Action 1 continue,2 monitor, 3 stop 
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Figure 1  Optimal Action by Belief State 
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Figure 3 Example 2 Optimal Action for Different Belief States 
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Figure 4  Example 2 Policy Graph Vector 1 
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Figure 5 Optimal Initial Policy with Perfect Monitoring 

 





 

 


