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ABSTRACT 
 

The non-market component of forest standing value is considered by many to exceed 
the value of market goods from the forest, but this part of forest standing value is 
usually omitted from economic models that are used to determine the optimal forest 
rotation. These models therefore produce erroneous results. It is argued that for the 
Mountain Ash forests of South-Eastern Australia, a standardised version of the above 
ground biomass function (AGBF) of the dominant tree can provide a useful 
representation of the non-market part of forest standing value. An economic model of 
optimal forest rotation, which includes a standardised version of the AGBF, is used to 
find the minimum valuation of non-market standing value which produces the result 
that the forest should be preserved. 
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1. Introduction 

In a recent survey of the reasons for valuing forests in South East Gippsland, 

Australia (Lockwood et al., 1993), respondents to the state-wide survey indicated that 

the non-market components of forest standing value were more important than the 

market components (Lockwood et al., 1993, p.237). Specifically, the preservation of 

the forest for its plants and animals received the highest ranking, followed (in order), 

by preservation for future generations, for visitation, and to know the forest exists. 

The value of the forests for timber production and employment received the lowest 

rankings.1 

This supports Dasgupta’s opinion (Dasgupta, 1982, p.178) that “the value of a 

forest typically exceeds the value of timber it nurtures, and on occasion exceeds it 

greatly”. Dasgupta (1982, p.178) does, however, note that the measurement of forest 

externalities “poses vast problems at both the conceptual and practical level”. 

Samuelson (1976, p.486) argued that once sufficiently informed, the preferences of 

the electorate for forest conservation will lead to forest preservation.  

Samuelson’s analysis of the problem of finding the optimal forest rotation time 

does not include forest standing value. The principal technical focus of his paper is an 

exposition of the Faustmann solution to the forest rotation problem. This involves 

finding the forest rotation time which maximises the net present value of the land 

occupied by the forest (  tV0 ) under a logging regime of an infinite number of 

harvesting cycles (or rotations) starting with bare ground. 

Hartman (1976) modified the Faustmann problem by introducing a function 

(  tF ) which represents forest standing value into the objective function of the 

Faustmann problem. Let  tV  represent the net present value of the land occupied by 

the forest (under a regime of infinite rotations) inclusive of standing value. Hartman 

provided a detailed analysis of the case when standing value is large enough so that 

no t can be found which satisfies the first order condition   0dttdV . In this event, 

Hartman concluded that the forest should be preserved.2 

Strang (1983) extended Hartman’s (1976) results by comparing the asymptotic 

value of  tV  as t  (  tVlim ) to the maximised value of  tV  when an interior 

solution exists (  1tV ). When    1tVtVlim  , Strang concluded that the forest should 
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be preserved. Strang also analysed the case of whether or not to log a forest of age 

t0>0. 

The author has only found applications of the work of Hartman and Strang 

which incorporated forest standing value which produces market goods into  tV . 

Examples are Clarke (1994) which included water supply and Swallow et al. (1990) 

which included cattle production. 

The conservation value of indigenous forests, which includes biodiversity 

preservation, existence value, bequest and option values and in the case of tall forests, 

water precipitation enhancement (Ashton and Attiwill, 1984, p.168), is very high.3 In 

addition, growing forests, which are recovering from fire or clear felling can make a 

useful contribution to reducing atmospheric CO2 levels through carbon sequestration 

(Schelling, 1992, p.9). 

The Mountain Ash (Eucalyptus regnans) forests of the Thomson Dam 

catchment in Central Gippsland, Victoria, Australia are used in the application of this 

paper. For these forests, the work of Norton (1996), Lindenmayer and Franklin (1997) 

and Lindenmayer (1999) indicate that current logging practices based on clear felling 

and the burning of residues have a deleterious effect on biodiversity conservation.4  

Thus, for these forests, the omission of the non-market component of standing 

value from  tV  is likely to lead to an incorrect optimal rotation period and bias any 

estimate of the opportunity cost of conserving these forests which are based on  tV . 

These points may be clarified as follows. 

Let the net present value of forest standing value per hectare of forest be 

     tpFtFtF 21   . (1) 

In (1),  tF1  is due to market goods,  tF2  is due to non-market goods and p is the 

price of the non-market component of forest standing value. When this formulation of 

 tF  is included in  tV , the objective function may be written as  p,tV . If 0p , 

then the objective function contains only the market good component of forest 

standing value and this may be written as  0,tV . 

Now suppose that 1t  produces an internal maximum of  0,tV  and let 

 0,tVlim  be the asymptotic value of  0,tV  as t . When    001 ,tVlim,tV  , 

timber production is worth more than conservation. An estimate of the annual 
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opportunity cost of conservation may be obtained from     001 ,tVlim,tVr  , where r 

is the continuous discount rate used in calculating  0,tV . 

This analysis will produce incorrect results because the omission of  tpF2  in 

 0,tV  will lead to an incorrect optimal rotation period, 1t . If  tpF2  is included in the 

analysis, the t which maximises  p,tV , say 2t , will in general not equal 1t , and in the 

event that    p,tVlimp,tV 2 , the annual opportunity cost of conservation may be 

estimated by     p,tVlimp,tVr 2 . 

Finding the correct optimal rotation period and annual opportunity cost of 

conservation is difficult because p and  tF2  are not known. An alternative approach 

is developed in this paper. Suppose that a good estimate of  tF2  is available, then 

under certain conditions, an estimate of the minimum annual valuation of the non-

market component of forest standing value that would warrant conservation, as 

opposed to logging, may be obtained. 

Let  pt2  be the rotation time that maximises  p,tV , and suppose a value of 

p say app   can be found which satisfies     aaa p,tVlimp,ptV 2 , then ap  is the 

price of the non-market component of forest standing value which equates the net 

present value of logging, to the asymptotic net present value of forest standing value. 

 The present value of the non-market component of forest standing value 

which produces this result is the limit as t  of  tFpa 2 , denoted as  tFplim a 2 , 

and the corresponding annual value of the non-market component of forest standing 

value is  tFplimr a 2 . This is the minimum annual valuation of the non-market 

component of forest standing value that would produce the formal result of no 

logging, since if society values conservation at or above  tFplimr a 2 , the forest 

should be preserved. 

A standardised version of the above ground biomass function for the Mountain 

Ash forests of South Eastern Victoria (Grierson et al.1991, p.16 and Grierson et al. 

1992, p.634), is used to approximate of  tF2  in the application of this paper. 

The rest of the paper is organised as follows. The next section contains 

technical details including a set of sufficient conditions for the existence of ap and 

similar results for a forest aged t0 > 0, which is being considered for logging. The case 

of a standing forest is generally important.  Also, 80.12% (2,979ha) of the Mountain 
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Ash forests of the catchment of the Thomson Dam which were available for logging 

in 1992, are re-growth forests which regenerated after the bushfires of 1939 

(Appendix B of Read, Sturgess and Associates, 1992). For these re-growth forests t0 

was around 60 years at the beginning of 2000. 

Section 3 contains a description of the functions and parameters used in the 

application of the paper. Section 4 contains a discussion of the results obtained for the 

Mountain Ash forests of the Thomson Dam catchment.  

Using the base case values of water prices, timber prices and discount rate at 

the beginning of 2000, the minimum annual valuation of the non-market component 

of forest standing value required for forest conservation, starting from cleared land, 

was estimated at between $500.81 and $530.56 per hectare per annum. For a forest 

aged 60 years, the minimum annual valuation of the non-market component of forest 

standing value required for forest conservation ranged from $714.20 to $730.06 per 

hectare per annum. Results varied with the water price, timber prices and the discount 

rate. The final section of the paper contains a summary of the principal results. 

 

2. Technical results 

In this section we present sufficient conditions for the existence of the 

minimum annual valuation of the non-market component of forest standing value 

which would warrant conservation of the forest as opposed to logging. This is done 

for two cases (i) starting with cleared land and (ii) starting with a forest of age t0>0.  

(i) Cleared land 

Let e be regeneration cost per hectare of cleared land, r be the continuous 

discount rate,  tG  be the net timber value per hectare of forest,  tf1  be the market 

component of forest standing value per hectare and  tpf2  be the non-market 

component of standing value (at price p) per hectare. Then   rtetG   is the net present 

value of timber per hectare;     
t

rxdxexftF
0

11  and     
t

rxdxexfptpF
0

22  are the 

net present value of the market component and the present value of the non-market 

component of forest standing value per hectare respectively. 

 Let the net present value of a hectare of forest aged t, starting with cleared 

land, be 

        etpFtFetGptV rt  
211 , . (2) 
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The present value of a hectare of forest following a regime of harvesting at age t and 

then regenerating the forest n times, assuming all prices and the discount rate are 

constant, is 

         
















 










1

1
21

1

1,
n

i

irt
n

i

irt
n eetpFtFetGptV . 

Let  p,tV  be the limit of  p,tVn  as n , then 

          rtrt eetpFtFetGptV   1, 21 , (3) 

which is similar to equation (8) of Hartman (1976, p.56). 

The objective is to find the rotation time, t, which maximizes  p,tV . Assume 

that  p,tV  is at least twice differentiable in t, and that 2tt   yields an internal 

( 2t ) global maximum of  p,tV , then   02  tp,tV  and   02
2

2  tp,tV .  

Assuming that   02
2

2  tp,tV , the assumptions of the implicit function 

theorem are satisfied (Fulks, 1978, pp.350-356) and a differentiable implicit function, 

 pt2  exists in a neighbourhood of p. Let the limit of  p,tV  as t  be 

      etFptFptV  21 limlim,lim , where lim F1(t) is the limit of F1(t) as t , 

and assume these limits exist, then we seek a set of sufficient conditions for the 

existence of app   which satisfies       etFptFptV aa  212 limlim,  . 

Differentiating  p,tV 2  and       etFptFpV  21 limlim  with respect to p, we 

obtain: 

     

    01 2

2

22

222









rt

tt

etF

pp,tVpttp,tVpp,tV
 (4) 

and 

    02  tFlimdppdV . (5) 

Equation (4) is a version of the envelope theorem (Varian, 1992, pp.490-491). Now 

define the difference function  pD : 

      pVp,ptVpD  2  . (6) 

Assuming that in some closed interval  21 p,pI  , with 21 pp  ,   01 pD , 

  02 pD  and   0dppdD  for all p in  21 p,p , then there is a unique app   in I 

for which   0apD . The existence of app  in I follows because  pD  is a 

continuous (and by assumption) strictly decreasing function of p in I. Since  pD  is 



 7

continuous, it takes all values in its range     21 pD,pDR   and since 0 is in R, there 

is a app   satisfying   0apD  (Burkill, 1962, pp.56-57). Since  pD  is a single 

valued function on I, there is only one p in I which satisfies  pD  = 0, thus app   is 

unique in I. 

The intuition behind this result is as follows. The function 

      pVp,ptVpD  2  has an intercept   002 ,tV  on the horizontal axis and slope 

   2122
rtetF  ,  pV  is a function with intercept on the horizontal axis equal to 

  etF 1lim  and constant slope  tFlim 2 . Suppose that 01 p , then the condition 

  01 pD  requires      etFtV  12 lim0,0 . The condition   0dppdD  for all p in 

 21 p,p  requires that        tFlimeptF prt
222

21    for all p in  21 p,p , which is 

plausible since we would expect  pt2  to be increasing in p and  tFlim 2  is the limit 

as t  of    rtetF 12 . Thus, if 01 p ,   01 pD  and   0dppdD  for all p 

in  21 p,p ,   p,ptV 2  is an increasing function of p with slope less than the slope of 

 pV  which is also an increasing (linear) function of p. If a 2pp   exists, then 

    2222 pVp,ptV   and the functions   p,ptV  and  pV  have crossed at some 

app   in I. 

Whether or not these sufficient conditions are satisfied in practice will depend 

on the functions and parameters of the problem being studied. As it turns out, these 

sufficient conditions are satisfied for the functions and parameters used in the 

applications of the paper. 

Once ap  has been estimated, the minimum annual valuation of the non-

market component of forest standing value (starting with cleared land) which would 

warrant conservation as opposed to logging may be estimated by  tFlimrpa 2 . 

 

(ii) Standing forest 

Sufficient conditions for the existence of the minimum annual valuation of the 

non-market component of forest standing value, of a forest aged 00 t , which would 

warrant preservation as opposed to logging are similar to those of a forest regenerated 

from cleared land. The logging strategy involves clear felling the standing forest, 

regenerating the forest from cleared land and then following a regime of continuous 



 8

forestry based on harvesting at age 2tt   and then regenerating the forest for the next 

cycle. The conservation strategy involves no logging. 

 Assuming the forest is aged 0t  years, the maximised net present value of a 

hectare of land under logging is: 

       p,ptVtGp,ptW 202   . (7) 

In (7),  tG  and   p,ptV 2  are as defined above. 

The present value of the forest under conservation at time 0tt   is 

               
t

t

txr
t

t

txrttr dtexfpdxexfetGp,tPV
0

0

0

00
21 , 

or equivalently 

             022011
000 tFtFpetFtFeeetGp,tPV rtrtrtrt    . (8) 

The limit of  p,tPV  as t , is: 

           022011
00 tFtFlimpetFtFlimepW rtrt  . (9) 

In (9),  tFlim 1 ,  tFlim 2 ,  tF1  and  tF2  are as defined above. We seek a set of 

sufficient conditions for the existence of bpp   which satisfies: 

    bbb pWp,ptW 2  . 

Differentiating  p,tW 2  and  pW  with respect to p, we obtain: 

     21222
rtetFpp,tW   , (10) 

and 

      022
0 tFtFlimedppdW rt   . (11) 

Now define the difference function,       pWp,ptWpD  21  and assume that in 

some closed interval  21 p,pI   with 12 pp  ,   011 pD ,   021 pD  and 

  01 dppdD  for all p in ( 21 , pp  ), then there is a unique bpp   in I   for which 

  0bpD . 

The proof of this result is similar to that above for the existence of ap  and is omitted. 

The sufficient conditions for the existence of bp  are satisfied in the application of this 

paper. 

Once bp  has been estimated, the minimum annual valuation of the non-

market component of forest standing value, of a hectare of forest aged 00 t , which 
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would warrant conservation as opposed to logging may be estimated by 

    022
0 tFtFlimerp rt

b  . 

 

3. Functions and parameters used in the study 

Background 

The catchment of the Thomson Dam has an area of 48,700 ha of mainly State 

Forest and is managed by Melbourne Water and the Department of Natural Resources 

and Environment (DNRE). Melbourne Water is a state government statutory 

corporation which supplies bulk water to three water distributors (City West Water, 

Yarra Valley Water and South East Water) which sell water to households and firms 

in the city of Melbourne, its metropolitan area (combined population of 3.41 million 

persons) and some regional centres. The three water distributors are also state 

government statutory corporations. 

The Thomson Dam has an active capacity of 1,068 GL and was completed in 

1983 as a carryover storage to “drought proof” Melbourne. Average annual inflow 

into the Thomson Dam is 243 GL and average annual storage is around 190 GL. The 

Dam supplies the Thomson River below the storage with an annual water allocation 

of 52 GL made up of 40 GL for environmental flow and 12 GL for irrigation.  

Irrigation water is supplied free of charge to compensate farmers for the loss 

of riparian water rights due to the construction of the reservoir. In this study, the water 

allocated to the Thomson River downstream from the storage is priced at opportunity 

cost. 

Mountain Ash forests in the state of Victoria generally grow at altitudes of 

between 200 and 1000 m where mean annual rainfall exceeds 1200 mm (Vertessy et 

al., pp.5-6). Average annual rainfall in the catchment of the Thomson Dam ranges 

from 980 mm to 1710 mm (Read et al., 1992, p. 14) and the altitude ranges from 300 

m to 1500 m (Melbourne and Metropolitan Board of Works (MMBW), 1975, p. 56). 

The principal forest types in the catchment of the Thomson Dam are ash-type 

forests comprising of Mountain Ash (E. regnans), Alpine Ash (E. delegatensis) and 

Shining Gum (E. nitens) and mixed species forest. Mountain Ash forms around 80% 

of the ash-type forests (Kuczera, 1985, p.9). In mixed species forests, Messmate (E. 

obliqua) is the most important timber species. Eucalyptus regnans and E. obliqua 

occasionally form hybrids (Ashton, 1958). 
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Ash-type forests occupy the higher rainfall parts of the catchment and more 

sheltered slopes and gullies at lower elevations. Mixed species forests occupy the 

exposed, lower elevation areas and some sheltered slopes at higher elevations 

(Kuczera, 1985, MMBW, 1975). 

Logging operations in the Thomson catchment are licensed by the DNRE. In 

the case of Mountain Ash forest, an area upwards of 10 hectares is clear felled each 

time and the residues burnt to form a nutrient rich ash seedbed for regeneration. In 

practice, mature living trees, old dead trees and trees in gullies are not harvested. 

Although the official rotation time is 80 years, 1939 re-growth has been harvested.  

Annual harvesting of ash-type forest in the Thomson catchment has averaged 

around 143 ha over the past 14 years. The total area of ash-type forest is 16,000 ha, of 

which 11,000 ha is available for logging as of January 2001.5 

We now present the various functions and parameters used in the applied part 

of the study. 

 

Water 

The water yield per hectare from a Mountain Ash forest of age t years in the 

Thomson catchment was obtained from Kuczera (1985). This function may be 

written: 

  Ytf 1  2t  

    212  tKetLKY  . 2t  (12) 

In (12),  tf1  is the water yield (ML/ha/annum) of regrowth forest aged t years, 

Y is the average annual yield (ML/ha) from the mature forest (Y  = 11.95), 

L is the maximum annual yield reduction (ML/ha) below that of mature forest 

(L  = 6.15),    

t is the age of the re-growth forest (in years) and 

K is the reciprocal of the time taken to maximum water yield reduction minus 

two years (K  = 0.039). 

Kuczera’s water yield function was used in the studies of Read et al. (1992, p.17) and 

Clarke (1994), and is currently used by Melbourne Water to estimate water yield from 

stands of Mountain Ash forest of various ages (Vertessy et al., 1998).6 

The present value of water is 
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     
t

rx
w dxexfptF

0

11 . (13) 

In (13), wp  is the water price. After substituting parameter values into (13) and 

simplifying, 

   








  
t

rxx.x.
w

rx
w dxee.xe..pdxe.ptF

2

03900390
2

0

1 40974170487095119511 . (14) 

Clarke (1994) used only the second term of equation (14) in his paper. 

To simplify the presentation of  tF1 , let a = 11.95, b = 0.70487, c = 1.40974 

and d = (0.039+r), then for 2t ,  tF1  may be written 

  dt
w
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Equation (15) was obtained from (14) using tabulated values of the integrals of 

functions involving the exponential function (Peirce 1929, p.53). The limit of  tF1  as 

t ,  tFlim 1  is 

  













   d

w e
d

c

d

b

d

b

r

a
ptFlim 2

21

2
 . (16) 

 

In estimating the water price  wp , we shall assume marginal cost pricing.7 

Melbourne’s water supply system is mainly a gravity system and the principal 

variable costs of water supply are due to chemical treatment and pumping. All water 

is chemically treated but only some water is pumped. 

Read et al. (1992, p.36) report that chemical treatment costs were $7.25/ML 

and pumping costs were $18/ML. To obtain a beginning of year 2000 value, the 

chemical treatment costs were inflated using the Australian Bureau of Statistics 

(ABS) price index for chemicals and chemical products to yield a beginning of year 

2000 estimate of the cost of chemical treatment of $7.627/ML.  

The ABS does not publish an index of energy costs, so pumping costs were 

inflated using the ABS price index for petroleum and coal products to yield a 

beginning of year 2000 estimate of pumping costs of $19.836/ML. The two price 

indexes used for inflating chemical and pumping costs are in the ABS publication 

“Price indexes of articles produced by manufacturing industry”, catalogue No.6412.0. 
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This gives two estimates for the water price: ML637 /.$Pw   for water that is 

not pumped and ML4627 /.$Pw   for water that is pumped. It is estimated that 14% 

of water leaving the Thomson Dam is lost through leakage in the supply system (Read 

et al., 1992, p.33). Adjusting these prices to yield prices for water in the Dam yields 

ML696141637 /.$./.$Pw   and ML09241414627 /.$./.$Pw   for water that 

is not pumped and for water that is pumped respectively. 

It is not known how much of the water released from the Thomson dam is 

pumped, so both prices were used in the applied work, ML696 /.$Pw   being the 

“low” water price and ML0924 /.$Pw   being the “high” water price. 

 

The non-market component of forest standing value 

The non-market component of the standing value of the Mountain Ash forests 

of the Thomson catchment includes a contribution to biodiversity preservation, use 

value, option value, existence value, bequest value, carbon fixation and possible 

rainfall enhancement for stands around 100 metres in height. There is a vast literature 

on the ecology of the Mountain Ash and similar forest types in South Eastern 

Australia, which is reviewed in the following articles: Lindenmayer (1999), 

Lindenmayer and Franklin (1997), Norton (1996), Attiwill (1994) and Ashton and 

Attiwill (1984). The extensive study of these forests reflects their important scientific 

and ecological value. MMBW (1975) contains a detailed review of the flora and fauna 

of the catchment of the Thomson Dam. 

We shall use a standardised version of the above-ground biomass function for 

Mountain Ash forests which has been estimated using data from mainland South 

Eastern Australia by Grierson et al. (1991, p.16) to represent the non-market 

component of forest standing value. This function is quadratic with a maximum at 

98.09 years and is used here because around 50% of biomass is carbon and the 

function is increasing over the time range when many of the other factors contributing 

to the non-market standing value of the forest have their most important increase. The 

function used in this study is a standardised version of that of Grierson et al. (1991) 

because a function representing many components of non-market standing value 

should not have the units of any particular component of standing value. 

We shall now briefly review the most important factors affecting non-market 

standing value as the Mountain Ash forest ages, starting with an ash seedbed formed 
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by the burning of residues after clear felling or bushfire. In its natural state, the forest 

is regenerated by seed falling from capsules held in the canopy (seed which falls on 

the ground is harvested by insects).  

The regenerating forest is self-thinning. Starting with around 205,000 

seedlings per hectare, this falls to around 17,440/ha at age 8 years, 1,205/ha at age 26 

years (the “pole” stage), 227/ha at age 50 years (the beginning of the spar stage), 

126/ha at age 80 years, 82/ha at age 150 years and 47/ha at 220 (+ 100) years (Ashton, 

1976, p.400).  

Understory is fully developed at between 20-30 years (Attiwill, 1994) or 80 

years (Vertessey et al., 1998, p.7). Bird life resembles that of the mature forest at 

between 25-40 years (Attwill, 1994). 

Forest height is between 15-35 m at age 15-30 years, 45-60 m at age 40-80 

years, 60-100 m at age 100-300 years falling to 30-60 m for “overmature” forest at 

age 300-400+ years. Average height at maturity (100-300 years) is 75 m with a 

normal limit of 105 m (Ashton, 1975a, p.868).  

Flowers and fruit (which are important food sources for arboreal marsupial 

mammals, birds and insects) increase with forest age (Ashton, 1975b), as does forest 

litter (Ashton, 1975c) which provides habitat and food sources for ground dwelling 

fauna which include the superb lyrebird and the rare smoky mouse (MMBW, 1975, 

pp.155-157). In the case of forest ground litter, only a marginal increase was found 

between forest at the spar stage and mature forest (Ashton, 1975c, p.416).  

Arboreal marsupials (possums and gliders, including the rare Leadbeater’s 

possum) and some birds (including the yellow tailed black cockatoo and sooty owl) 

require hollows for nesting sites (Lindenmayer and Franklin, 1997, Nelson and 

Morris, 1994). Hollows begin to develop in Mountain Ash forest at around 90 years 

(Ball et al., 1999, p.189). 

The resilience of the Mountain Ash forest to bushfire improves with age. This 

occurs because trees older than 20 years have thicker bark and are likely to be more 

fire resistant (Lindenmayer and Franklin, 1997, p.1060). Although Mountain Ash 

forests flower prolifically at 6-8 years, young trees produce flowers that fail to set 

fruit in poor (dry) years (Ashton, 1975b, pp.408-409), implying that they may not 

successfully regenerate after fire.  

Kuczera (1985, pp.21-22) deduced from this phenomenon that the 1926 fires 

could not have been as extensive as the 1939 fires in some of Melbourne’s water 
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catchments: “Thus if large areas of 1926 ash were burnt in 1939 one would expect 

extensive areas of scrub. However Figure 2-4 indicates otherwise”. The survival of 

some Mountain Ash trees after fire is important because it produces a regrowth forest 

of mainly even age with some trees of different vintages contributing to diversity. 

We shall now turn to the specification of the function used to represent the 

non-market component of forest standing value. As noted above, the above ground 

biomass function for Mountain Ash forest estimated by Grierson et al. (1991) has a 

maximum at 98.09 years. 

 While much of the non-market standing value of a Mountain Ash forest is 

likely to have been achieved by 98 years, non-market standing value is likely to 

continue to increase slowly if old trees with hollows are present in the regrowth 

forest. This is because Mountain Ash forests increase in height up to maturity at 100-

300 years, the number of hollows increases with age after 90 years and, over time, the 

forest approaches the tree density attained at maturity. 

With annual discount rates of 5% and 6% used in this study, a low annual 

increase in the value of the non-market component of standing value after 98 years 

will have a negligible effect on present value calculations. Thus, we shall assume that 

the non-market component of standing value is constant for 0998.t  . 

The above-ground biomass mass function estimated by Grierson et al. (1991, 

p.16) for Mountain Ash may be written: 

  2
111 tctbath  ,  95202 .R   . (17) 

In equation (17), 991641 .a  , 826121 .b  , c1 = -0.065378, h(t) is in tonnes/ha and t 

is in years. This function has a maximum at t* = -b1/2c1 = 98.0911098 years. The 

above ground biomass per hectare at *t  years is   0983066341 .*thd   tonnes. We 

shall use this maximum biomass to produce a standardised function to represent the 

non-market component of forest standing value: 

     
.*tt

*tt,tctba
d

dthtf





1

1 2
111

1
12

 (18) 

The present value of the non-market component of standing value is  tpF2 , 

where  
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Evaluating (19) using tabulated integrals (Peirce, 1929, p.53) 
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In equation (20),  3
11

2
1111 2 rdcrdbrdaA  ,  2

1111 2 rdcrdbB   and 

rdcC 11 . The limit of  tF2  as t  is 

    *rt*rt*rt*rt e
r

e*Cte*BteAtFlim  
1

1 2
2 . (21) 

 

Timber Value 

Timber is harvested in the Thomson catchment by private companies, which 

are licensed by the DNRE. The main timber products are sawlogs and pulpwood. 

Harvesting and transportation costs are borne by the timber companies and a royalty 

paid to the DNRE for timber harvested. The timber value function may be written 

     tfptfptG ppss   . (22) 

In (22),  tfs  is the sawlog yield (m3/ha),  tf p  is the pulpwood yield (m3/ha), sp  

($/m3) is the price received by the DNRE for sawlogs (as royalty) and pp  ($/m3) is 

the price received by the DNRE (as royalty) for pulpwood. 

The sawlog and pulpwood yield functions for Mountain Ash were estimated 

from the yield tables published in Read et al. (1992, p.8). These tables give the yield 

(m3/ha) for sawlogs of grades A and B combined and for sawlogs of grade C in 10 

year intervals from age 40 years. For pulpwood, the tables give the yield (m3/ha) in 10 

year intervals from age 30. The yield data beyond age 100 years are considered to be 

unreliable. The range given in the yield tables reflects the stand ages currently 

harvested; however, sawlogs are available from Mountain Ash forests from age 20 

years (West, 1991, p.33). 

The yield functions were estimated by fitting quadratic functions using OLS to 

the combined sawlog yield data (the yield of sawlogs of grade A and grade B added to 
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the yield of sawlogs of grade C) and to the pulpwood yield data from age 40 to 100 

years. The results are as follows (standard errors are in brackets): 

 
     017340

2

44720581
02892907607793148

...
s t.t..tf   (23) 

7974902  n,.R  

 
     018260

2

57623385
02535706750514312

...
p t.t..tf   (24) 

7921702  n,.R . 

The fitted equations have satisfactory coefficients of determination. In the case 

of sawlogs, the fitted function explains 97.5% of the variation in the yield data and in 

the case of pulpwood, the fitted function explains 92.2% of the variation in the yield 

data. However, in both cases only the coefficient on t is statistically significant at the 

5% level (one tailed test). The lack of statistical significance of the other coefficients 

in the estimated equations may be due to the small sample size (n = 7). 

Average royalties for Mountain Ash sawlogs at the beginning of 2000 were: 

$85/m3 for grade A sawlogs, $60/m3 for grade B sawlogs, $45/m3 for grade C sawlogs 

and $10/m3 for pulpwood. The average royalties for Mountain Ash wood were 

calculated by the DNRE from license data for 1999/2000. The expected grade 

recoveries for sawlogs in the Central Gippsland Forest Management Area (Read et al., 

1992) are 1% for grade A sawlogs, 42% for grade B sawlogs and 57% for grade C 

sawlogs.  

The average royalty and sawlog recovery data were used to calculate an 

average price for sawlogs: 37051570454206001085 m/.$...ps  . The 

price of pulpwood was taken as pp  $10/m3. The average sawlog price and the 

pulpwood price were used in the study as the “base” prices for wood. Base wood 

prices were inflated by 20% to give the “high” wood prices used for sensitivity 

analysis. 

 

Discount Rates 

The discount rate chosen for the base case in this study is 050.r  . This 

reflects the real risk-free borrowing rates applicable for Australia over the past four 

years to 2000. The annual yield on 10 year Australian Treasury Bonds (in December 

of each year) minus the annual change in the CPI, for each of the past four years to 
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2000 are as follows: 1996 (5.07%), 1997 (4.75%), 1998 (3.51%) and 1999 (5.76%) 

for an average annual rate of 4.77%. The base discount rate was inflated by 20% to 

give the “high” discount rate ( 060.r  ) used for sensitivity analysis. 

 

Regeneration Costs 

Forest regeneration costs are borne by the DNRE and include the burning of 

residues after logging operations and the aerial sowing of seed. These costs have been 

estimated by the DNRE to be $500/ha in 2000. Thus, in this study e = $500. 

 

4. Results 

The results presented in this section were obtained using the software package 

Shazam version 7.0. As mentioned in section 2, the sufficient conditions for the 

existence of ap  and bp  were found to hold in practice. The values of ap  and bp  for 

the functions and parameter values given in section 3 were found by evaluating 

 p,tV 2  and  pV  (for ap ) and evaluating  p,tW 2  and  pW  (for bp ) on 

successively refined grids for 0p . 

Before discussing the major results, we note the following: 

(i) By directly computing  p,tV , for selected values of 0p , it was found that 

there was a single 2tt  , which satisfied the first and second order conditions 

    0,,0, 22  tptVttpV  for a maximum of  p,tV , that is, there 

was a single internal maximum of  p,tV . 

(ii) In doing the grid searches to find ap  and bp , it was generally found that 

  02 pp,tV   for 0p . 

(iii) While it was found that the sufficient conditions for the existence of ap  and 

bp  were satisfied, it should be noted (setting tt 2 ) that: 

       tFlimetFdppdD rt
22 1    and  

          02221
01 tFtFlimeetFdppdD rtrt    are functions of t. By 

direct evaluation of   dppdD  and   dppdD1 , it was found that 

  0dppdD  and   01 dppdD  for 0t , so that ap  and bp  are uniquely 

determined. 
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The value of p which (approximately) equated  p,tV 2  and  pV , app  , 

was found (for each set of parameter values) by evaluating these functions on 

successively refined grids for 0p . Beginning with a grid for which p $40, an 

approximate value for ap  was found, the grid refined until the approximation for ap  

reported in Table 1 (for each set of parameter values) was found on a grid of p $5. 

The difference between  ap,tV 2  and  apV  was small (usually only a few cents) for 

the values of pa reported in Table 1. Defining the following percentage error: 

           100,5.0, 2221  aaaa pVptVpVptVE , the absolute values of 1E  for 

the values of ap  reported in Table 1 ranged from a minimum of 0.0% to a maximum 

of 3.5710-4%. 

The value of p which approximately equated  p,tW 2  and  pW , bpp  , 

was found (for each set of parameter values) by evaluating these functions on 

successively refined grids for 0p . Beginning with a grid for which p $40.00, an 

approximate value for bp  was found, the grid refined until the approximation for bp  

reported in Table 3 (for each set of parameter values) was found on a grid of 

p $0.01. The difference between  bp,tW 2  and  bpW  was only a few cents for 

the values of bp  reported in Table 3. Defining the following percentage error: 

           100,5.0, 222  bbbb pWptWpWptWE , the absolute value of 2E  for 

the values of bp  reported in Table 3 ranged from a minimum of 1.4610-4% to a 

maximum of 5.9310-3%. 

The minimum annual valuation of the non-market component of standing 

value required to conserve the forest starting with cleared land is given in Table 1 as 

1ANV    tFlimrpANV a 21  . For the base case (wood prices: sp $51.7/m3 and 

pp $10/m3 and 050.r  ), 1ANV $530.56/ha for water price wp $6.69/ML and 

1ANV $500.81/ha for water price wp $24.09/ML. For the cases of high wood 

prices ( sp $62.04/m3, pp $12.00/m3) and 050.r  , 1ANV $641.30/ha when 

wp $6.69/ML and 1ANV $611.55/ha when wp $24.09/ML. Thus, 1ANV  is not 

particularly sensitive to water price but increases substantially (by 20.87% when 

wp 6.69 and by 22.11% when 0924.pw  ) when wood prices are increased by 

20%. 
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The values of 1ANV  when 060.r   are also shown in Table 1 and these are 

close to the corresponding values of 1ANV , calculated when 050.r  . 

The annual opportunity cost of not cutting down the forest, starting with bare 

ground and omitting the non-market component of standing value in the objective 

function of the optimal rotation problem  0,tV  is shown in Table 2 as 2ANV  

      etFtVrANV  122 lim0, . For each set of parameter values, 2ANV  is 

substantially less than the corresponding value of 1ANV  shown in Table 1. For 

example, for the base values of the parameters ps p,p,r  and for wp $6.69/ML, 

1ANV $530.56/ha and 2ANV  = $62.03/ha. Thus, 1ANV  is more than eight times 

2ANV .  

The minimum annual valuation of the non-market component of standing 

value required to conserve the forest, starting with a forest aged t0 = 60 years is given 

in Table 3 as ANV3      0223
0 tFtFlimerpANV rt

b  . For the base case 

( sp $51.7/m3, bp $10.00/m3 and 050.r  ), 3ANV $730.06/ha when 

wp $6.69/ML and 3ANV $714.20/ha when wp $24.09/ML. For the cases of 

high wood prices ( sp $62.04/m3, pp $12.00/m3) and 050.r  , 

3ANV $883.62/ha when wp $6.69/ML and 3ANV $867.67/ha when 

wp $24.09/ML.Thus, 3ANV  is not particularly sensitive to water price but does 

increase substantially (by 21% when wp 6.69 and by 21.5% when 0924.pw  ) 

when wood prices are increased by 20%. 

The values of 3ANV  when 060.r   are also shown in Table 3 and these are 

substantially higher than the corresponding values of 3ANV  calculated when 

050.r  . 

The annual opportunity cost of not cutting down the forest, starting with a 

forest aged 0t  60 years and omitting the non-market component of standing value 

in the objective function of the optimal rotation problem   0,tW  is shown in Table 4 

as 4ANV          01124
00 tFtFlime,tWrANV rt  . For each set of parameter 

values, 4ANV  is smaller than the corresponding value of 3ANV  shown in Table 3, but 
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not by much. For example, for the base values of the parameters, ps p,p,r , and 

wp $6.69/ML, 3ANV $730.06/ha and 4ANV $710.54/ha. 

 

5. Summary and Conclusions 

Indigenous forests have high conservation value and omitting this non-market 

component of forest standing value from the objective function of a problem aimed at 

finding the optimal forest rotation can be expected to bias results. The difficulty is 

that the price or value of the non-market component of standing value is unknown. 

An important application of the results of optimal forest rotation problems is 

that of estimating the opportunity cost of not harvesting the forest (or forest 

preservation). This may be done by subtracting the asymptotic present value of the 

objective function from the net present value of following an optimal forest rotation 

policy as estimated by the maximised value of the objective function. However, the 

omission of the non-market component of forest standing value from the objective 

function of the optimal rotation problem will produce an erroneous result. 

An alternative approach to that of estimating the opportunity cost of 

conservation is developed in the paper. Assuming that a suitable functional form for 

the non-market component of forest standing value is known, an estimate of the 

minimum valuation of the non-market component of forest standing value which 

would warrant forest conservation may be obtained by finding the price of the non-

market component of forest standing value which equates the net present value of the 

optimal forest rotation policy to the asymptotic present value of the standing value of 

the forest.  

Sufficient conditions for the existence of this value of the price of the non-

market component of forest standing value were presented in this paper for the cases 

of forestry commencing with cleared ground and forestry after harvesting a standing 

forest aged 0t >0 years. 

The applied results of the paper involved estimating the minimum annual 

valuation of the non-market component of forest standing value which would warrant 

conservation of the Mountain Ash forests of the Thomson Dam Catchment in Central 

Gippsland, Victoria, Australia. These forests have very high conservation value and 

are also of great scientific interest. For the Mountain Ash forests it was argued that a 

standardised version of the above ground biomass function for the dominant forest 
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tree (estimated by Grierson et al., 1991) would be a satisfactory functional form for 

the non-market component of forest standing value. 

Starting with cleared ground and using the base set of parameters, r = 0.05, ps 

= $51.7, pp = $10.00/m3 and with the low water price wp  $6.69/ML, the minimum 

annual valuation of the non-market component of forest standing value that would 

warrant conservation was estimated at $530.56/ha. Using the same parameter values, 

the opportunity cost of conserving the forest (obtained by omitting the non-market 

component of forest standing value from the objective function of the optimal rotation 

problem) was estimated at $62.03/ha. 

Starting with cleared ground and using the base set of parameters and 

increasing the water price to wp $24.09/ML, the minimum annual valuation of the 

non-market component of forest standing value that would warrant conservation 

decreased to $500.81/ha. Using the same parameter values, the opportunity cost of 

conserving the forest (obtained by omitting the non-market component of forest 

standing value from the objective function of the optimal rotation problem) is 

$66.51/ha. 

For the base set of parameters and the low water price and starting with a 

forest aged 60 years, the minimum annual valuation of the non-market component of 

forest standing value that would warrant conservation was estimated at $730.06/ha. 

Using the same parameter values, the opportunity cost of conserving the forest 

(obtained by omitting the non-market component of forest standing value from the 

objective function of the optimal rotation problem) was estimated at $710.54/ha. 

For the base set of parameters and the high water price and starting with a 

forest aged 60 years, the minimum annual valuation of the non-market component of 

forest standing value that would warrant conservation decreased to $714.20/ha. Using 

the same parameter values, the opportunity cost of conserving the forest (obtained by 

omitting the non-market component of forest standing value from the objective 

function of the optimal rotation problem) was estimated at $695.78/ha. 

It may therefore be concluded that the estimated opportunity cost of 

conserving the Mountain Ash forests of the catchment of the Thomson Dam 

underestimates the minimum valuation of the non-market component of forest 

standing value that would warrant the conservation of these forests. In the case where 

forestry commences with cleared ground, the estimated opportunity cost of 
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conservation underestimates the minimum valuation of the non-market component of 

forest standing value that would warrant conservation by a factor between 7.5 and 8.6. 

 

Results were also presented for wood prices and the discount rate set at 20% 

higher than the base case. 
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Endnotes 
 
1 Lockwood et al. (1993) note that “preserving the forest for its plants and animals” expresses existence 
value, “keeping the forest for future generations” expresses bequest value, “to know the forest exists” 
expresses existence value and “to visit the forest” expresses present use and option value. 
2 Let  tG  be the value of timber in a forest of age t,  tF  the present value of forest standing value at 

age t and r the continuous discount rate. Assume that harvesting and regeneration are costless and that 
timber prices are constant, then Hartman (1976) shows that forestry involving infinite rotations of age t 

has a present value         rtrt etFetGtV   1 . Deleting  tF  from  tV  yields the objective 

function of the Faustmann problem,      rtrt eetGtV   10 . 
3 Norton (1996, p.22) defines biodiversity as “the variety of life – the different plants animals and 
microorganisms, the genes they contain and the ecosystems of which they form a part. 
4 Attiwill (1994) notes that all of the species found in mature forests can be found in regrowth 
Mountain Ash forests which have been logged or burned in the past 50 years but which include large 
dead or living trees which provide adequate hollows for nest sites (p.315). However, he also states that 
it takes 20-30 years after logging for the regrowth understory to resemble that of mature forest (p.313) 
and 25-40 years after logging for the abundance and diversity of birds to be similar to that of mature 
forest (p.314). Generally, however he notes that vertebrates are more abundant in older forests than in 
younger forests and that large trees older than 120 years are required to provide nesting sites for many 
species of possums, gliders, owls and cockatoos (p.314). Thus, it seems that biodiversity is reduced in 
regrowth forest for up to 40 years after logging and for up to 120 years if adequate nesting sites for 
some birds and mammals are not provided. Despite this, Attiwill argues that regional biodiversity can 
be maintained if part of the forest estate is logged, provided that timber harvesting is planned to create 
a mosaic of age classes so that diversity is maintained for the future (p.334). For an alternative 
viewpoint, see Lindenmayer (1999, p.281). 
5Information in this section for which no source is given was obtained from Officers of Melbourne 
Water or Officers of the DNRE, Victoria or from the websites of Melbourne Water 
(www.melbwater.com.au), City West Water (www.citywestwater.com.au), South East Water 
(www.sewl.com.au) and Yarra Valley Water (www.yvw.com.au). 
6 Jayasuriya et al. (1993) have experimental evidence supporting the hypothesis that the main 
difference in stream flow from 50 year old and 230 year old Mountain Ash forest is due to differences 
in transpiration. Transpiration was higher from a forest stand aged 50 years, than from a forest stand 
aged 230 years. 
7 A two-part tariff applies for Melbourne’s water consumers, and each retailer has a different water 
tariff for domestic and commercial customers. For domestic consumers, the year 2000 service fee 
ranged from $13.15 to $31.28 per quarter and the year 2000 usage charge ranged from $0.69/kl to 
$0.77/kl. For commercial consumers the year 2000 quarterly service fee ranged from $36.00 to $9.38 
and the year 2000 usage charge ranged from $0.67/kl to $0.70/kl. (See footnote 5). 
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Table 1: Results for cleared land, standardised biomass in standing value 
 

Discount rate r  = 0.05 

Water 
Price 

Wood Prices (Base) 
ps = $51.70/m3 & pp = $10/m3 

Wood Prices (High) 
ps = $62.04/m3 & pp = $12.00/m3 

 Years $ $/ha $/ha $/ha Years $ $/ha $/ha $/ha 

 t2 pa AVB AVW-e ANV1 t2 pa AVB AVW-e ANV1 

$6.69/ML 130.94 1605 10611.25 600.66 530.56 130.97 1940 12826.06 600.66 641.30 

$24.09/ML 129.37 1515 10016.23 3463.35 500.81 129.68 1850 12231.03 3463.35 611.55 

 
 

Discount rate r  = 0.06 

 t2 pa AVB AVW-e ANV1 t2 pa AVB AVW-e ANV1 

$6.69/ML 131.29 1820 8732.74 437.72 523.96 130.76 2195 10532.06 437.72 631.92 

$24.09/ML 129.77 1740 8348.88 2876.63 500.93 130.39 2120 10172.20 2876.63 610.33 

 
 
 
 
Note: t2 is the optimal rotation period, pa is the price of a standardised biomass unit 
which equates the net present value of forestry (not in table) to the sum of AVB and 
AVW-e. AVB is the asymptotic present value of standardised biomass and AVW-e is 
the asymptotic present value of water minus the regeneration cost. ANV1 is the annual 
value of standardised biomass obtained using the formula AVBrANV 1 . 
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Table 2: Results for cleared land, no standardised biomass in standing value 
 

Discount rate r  = 0.05 

Water 
Price 

Wood Prices (Base) 
Ps = $51.70/m3 & pp = $10/m3 

Wood Prices (High) 
ps = $62.04/m3 & pp = $12.00/m3 

 Years $ $/ha $/ha $/ha Years $ $/ha $/ha $/ha 

 t2 p PVF AVW-e ANV2 t2 P PVF AVW-e ANV2 

$6.69/ML 33.40 0.0 1849.19 600.66 62.03 33.29 0.0 2116.75 600.66 75.80 

$24.09/ML 31.19 0.0 4793.49 3463.35 66.51 31.45 0.0 5060.21 3463.35 79.84 

 
 

Discount rate r  = 0.06 

 t2 p PVF AVW-e ANV2 T2 p PVF AVW-e ANV2 

$6.69/ML 31.63 0.0 1286.77 437.72 50.94 31.51 0.0 1468.73 437.72 61.86 

$24.09/ML 29.58 0.0 3806.78 2876.63 55.81 29.81 0.0 3988.15 2876.63 66.69 

 
 
 
 
Note: t2 is the optimal rotation period, p is the price of a standardised biomass unit, 
PVF is the net present value of forestry, AVW-e is the asymptotic present value of 
water minus the regeneration cost and ANV2 is the annual opportunity cost of not 
cutting down the forest, starting with cleared land. ANV2 is obtained using the 
formula   eAVWPVFrANV 2 . 
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Table 3: Results for forest aged 60 years, standardised biomass in standing value 
 

Discount rate r  = 0.05 

Water 
Price 

Wood Prices (Base) 
ps = $51.70/m3 & pp = $10/m3 

Wood Prices (High) 
ps = $62.04/m3 & pp = $12.00/m3 

 Years $ $/ha $/ha $/ha Years $ $/ha $/ha $/ha 

 t2 pb AVB AVW ANV3 t2 pb AVB AVW ANV3 

$6.69/ML 34.86 83.30 14601.31 1245.54 730.06 34.75 100.82 17672.32 1245.54 883.62 

$24.09/ML 32.54 81.49 14284.04 4485.07 714.20 32.83 99.00 17353.30 4485.07 867.67 

 
 

Discount rate r  = 0.06 

 t2 pb AVB AVW ANV3 t2 pb AVB AVW ANV3 

$6.69/ML 32.43 56.73 14075.10 1019.96 844.51 32.32 68.60 17020.13 1019.96 1021.21

$24.09/ML 30.32 56.16 13933.68 3672.76 836.02 30.56 68.03 16878.71 3672.76 1012.72

 
 
 
 
Note: t2 is the optimal rotation period, pb is the price of a standardised biomass unit 
which equates the net present value of forestry (not in table) to the sum of AVB and 
AVW, where AVB is the asymptotic present value of standardised biomass and AVW is 
the asymptotic present value of water. ANV3 is the annual value of standardised 
biomass obtained using the formula AVBrANV 3 . 
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Table 4: Results for forest aged 60 years, no standardised biomass in standing 
value 

 
Discount rate r  = 0.05 

Water 
Price 

Wood Prices (Base) 
ps = $51.70/m3 & pp = $10/m3 

Wood Prices (High) 
ps = $62.04/m3 & pp = $12.00/m3 

 Years $ $/ha $/ha $/ha Years $ $/ha $/ha $/ha 

 t2 p PVF AVW ANV4 t2 p PVF AVW ANV4 

$6.69/ML 33.40 0.0 15456.36 1245.54 710.54 33.29 0.0 18445.36 1245.54 859.99 

$24.09/ML 31.19 0.0 18400.66 4485.07 695.78 31.45 0.0 21388.82 4485.07 845.19 

 
 

Discount rate r  = 0.06 

 t2 p PVF AVW ANV4 t2 p AVB AVW ANV4 

$6.69/ML 31.63 0.0 14893.14 1019.96 832.39 31.51 0.0 17797.34 1019.96 1006.64 

$24.09/ML 29.58 0.0 17413.95 3672.76 824.47 29.80 0.0 20316.76 3672.76 998.64 

 
 
 
 
Note: t2 is the optimal rotation period, p is the price of a standardised biomass unit, 
PVF is the net present value of forestry, AVW is the asymptotic present value of 
water, ANV4 is the annual opportunity cost of not cutting down the forest. ANV4 is 
estimated using the formula  AVWPVFrANV 4 . 
 
 
 


