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Application of Comparative Dynamics in
Stochastic Invasive Species Management in

Agricultural Production

Abstract

In this study, we formulate a stochastic dynamic framework for pest control over the

growing season taking into account forecasts of weather conditions and pest infestation

expectations. Using stochastic envelope theorem and stochastic comparative dynamics,

we analytically show how the stochastic correlation between the prediction errors should

affect optimal pesticide usage path. As a case study, we apply the analytical results of

the paper for pesticide use in the Palouse region of Washington where pea aphid is the

primary threat for lentil production. By stochastic dynamic programming, our simulation

shows the optimal dimethoate usage path, which illustrates our findings in the analytical

part.

Key words: Stochastic Optimal Control, Climate Change, Pest Management

JEL classification: Q10, Q54

Introduction

The purpose of this paper is to examine conditional, forecast-based dynamic pest manage-

ment in agricultural crop production under stochastic pest infestations and stochastic cli-

mate dynamics throughout the growing season. Forecasts of pest outbreaks in conjunction

with forecasts of climatic conditions can be used to improve effectiveness of pest man-

agement decisions. In this paper we show that forecasts of climatic conditions and pest

outbreaks can be used to optimize applications of pesticides, given potential correlation be-

tween prediction errors of stochastic pest infestations and climatic conditions considering

effects of both of these factors on yields(Elbakidze, Lu, and Eigenbrode 2011; Cobourn
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et al. 2011). Using stochastic optimal control we show that correlation between forecast

errors for climate prediction and forecast errors for pest outbreaks can be a factor for im-

proving pesticide application efficiency.

The literature on pest management typically specifies the pest management problem in

terms of a damage (or damage abatement) function in conjunction with the production

function (Lichtenberg and Zilberman. 1986; Fox and Weersink 1995; Saha, Shumway, and

Havenner 1997; Carpentier and Weaver 1997). The advantage of such formulation is that

it allows the modeler to separate the effects of direct production inputs from the effective-

ness of pest control inputs via damage function specification. While the earlier studies

focused on static and deterministic specifications, several later studies have extended the

literature to dynamic examinations (Zivin, Hueth, and Zilberman 2000; Marsh, Huffaker,

and Long. 2000; Olson and Roy 2002; Zhang and Swinton 2009). As Olson (2006) pointed

out, dynamic models provide more insight than static models in that the value of pesticide

application in such models includes not only the benefits of removing the pests in the cur-

rent period but also the discounted sum of benefits from precluding future pests. Following

this logic, we construct a dynamic model corresponding to a planning horizon lasting from

planting to harvesting. We assume that the decision on planted crop acreage has been made,

but the decisions about pesticide use are made throughout the growing season.

Another important aspect of pest management problem is uncertainty associated with

pest infestation. The dynamics of pest populations can be expressed in terms of predicted

(or expected) pest population growth and a stochastic fluctuation as a result of unexplained

factors that may cause the realized population of the pest to be higher or lower than what is

expected. In stochastic pest management studies a typical assumption is that the dynamics

of pest infestation follows a diffusion process based on Weiner process type of formu-

lation (Saphores 2000; Sunding and Zivin 2000; Saphores and Shogren 2005; Richards

et al. 2005). Hertzler (1991) uses stochastic optimal control and Ito stochastic calculus

to study dynamic agricultural decisions under risk. He suggests that diffusion process-
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based stochastic dynamic models and Ito calculus can be used for economic studies of pest

control in agricultural production. Olson and Roy (2002) approach the problem of man-

aging biological invasions in terms of minimizing expected value of discounted sum of

costs and damages subject to pest growth dynamics. They solve the minimization prob-

lem using stochastic dynamic programming and provide conditions for when it is optimal

to eradicate the invasive species. Cobourn (2009) also uses stochastic dynamic program-

ming to study pest management options when activities of heterogeneous producers can

influence effectiveness of pesticide use. Kim (2006) study optimal allocation of resources

between prevention and control for invasive species management using dynamic formula-

tion of stochastic invasion and subsequent discovery. We extend the previous formulations

by incorporating two related stochastic variables in our optimal control model: climatic

conditions and pest invasions. Furthermore, we examine how potential correlation between

these stochastic variables may affect optimal pesticide use.

The roles of climate conditions in agriculture (Costello, Adams, and Polasky (1998);

Rubas (2008); Chen, McCarl, and Schimmelpfennig (2004); Chen and McCarl (2001)) as

well as the role of climatic condition in pest management (Chen and McCarl 2001; Cobourn

et al. 2011; Elbakidze, Lu, and Eigenbrode 2011) have been addressed by economists.

However, the economists have given little attention to dynamic pest management when

stochastic climatic conditions affect crop growth as well as stochastic pest populations si-

multaneously. Olson and Roy (2002) formulated their model assuming that pest growth

is affected by stochastic environmental disturbances but did not account for potential ran-

domness of pest outbreaks beyond randomness implied by environmental conditions. El-

bakidze, Lu, and Eigenbrode (2011) examined the effects of climate and pests on agri-

cultural productivity in a simultaneous fashion taking into account the effect of climate

conditions on pest infestations. However, their analytical framework is set in a static set-

ting. Another static model is given by Cobourn et al. (2011); they have also examined how

climatic variables may positively affect crop yields which in turn can attract more pests via

3



improved habitat. In this paper we combine the effects of climatic conditions on pest infes-

tations and on crop yields in a stochastic optimal control setting. Both, weather conditions

and pest invasion dynamics are assumed to be stochastic. Furthermore, correlation between

weather and pest population prediction errors is incorporated in optimal pest management

decisions.

The rest of this paper is organized as follows: In the next section, we provide general

framework for stochastic optimal control analysis of pest management in the context of

stochastic climate and stochastic pest outbreaks. Optimality conditions are discussed and

the dependence of optimal pest management on correlation between stochastic climate and

stochastic pest population is demonstrated. Next, we examine a specific analytical case

with specific functional forms and provide conditions for optimal pesticide use path as

a function of the correlation coefficient between pest and climate forecast errors. The

empirical section is based on the formulations in the preceding section and is presented

for the case of lentil production in Pacific North West. We conclude with presentation of

empirical results and closing comments.

The General Framework

In this section we analyze the problem of pest management under stochastic pest infesta-

tion and stochastic climate dynamics using general theoretical dynamic framework, avoid-

ing specific functional forms as much as possible. This allows us to avoid imposing im-

plicit assumptions (see discussion in Fox and Weersink 1995 for instance), and allows for

exploration of comparative dynamic properties of the optimal pesticide usage path. Our

framework is based on minimization of total expected losses and costs associated with

pest infestations and pest management. The analysis reflects that crop growth depends on

stochastic pest infestation and stochastic climatic conditions.

We use a nonnegative climate index θ(t) to denote climate conditions (degree day ac-

cumulation, see Marsh, Huffaker, and Long. 2000 for discussion, and/or precipitation for

4



instance). Climate index is assumed to follow a diffusion process (Sunding and Zivin 2000;

Saphores and Shogren 2005):

dθ = µ
θ (θ , t)dt +σ

θ (θ , t)dθ̃(1)

where µθ and σθ denote expected changes in the climate index over time and corre-

sponding standard deviation over time respectively. θ̃ is the standard wiener process, i.e.

θ̃ ∼ N(0, t) with var(dθ̃) = dt. Consequently, standard deviation of θ̃ is expanding with

constant increment over time. At any time t, µθ can be interpreted as the predictable rate

of change of climate index with standard deviation σθ . Notice that both µθ and σθ vary

with time as well as climate conditions.

Pest population is specified as:

A(t) = A
(
u(t) ,θ(t), t, Ã

)
(2)

where u(t) denotes pesticide usage path, Ã represents another Wiener process (that is Ã ∼

N(0, t)) which can be interpreted as all other uncontrolled factors that affect pest population

beyond climatic factors, pest management activities, and time. A is assumed to be twice

differentiable in all of its arguments. Applying Ito’s Lemma (Hertzler 1991; Kamian and

Schwartz 1991)and substituting (1), we have1 (see Appendix 1a):

dA =

(
At +Aθ µ

θ +
1
2

Aθθ

(
σ

θ

)2
+

1
2

AÃÃ +A
θ Ãρ

θ̃ Ã
σ

θ

)
dt +Aθ σ

θ dθ̃ +AÃdÃ(3)

Reflecting a possibility of interaction between stochastic climatic index and pest popula-

tion (Elbakidze, Lu, and Eigenbrode 2011; Cobourn et al. 2011) we assume that errors

in climate predictions can be correlated with stochastic factors that contribute to unex-

plained variability of pest outbreaks, dθ̃dÃ = ρ θ̃ Ãdt (Kamian and Schwartz 1991), where

ρ θ̃ Ã denotes the correlation2 between dθ̃ and dÃ. Non zero ρ θ̃ Ã implies that deviations

from expected (or predicted) changes in climate index can be correlated with remaining

unexplained variability in pest dynamics.
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Let µA (u,A,θ , t)≡ At +Aθ µθ + 1
2Aθθ

(
σθ
)2
+ 1

2AÃÃ+A
θ Ãρ θ̃ Ãσθ denote the determin-

istic growth rate of pest population which includes second order components from Ito’s

Lemma but does not include stochastic elements. We can then rewrite the pest population

dynamics equation as:

dA = µ
A (u,A,θ , t)dt +Aθ σ

θ (θ , t)dθ̃ +AÃdÃ(4)

Equation (4) shows that A is also following a diffusion process. Specifications based on

similar diffusion processes can be found in prior studies (Saphores and Shogren 2005 and

Mbah et al. 2010 for instance). However, rather than having a single source of random-

ness as in previous literature, in our formulation the change in pest population has two

sources of randomness. One associated with climate (θ̃ ), and the other associated with

other unaccounted environmental, ecological or other factors which can affect pest pop-

ulation dynamics (Ã). µA denotes the intrinsic deterministic pest growth rate, which in-

cludes deterministic effect of climate on pest growth and the second order terms from Ito’s

Lemma. We assume that µA is decreasing in the control variable, u. Keeping in mind that

dθ̃dθ̃ = dt, dÃdÃ = dt, it can be easily shown that, the variance of dA is:

Var(dA) =Var(Aθ σθ dθ̃ +AÃdÃ)

=
(
Aθ σθ

)2dt +(AÃ)
2dt +2Aθ AÃρ θ̃ Ãσθ dt ≡

(
σA)2dt

Next, we formulate losses in crop growth as a function of stochastic pest population and

stochastic climate dynamics.

L(t) = L
(
A
(
u(t) ,θ(t), t, Ã

)
,θ(t, θ̃), t

)
(5)

We assume that loss in crop growth, L, is twice differentiable with respect to all of its

arguments and is increasing in A. Notice that the climate index (θ ) is an exogenous variable.

It affects the state variables, pest (A) and loss (L) dynamics, but is not a function of control

variable (u). This implies that in our optimal control problem state variables are A and L.

Again, using Ito’s lemma and equations (1) and (4), the dynamics of losses in crop growth
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can be expressed as (see Appendix 1b):

dL =

(
Lt +Lθ µ

θ +LAµ
A +

1
2

Lθθ

(
σ

θ

)2
+

1
2

LAA

(
σ

A
)2

+Lθ Aρ
θ̃ Ã

σ
θ

σ
A
)

dt(6)

+
(
Lθ σθ (θ , t)+LAAθ σθ (θ , t)

)
dθ̃ + LAAÃdÃ

≡ µL (u,A,L,θ , t)dt +
(
Lθ σθ (θ , t)+LAAθ σθ (θ , t)

)
dθ̃ + LAAÃdÃ

where µL denotes the expected (or deterministic) loss rate as a function of weather and

pest arguments and is assumed to be decreasing in u. Variance of dL is the variance of the

sum of two stochastic components (last two terms of equation (6) and can be expressed as

follows keeping in mind that Wiener process specification implies dθ̃dθ̃ = dt, dÃdÃ = dt

and dθ̃dÃ = ρ θ̃ Ãdt:(
σL)2dt =

(
Lθ σθ +LAAθ σθ

)2dt + (LAAÃ)
2dt +2ρ θ̃ Ã (Lθ σθ +LAAθ σθ

)
LAAÃdt

=
[(

LAσA)2
+Lθ σθ

(
Lθ σθ +2LAAθ σθ +2LAAÃρ θ̃ Ã

)]
dt

The objective is to minimize expected losses and costs associated with pest infestation

and management, which can be expressed as the following stochastic optimal control prob-

lem:

J(t,A,L) = min E
{

e−rT pL(T )+
∫ T

0
e−rtwu(t)dt

}
(7)

subject to (4) and (6)

where T is the terminal crop harvest period, r is discount rate, u(t) denotes the path of

pesticide usage, and p and w denote the prices of harvested crops and costs of pesticide

use respectively. At terminal time T , L(T ) can be interpreted as yield loss. Thus, the first

term in the objective function can be interpreted as the discounted value of lost yield and

the second term is the accumulated discounted cost of pesticide use. This formulation is

essentially the continuous version of the objective function in Olson and Roy (2002).
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The optimal solution for the value function is given by Hamilton-Jacobi-Bellman equa-

tion (8) (Kamian and Schwartz (1991)):

−Jt = min
u

{
e−rtwu+ JLµ

L + JAµ
A +

1
2

JLL
(
σ

L)2
+

1
2

JAA

(
σ

A
)2

+ JALρ
AL

σ
L
σ

A
}

(8)

with the boundary condition:

J(T ) = e−rT pL(T )(9)

Equation (8) tells us that on the optimal pesticide usage path, the change in optimal total

cost over time is function of discounted pesticide cost, shadow prices of yield loss and pest

growth state equations, and the standard deviations and correlation of the state variables

which enter the value function due stochastic nature of the problem (Kao 1996). The ter-

minal value of total cost is determined by the boundary condition (9) and is equal to the

value of lost yield. It should be noted that ρAL is the correlation coefficient between the dy-

namics of pest population and crop growth loss, not to be confused with ρ θ̃ Ã. However, the

two correlation coefficients are closely related. Notice that COV (dA,dL) = σAσLρALdt.

Meanwhile,

COV (dA,dL) =COV
(
Aθ σθ dθ̃ +AÃdÃ,

(
Lθ σθ +LAAθ σθ

)
dθ̃ +LAAÃdÃ

)
=
[
Aθ

(
σθ
)2
(Lθ +LAAθ )+AÃLAAÃ +σθ ρ θ̃ Ã (AÃ (Lθ +LAAθ )+Aθ LAAÃ)

]
dt

Therefore,

σAσLρAL = Aθ

(
σθ
)2
(Lθ +LAAθ )+AÃLAAÃ +σθ ρ θ̃ Ã (AÃ (Lθ +LAAθ )+Aθ LAAÃ)

ρ
AL =

Aθ

(
σθ
)2
(Lθ +LAAθ )+(AÃ)

2LA

σAσL +
AÃσθ (Lθ +2LAAθ )

σAσL ρ
θ̃ Ã(10)

which implies that ρAL is a linear function of ρ θ̃ Ã. The direction of the relationship is not

clear without further assumptions about functional forms of A and L and implied signs of

the derivatives. For simplicity, we use ρ for ρAL in all of the following texts. Next we

define the following matrices: J1 = [JA,JL]; J2 =

 JAA JAL

JAL JLL

; µµµ =

 µA (u,A,θ , t)

µL (L,A,θ , t)

;
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ΣΣΣ =

 (
σA)2

σAσLρ

σAσLρ
(
σL)2

. Then, (8) can be rewritten as:

−Jt = min
u

{
e−rtwu+J1

µµµ +
1
2

tr
(
J2

ΣΣΣ
)}

(11)

To formulate the Hamiltonian version of the problem, let λλλ
1 =

[
λ 1 (A,L) ,λ 2 (A,L)

]
denote the vector of co-state variables, where λ 1 (A,L) is the co-state variable for the pest

dynamics equation and λ 2 (A,L) is the co-state variable for yield loss state equation respec-

tively. Both can be functions of A and L. Let the following matrix denote the first order

derivatives of the co-state variables with respect to state variables, λλλ
2 =

 λ 1
A λ 1

L

λ 2
A λ 2

L

. The

Hamiltonian then can be expressed as expected value, which includes second order terms

from Ito’s Lemma (Xepapadeas (1997)):

H = E
{

e−rtwu+λλλ
1
µµµ +

1
2

tr
(

λλλ
2
ΣΣΣ

)}
(12)

By maximum principle,

∂H
∂u

= e−rtw+E
{

λλλ
1 ∂ µµµ

∂u
+

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∂u

)}
= 0(13)

The first term on the right hand side is the discounted value of instantaneous marginal cost

of pesticide at any particular time t. The first term inside of the expectation operator can be

interpreted as the marginal benefit of the control. The second term inside of the expectation

operator captures the control variable’s influence on the variability of its benefits.

Assuming existence of a unique solution path, we are interested in whether and how the

correlation between weather and pest outbreak predictions errors influences optimal pest

control decisions. To address this question we turn to the stochastic counterpart of the

dynamic envelope theorem of Lafrance and Barney (1991).
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Proposition 1 (Stochastic Dynamic Envelope Theorem) On the optimal solution path the

following identity holds:

∂J∗(t)
∂ρ

=
∫ T

0

∂H(t)
∂ρ

|u=u∗ dt−E
∫ T

0

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∗

∂ρ

)
dt

This identity expresses the effect of the correlation coefficient on the trajectory of the

value function. On the left hand side, the derivative of the value function is taken on the

optimal control path. However, on the right hand side, the first component is the deriva-

tive of Hamiltonian evaluated on the optimal control path minus the expected value of the

derivative of the second moment under optimal solution. Notice that, in the deterministic

case, the above equation reduces to the dynamic envelope theorem proved by Lafrance and

Barney (1991), which does not contain the second term on the right hand side of the above

identity.

Proof Differentiating both sides of equation (7) on the optimal path of u∗ w.r.t. ρ and

making use of the Leibniz Theorem and we have:

∂J∗(t)
∂ρ

= E
{∫ T

0
e−rtw

∂u∗ (t)
∂ρ

dt
}

(14)

From (13), we have:

e−rtw =−E
[

λλλ
1 ∂ µµµ

∂u
+

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∂u

)]
(15)

Substituting (15) into (14), we get:

∂J∗(t)
∂ρ

=−E
{∫ T

0

(
λλλ

1 ∂ µµµ

∂u
+

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∂u

))
∂u∗ (t)

∂ρ
dt
}

(16)

Differentiating both sides of equation (12) w.r.t. ρ we get:

∂H
∂ρ

= E
{

λλλ
1 ∂ µµµ

∂ρ
+

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∂ρ

)}
(17)
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Taking integral from 0 to T on both sides of (17), and using Fubini’s theorem (Durrett

2010) to pull expectation operator outside of integral, we have:∫ T

0

∂H
∂ρ
|u=u∗ dt =

∫ T

0
E
[

λλλ
1 ∂ µµµ

∂ρ
+

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∂ρ

)]
dt =E

∫ T

0

[
λλλ

1 ∂ µµµ

∂ρ
+

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∂ρ

)]
dt(18)

Combining (16) and (18) yields:

∂J∗(t)
∂ρ
−
∫ T

0
∂H(t)

∂ρ
|u=u∗ dt =−E

{∫ T
0

[(
λλλ

1 ∂ µµµ

∂u + 1
2tr
(

λλλ
2 ∂ΣΣΣ

∂u

))
∂u∗(t)

∂ρ
+λλλ

1 ∂ µµµ

∂ρ
+ 1

2tr
(

λλλ
2 ∂ΣΣΣ

∂ρ

)]
dt
}

=−E
{∫ T

0

[
λλλ

1
(

∂ µµµ

∂u
∂u∗(t)

∂ρ
+∂ µµµ

∂ρ

)
+ 1

2

(
tr
(

λλλ
2 ∂ΣΣΣ

∂u

)
∂u∗(t)

∂ρ
+ tr

(
λλλ

2 ∂ΣΣΣ

∂ρ

))]
dt
}(19)

Let x = [A L] and W = [Ã L̃]. Then the state equations in differential form can be written

as: dx = µµµdt +σσσdW where σσσ = [σA σL]. Differentiating state equations w.r.t ρ we get:

∂dx∗

∂ρ
= (

∂ µµµ

∂ρ
+

∂ µµµ

∂x
∂x∗

∂ρ
+

∂ µµµ

∂u
∂u∗

∂ρ
)dt +(

∂σσσ

∂ρ
+

∂σσσ

∂x
∂x∗

∂ρ
)dW(20)

Taking integral from 0 to T on both sides of equation (20) and rearranging yields:∫ T

0
(
∂ µµµ

∂ρ
+

∂ µµµ

∂u
∂u∗

∂ρ
)dt =

∫ T

0

∂dx∗

∂ρ
−
∫ T

0
(
∂σσσ

∂ρ
+

∂σσσ

∂x
∂x∗

∂ρ
)dW−

∫ T

0
(
∂ µµµ

∂x
∂x∗

∂ρ
)dt(21)

Notice that the term
∫ T

0 (∂ µµµ

∂ρ
+ ∂ µµµ

∂u
∂u∗
∂ρ

)dt shows up in (19) and (21). Therefore, we may

combine the two equations and rewrite (19) as:

∂J∗(t)
∂ρ
−
∫ T

0
∂H(t)

∂ρ
|u=u∗ dt = E

{∫ T
0

[
λλλ

1 ∂ µµµ

∂x
∂x∗
∂ρ
− 1

2

(
tr
(

λλλ
2 ∂ΣΣΣ

∂u

)
∂u∗(t)

∂ρ
+ tr

(
λλλ

2 ∂ΣΣΣ

∂ρ

))]
dt
}

−E
∫ T

0 λλλ
1 ∂dx∗

∂ρ
−E

∫ T
0 λλλ

1(∂σσσ

∂ρ
+ ∂σσσ

∂x
∂x∗
∂ρ

)dW
(22)

Using integration by parts, E
∫ T

0 λλλ
1 ∂dx∗

∂ρ
= E(λλλ 1 ∂x∗

∂ρ
)
∣∣T
0 −E

∫ T
0

∂x∗
∂ρ

dλλλ
1 ( See Lafrance and

Barney 1991). Therefore, E(λλλ 1 ∂x∗
∂ρ

)
∣∣T
0 = 0. Then (22) becomes:

∂J∗(t)
∂ρ
−
∫ T

0
∂H(t)

∂ρ
|u=u∗ dt = E

{∫ T
0

[
λλλ

1 ∂ µµµ

∂x
∂x∗
∂ρ
− 1

2

(
tr
(

λλλ
2 ∂ΣΣΣ

∂u

)
∂u∗(t)

∂ρ
+ tr

(
λλλ

2 ∂ΣΣΣ

∂ρ

))]
dt
}

+E
∫ T

0
∂x∗
∂ρ

dλλλ
1−E

∫ T
0 λλλ

1(∂σσσ

∂ρ
+ ∂σσσ

∂x
∂x∗
∂ρ

)dW
(23)

The standard dynamics of stochastic co-state variables are expressed as follows (Yong and

Zhou 1999):

dλλλ
1 =−∂H

∂x
dt +λλλ

2
σσσdW =−(λλλ 1 ∂ µµµ

∂x
+

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∂x

)
)dt+λλλ

2
σσσdW(24)
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Plugging (24) into (23) and rearranging we get (notice that the term λλλ
1 ∂ µµµ

∂x
∂x∗
∂ρ

is cancelled

out):

∂J∗(t)
∂ρ
−
∫ T

0
∂H(t)

∂ρ
dt = E

{∫ T
0 −1

2

(
tr
(

λλλ
2 ∂ΣΣΣ

∂u

)
∂u∗(t)

∂ρ
+ tr

(
λλλ

2 ∂ΣΣΣ

∂ρ

)
+ tr

(
λλλ

2 ∂ΣΣΣ

∂x

)
∂x∗
∂ρ

)
dt
}

−E
∫ T

0

[
λλλ

1(∂σσσ

∂ρ
+ ∂σσσ

∂x
∂x∗
∂ρ

)+ ∂x∗
∂ρ

λλλ
2
σσσ

]
dW

(25)

where tr
(

λλλ
2 ∂ΣΣΣ

∂u

)
∂u∗(t)

∂ρ
+tr

(
λλλ

2 ∂ΣΣΣ

∂ρ

)
+tr

(
λλλ

2 ∂ΣΣΣ

∂x

)
∂x∗
∂ρ

is the same as the total partial deriva-

tive of tr
(

λλλ
2 ∂ΣΣΣ

∗

∂ρ

)
with respect to ρ , and E

∫ T
0

[
λλλ

1(∂σσσ

∂ρ
+ ∂σσσ

∂x
∂x∗
∂ρ

)+ ∂x∗
∂ρ

λλλ
2
σσσ

]
dW = 0 be-

cause mean values of the elements of W are zeros. Therefore, we have:

∂J∗(t)
∂ρ

=
∫ T

0

∂H(t)
∂ρ

|u=u∗ dt−E
∫ T

0

1
2

tr
(

λλλ
2 ∂ΣΣΣ

∗

∂ρ

)
dt

This concludes the proof of proposition one. The power of this proposition is that it al-

lows us to perform comparative dynamic analysis for stochastic dynamic problems. Specif-

ically, we can examine how the optimal solution path is influenced by the correlation be-

tween two stochastic parameters. In the following proposition we show how optimal pes-

ticide use path depends on the correlation between weather and pest outbreak prediction

errors.

Proposition 2 (Comparative Dynamics). On the optimal solution path, the comparative

dynamics is given by:

∂u∗
∂ρ

=

−
(λλλ 1
(

∂2µµµ

∂u∂x−
∂2µµµ

∂u∂ρ

)
∂2J∗(t)
∂x∂ρ

+E
{

1
2 tr(λλλ 2 ∂2ΣΣΣ

∂u∂x−
∂2ΣΣΣ

∂u∂ρ
)
}
)(
∫ T

0
∂2H(t)

∂2ρ
|u=u∗ dt−E

∫ T
0

1
2 tr
(

λλλ
2 ∂2ΣΣΣ∗

∂ρ2

)
dt− ∂2J∗(t)

∂ρ2 )(
λλλ

1 ∂2µµµ

∂u2 +
1
2 tr(λλλ 2 ∂2ΣΣΣ

∂u∂x )
)

∂2J∗(t)
∂x∂ρ

Proof Differentiating both sides of equation (15) w.r.t. ρ , we get:

λλλ
1
(

∂ 2µµµ

∂u∂x
∂x∗

∂ρ
+

∂ 2µµµ

∂u2
∂u∗

∂ρ
+

∂ 2µµµ

∂u∂ρ

)
+E

{
1
2

tr
(

λλλ
2
(

∂ 2ΣΣΣ

∂u∂x
∂x∗

∂ρ
+

∂ 2ΣΣΣ

∂u2
∂u∗

∂ρ
+

∂ 2ΣΣΣ

∂u∂ρ

))}
= 0(26)

Differentiating both side of proposition 1 w.r.t ρ we get:

∂ 2J∗(t)
∂x∂ρ

∂x∗

∂ρ
+

∂ 2J∗(t)
∂u∂ρ

∂u∗

∂ρ
+

∂ 2J∗(t)
∂ρ2 =

∫ T

0

∂ 2H(t)
∂ 2ρ

|u=u∗ dt−E
∫ T

0

1
2

tr
(

λλλ
2 ∂ 2ΣΣΣ

∗

∂ρ2

)
dt(27)
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On the optimal solution path ∂J∗(t)
∂u = 0. Therefore, from (27) we can get:

∂x∗

∂ρ
=

∫ T
0

∂ 2H(t)
∂ 2ρ
|u=u∗ dt−E

∫ T
0

1
2tr
(

λλλ
2 ∂ 2ΣΣΣ

∗

∂ρ2

)
dt− ∂ 2J∗(t)

∂ρ2

∂ 2J∗(t)
∂x∂ρ

(28)

Substituting (28) into (26) and rearranging we confirm proposition 2.

Based on this result it is impossible to determine the direction of the influence of cor-

relation coefficient on u∗ in part because the right hand side of proposition two includes

second order cross partial derivatives with indeterminate signs at this stage. Further as-

sumptions need to be made about curvature of growth rate and variance-covariance matrix

for both pest and yield loss to be able to potentially assess the sign of the effect of ρ on

u∗. Furthermore, the correlation coefficient ρ represents correlation between the changes

in pest population levels and crop growth losses rather than the correlation between pest

infestation and climate condition prediction errors which are related via equation (10). Fur-

ther assumptions, or specific functional forms, are needed to asses the relationship between

the two correlation coefficients and consequently the effect of the correlation on optimal

pesticide use path. We consider the following specific case.

The Specific Case

The dynamics of climate index is assumed to follow a diffusion process. A specific func-

tional form for equation (1) is chosen as3:

dθ = µ
θ

θdt +σ
θ

θdθ̃(29)

It is easy to check (see appendix 2) that a solution to this stochastic differential equation

has the explicit form:

θ = θ (0)e[µ
θ−(

σθ)
2

2 ]t+σθ θ̃(30)
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Let’s assume that the natural pest growth dynamics is following a diffusion process and

is influenced by climate in the following way:

A = A(0)e[µ
A−(

σA)
2

2 ]t+σAÃ f 1 (θ , t)(31)

where µA denotes the intrinsic pest growth rate, and influence of weather takes the form

f 1 (θ , t) = θ α . Then:

A = A(0)e[µ
A−(

σA)
2

2 ]t+σAÃ
θ

α(32)

It can be shown (see appendix 3) that the pest dynamics in differential form is:

dA = [µA +αµ
θ +ασ

A
σ

θ
ρ

Aθ +
α (α−1)

θ 2 ]Adt +σ
AAdÃ+ασ

θ Adθ̃(33)

Following Lichtenberg and Zilberman. (1986), crop growth losses due to pests can be ex-

pressed as:

L = f (θ , t)D(A)g(u, t)(34)

where f (θ) is maximum yield as a function of climate index, and D(A) denotes the pro-

portional damage function which is assumed to have the following properties: D(0) = 0,

lim
A→∞

D(A) = 1, and ∂D(A)
∂A ≥ 0.

Suppose D(A) is linear in A, and there exists a Amax such that D(Amax)= 1, or D(A) = A
Amax

.

Let’s assume that the abatement function is of the form g(u, t) = e−uβ t where u denotes pes-

ticide use and 0 < β < 1 which assures decreasing marginal productivity of pesticide use.

Assuming f (θ , t) = eµY tθ γ and 0 ≤ A < Amax we can express losses in crop growth over

time as follows, where µY is the intrinsic growth rate of the crop when the weather index

is 1.

L = e(µY−uβ)t
θ

γ A
Amax

(35)
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substituting (32) into equation (35) for A gives:

L = eµY t
θ

γ A
Amax

=
A(0)
Amax

e[µ
Y+µA−uβ−(

σA)
2

2 ]t+σAÃ
θ

α+γ(36)

Similar to the pest dynamics, we can show that (see appendix 4):

dL =
[
µY +µA−uβ +(α + γ)µθ +(α + γ)σAσθ ρ Ãθ + (α+γ)(α+γ−1)

2θ 2

]
Ldt

+σALdÃ+(α + γ)σθ Ldθ̃

(37)

It should be noted that, as in the general case, the correlation coefficient ρ Ãθ is the cor-

relation between pest infestation white noise and change of level of climate index, not

be confused with the correlation between pest infestation white noise and climate in-

dex white noise (ρ Ãθ̃ ). However, in the specific case, by definition COV
(
dÃ, dθ

)
=

ρ Ãθ σθ dt, since Var(dÃ) =Var(dθ) = dt. Also, based on equation (29), COV
(
dÃ,dθ

)
=

COV
(
dÃ,σθ θdθ̃

)
= σθ θρ Ãθ̃ dt. Therefore,

ρ
Ãθ = θρ

Ãθ̃(38)

The correlation coefficients are linearly related. Since θ is nonnegative, it must be the case

that the two correlation coefficients are monotonically related in a non-negative fashion.

Let µL = µY + µA +(α + γ)µθ +(α + γ)σAσθ ρ Ãθ + (α+γ)(α+γ−1)
2θ 2 , then (37) can be

rewritten as:

dL =
(

µ
L−uβ

)
Ldt +σ

ALdÃ+(α + γ)σ
θ Ldθ̃(39)

The producer’s problem is to minimize discounted expected total cost and terminal damage:

J = E min
u

{∫ T
0 e−rtwu(t)dt + e−rT pL(T )

}
s.t. equation (39)

Notice that in the general case, both the dynamics of pest and yield loss are state equations.

However, in this specific case, since there is a one-to-one correspondence between A and L

through the damage function, we have only one state equation.
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Proposition 3 On the optimal pesticide usage path, one should have:

du∗

dρ Ãθ̃

>

=

<

0 if α + γ

>

=

<

0.

Proof The Hamiltonian (see Yong and Zhou 1999) for this problem can be written as:

H = e−rtwu+λ

(
µ

L−uβ

)
L(40)

where the co-state variable is dλ =−∂H
∂L dt +σALdÃ+(α + γ)σθ Ldθ̃ . Therefore,

dλ =−λ

(
µ

L−uβ

)
dt +σ

ALdÃ+(α + γ)σ
θ Ldθ̃(41)

Following Chang (2004), the solution to the stochastic differential equation (41) is of the

following form:

λ = λ (0)e−(µL−uβ)t+
∫ t

0
e−(µL−uβ)(t−s)

σ
ALdÃ+

∫ t

0
e−(µL−uβ)(t−s) (α + γ)σ

θ Ldθ̃(42)

Since Ã and θ̃ are Wiener processes, which have expected values of 0 at any particular

time, the last two integrals yield a value of zero. Therefore, we have:

Eλ = Eλ (0)e−(µL−uβ)t(43)

The co-state variable has to satisfy the end-point transversality condition:

Eλ (T ) =
∂J

∂L(T )
= pe−rT(44)

Evaluating (43) at terminal time T and combining with equation (44), we have:

Eλ (T ) = Eλ (0)e[−(µL−uβ)]T = pe−rT(45)

Therefore, we must have:

Eλ (0) = pe−(r−µL+uβ)T(46)
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Thus,

Eλ = pe[−r+(µL−uβ)]T e[−(µL−uβ)]t = pe−rT e(µL−uβ)(T−t)(47)

Notice that on the optimal path, one should have E ∂H
∂u = 0. Therefore , from (40), we get:

e−rtw−Eλβuβ−1L = 0(48)

Putting (47) into (48), we have:

uβ−1 =
e−rtw
EλβL

=
e−rtw

pe−rT e(µL−uβ)(T−t)
βL

= e(r−µL+uβ)(T−t) w
pβL

(49)

The optimal pesticide usage path is implicitly determined by the equation above, since u

appears on both sides of the equation. Though the explicit form of solution cannot be

acquired, the comparative dynamics can be derived through implicit differentiation of the

equation above w.r.t ρ Ãθ :

(β −1)uβ−2 du∗

dρ Ãθ
= e(r−µL+uβ)(T−t) w

pβL
(T − t)

[
−(α + γ)σ

A
σ

θ +βuβ−1 du∗

dρ Ãθ

]

(β −1)uβ−2 du∗

dρ Ãθ
= uβ−1 (T − t)

[
βuβ−1 du∗

dρ Ãθ
− (α + γ)σAσθ

]
[
(β −1)u−1−βuβ−1 (T − t)

]
du∗

dρ Ãθ
=−(T − t)(α + γ)σAσθ

du∗

dρ Ãθ
=− (T−t)(α+γ)σAσθ

(β−1)u−1−βuβ−1(T−t)

Notice that since 0< β < 1, and T−t ≥ 0 the effect of the correlation coefficient on optimal

use of pesticide is determined by the combined sign of α and γ as suggested in proposition

3.

Moreover, sincedρ Ãθ

dρ Ãθ̃
= θ > 0 (equation (38)), therefore,

du∗

dρ Ãθ̃
= du∗

dρ Ãθ

dρ Ãθ

dρ Ãθ̃
=− (T−t)(α+γ)σAσθ

(β−1)u−1−βuβ−1(T−t)
θ which has the same sign as du∗

dρ Ãθ
.

The proposition is essentially saying that the marginal effect of correlation between cli-

mate and pest prediction errors on optimal pesticide usage is of the same direction as the

marginal effect of climate on yield loss via the combined effect of α and γ(equation (36)).
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The greater the absolute value of combined direct effect of climate on yield loss and in-

direct effect of climate, through pest damages, on yield loss the greater the effect of the

correlation coefficient on optimal pesticide use in absolute terms. If the combined effect of

climate on yield is negative (positive) then the effect of correlation coefficient on optimal

use of pesticide is negative (positive). It should also be noted that our comparative dynam-

ics formula does not only tell the sign, but also shows that the magnitude of the marginal

effect will be determined by the following factors: 1. Time remaining until harvest; 2.

The marginal effect of climate on yield loss; 3. The magnitude of standard errors of pest

and climate predictions; 4. The efficiency of the pesticide use; and 5. The current level of

pesticide application.

Empirical Analyses

In this section, we examine optimal pesticide application decisions throughout a growing

season with the objective of minimizing total costs associated with pea aphid infestations

in lentil production. The objective is to empirically test the hypothesis that in the context of

weather forecast based conditional pest management correlation between climate predic-

tion errors and pest infestation prediction errors can influence optimal pesticide application

decisions.

We use historical lentil production, climate, and aphid infestation data from the Palouse

area of northern Idaho and eastern Washington from 1983 to 2009. Idaho and Washing-

ton produce 24% and 11% of U.S. lentils (USA Dry Pea and Lentil Council, 2007). The

pea aphid (Acyrthosiphon pisum (Harris)) reduces lentil yields through direct damage and

through vectoring the Pea enation mosaic (PEMV) and Bean leaf roll (BLRV) viruses.

Current practice for aphid control is to treat aphids aggressively with dimethoate when the

risk of pest outbreak is considered high(Clement 2006; Clement, Husebye, and Eigenbrode

2010). Growers currently have no quantitative way to assess this risk and rely on inspec-

tion of plants for symptoms and their own perceptions of risk. On the other hand, seeking
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to reduce dimethoate use some growers try to avoid treating for aphids, leaving the crops

vulnerable to pest injuries.

For empirical specification we use discrete time stochastic dynamic programming(Knapp

et al. 2003; Ross 1995). Due to limited availability of appropriate data and functional

relationships between state and control variables we use simplified functional forms and

obtain parameter values through regression analysis in cases where corresponding estimates

could not be obtain from existing literature. Table 1 provides information on parameter

values, corresponding units, and sources.

Objective function:

Consistent with the specifications in previous sections and following Marsh, Huffaker, and

Long. (2000), we assume that the growers minimize their expected total per acre discounted

value of lost yield and costs of pest management.

min TC = E

{
(1+ r)T pL(T )+

T−1

∑
t=0

(1+ r)twu(t)

}
(50)

where the notations are the same as in the previous section. Growing season for lentils

starts in the middle of April but no later than first week of May and harvest starts in the

beginning of August (Oplinger et al. 1991). We consequently assume that the total growing

season consists of 14 weeks (T = 14). Our discount rate for decisions over a single crop

growing season is adopted from Marsh, Huffaker, and Long. (2000), where they choose

r = 0.0005 for a daily discount rate over a crop growing season. In our case, we let r =

(1+0.0005)7−1 = 0.0035 to adjust the rate to a weekly rather than daily rate (see Ross,

Westerfield, and Jaffe 2009 for discussion on discount rate adjustment). The choice variable

in our model is pesticide use which is specified as a binary variable. u(t) = 1 if a grower

chooses to spray in week t; and u(t) = 0 otherwise.

State Equations:

The state equations are expressed as discrete time counterparts of functional forms adopted
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in previous section. The climate dynamics are of the following form4:

θt+1−θt =

(
µ

θ +

(
σθ
)2

2

)
θt +σ

θ
θt∆θ̃(51)

where the notations are the same as in equations (1) and (29).

Similarly, we assume that pest population dynamics follow:

At+1−At =

(
µ

A +

(
σA)2

2

)
At +σ

AAt∆Ã

and following from equation (31) and (34), we assume that pesticide use and climate ad-

justed pest population level is: At = At(θt)
α (1−βut). Then,

At =

[(
µ

A +

(
σA)2

2
+1

)
At−1 +σ

AAt−1∆Ã

]
(θt−1)

α (1−βut−1)(52)

Elbakidze, Lu, and Eigenbrode (2011) report that, without pesticide treatment, a mild (his-

torically observed average in the region) aphid invasion can cause a 40% yield loss. How-

ever dimethoate treatment reduces yield loss to 7%. We make an extrapolating assumption

that the pesticide application reduces yield loss due to aphid by 85% (β = 0.85).

The intrisic crop growth dynamics is of the form:

Y t+1−Y t = µ
YY t(53)

where Y denotes the maximum potential crop growth without aphid attack with climate

index fixed at 1. And the damage function is again, At/Amax. Hence, the crop loss function

is given by:

Lt = (θt)
γY tAt

/
Amax

(54)

Where the other notations are the same as in equation (37). As in the specific case, the only

state equation is the change of loss at any given time, which is determined by equation (54).

Data and model parameters:

The following Seemingly Unrelated Regression analysis5 is used to obtain the parameters
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used in the state equations. lnA = β10 +β11T +β12 lnθ + e1

lnθ = β20 +β21T + e2

(55)

The data for the regression come from two sources. The daily aphid data come from

aphid suction trap records maintained by the Department of Entomology at the University

of Idaho. Daily temperature data comes from the National Climate Data Center. Following

Marsh, Huffaker, and Long. (2000), we use degree-days as a climatic explanatory variable

for number of aphids. The degree-days measures the cumulative extent to which average

daily temperature exceeds a threshold temperature over time. The threshold temperature

varies for different crops and pests. According to University of California, Davis IPM

database, the threshold temperature is 5.5 Celsius degree for pea aphid. The parameters

β11, β21, β12 in (55) correspond to the parameters µA, µθ , and α in the theoretic model

respectively. The standard errors of each equation in (55) represent σA, σθ respectively,

and the correlation coefficient between the two error terms is ρ Ãθ̃ .

Furthermore, we run the following OLS regression to obtain a representation of a rela-

tionship between climate (degree-days) and yield:

lnY = β30 +β31A+β32 lnθ + e3(56)

where parameter β32 corresponds the γ in our theoretic model. Following Elbakidze, Lu,

and Eigenbrode (2011) we use historical state level data of yields from 1983 to 2009 for

Washington State. This period is chosen because of data availability on aphid records. For

climate index, we use the accumulated growing degree-days on August 1st of each year

(the temperature threshold for lentil is 5 Celsius degree, see Gan et al. 2005).

The regression results are shown in table 2. Also, the standard deviation for aphid pre-

diction is 0.167,the standard deviation for temperature deviation is 0.079 and the corelation

coefficient is 0.72 (not reported in the table). Since the regression is based on daily obser-
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vations, weekly parameters for the simulation are calculated as µA = 1.0417− 1 = 0.32,

µθ = 1.02267−1 = 0.17, σA =
√

7 ·0.167 = 0.44, and σθ =
√

7 ·0.079 = 0.21.

From the historical records of lentil yields, the maximum realized yield was 1600 lb/acre,

in 2001 when according to entomological records aphid invasion was mild. Using El-

bakidze, Lu, and Eigenbrode (2011) estimate of 7% reduction in lentil yields due to mild

aphid invasions with the application of pesticides we calculate maximum potential yield

as 1600× 1.07 = 1712. When there is no aphid invasion, the terminal period loss is zero

and the yield is given by the formula Y (T ) = eµY T θ γ (T ). We put in the values of terminal

period potential yield (1712) and corresponding degree day value (2330) to find that the

intrinsic growth rate of lentils is 0.137.

Stochastic Simulation:

With the assigned values for the parameters, we run the optimization 1000 times and solve

using recursive dynamic programming. In our formulation, aphid and climate index are

stochastic processes which follow diffusion processes specified as geometric Brownian mo-

tions. Each run generates optimal pesticide application for a growing season. The mean

value and 95% confidence intervals of the optimal solution paths are given in figure 1. It is

easy to see that this result is in favor of applying pesticides sooner rather than later. This

coincides with Olson and Roy (2002)’s vision of early pesticide applications suppressing

pests in the current period as well as suppressing offspring of pests killed in early periods.

Recall that we have shown in our specific case that if α + γ < 0 and ρ Ãθ̃ > 0, which is the

case in our empirical example, then the optimal pesticide use is negatively affected byρ Ãθ̃ .

For the sake of demonstration we compare pesticide use paths under ρ Ãθ̃ = 0 and under

ρ Ãθ̃ = 0.72. In addition to visual demonstration we test if there are statistically significant

differences between optimized pesticide uses when ρ Ãθ̃ = 0 and when ρ Ãθ̃ = 0.72 for any

given week. One sided t-tests for the mean values of pesticide usage for each week are

reported in table 3. It is clear that between weeks 4 and 7 pesticide use when ρ Ãθ̃ = 0.72 is

statistically significantly lower than in the case of ρ Ãθ̃ = 0 under 15% critical value. In the
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other weeks, the differences are not significant. This comes from the fact that the growers

will almost surely spray in the first few weeks and not spray in the last few weeks. Conse-

quently, the differences in the early and late growing seasons are not significant. Overall,

the empirical result shows that the optimal pesticide use when ρ Ãθ̃ = 0.72 in some weeks

should be lower than the case of ρ Ãθ̃ = 0, which coincides with our expectations from pre-

vious section.

The Two Treatment Constraint:

Dimethoate is considered to be highly toxic. The legal restriction, regulated by the EPA

(EPA 2008), on dimethoate application is that it can be applied at most twice within a grow-

ing season. To reflect this, we reproduce the results with this constraint. The mean value

and 95% confidence intervals of the optimal solution path are given in figure 2.

Figure 2 suggests that pesticide application tends to be more advantageous in the later

part of the growing season if number of applications is restricted. Several factors may

contribute to the shape of the figure. Since the spraying is limited to two sprays over the

growing season, if a grower chooses to spray very early, he will give up the opportunity of

spraying later. Depending on the predictions of aphid infestations over the growing sea-

son and the expected accuracy of such predictions the grower may choose to spray in the

later periods of growing season. In addition to growth in the population of aphids which

invaded the area in previous periods our model also allows for additional invasions to occur

in the later stages of the growing season. Spraying in the earlier stages will kill aphids in

the current period and prevent corresponding population growth that would be produced

by the killed aphids. However, earlier sprays will permit infestations in the later periods

to grow unchecked. Therefore, given constrained spraying frequency, the grower is likely

to apply pesticide in the later stages of production when a spray kills offsprings of all pre-

vious invaders as well as new invaders. Furthermore, aphids are likely to multiply and

thrive in later stages of production with greater green biomass of the crop corresponding

to more favorable habitat Cobourn et al. (2011). Exponential aphid growth specification

23



in our model implies that incremental growth of aphid population is relatively low in the

first few weeks. Therefore, it may be more important to make sure that aphid growth in

the later stages is stopped if necessary. Again, to compare pesticide use when ρ Ãθ̃ = 0

vs. when ρ Ãθ̃ = 0.72, we conduct one sided t-test for the mean values of pesticide use for

each week (Table 3), The results show that there is almost no statistically significant differ-

ence between the two cases. Existing pesticide use restriction makes correlation between

weather and pest outbreak prediction errors insignificant for optimal pesticide use during

the growing season.

Conclusion/Discussion

In this paper, we examine stochastic dynamic pest management in agricultural crop pro-

duction under two stochastic factors that influence agricultural productivity: climate and

pest populations. Predictions, or expected values, of climatic variables and pest popula-

tions can be used to improve pest management practices. We extend this idea by explicitly

showing that the pest management practices can potentially be further improved by taking

into account potential correlation between prediction errors for climatic variables and pest

populations.

We first set up a general discounted cost minimization problem with stochastic climate

and pest population variables. We provide necessary condition for optimal pesticide use

path and discuss properties of the solution. Choosing functional forms that allow for math-

ematic tractability we find a closed form solution for pesticide use as a function of the

correlation coefficient between pest and climate forecast errors. Moreover, we provide

conditions for when pesticide use is monotonically increasing, and when it is decreasing in

the correlation coefficient.

Although our theoretical analysis demonstrates potential role of correlation between pre-

diction errors in optimal pest management decisions over the growing season, our empirical

case study shows that for strictly regulated toxic pesticides like dimethoate the correlation
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coefficient does not play a significant role. If dimethoate use was not regulated then our re-

sults show that pesticide use application rates can be suboptimal in some periods of growing

season if correlation between weather and pest infestation prediction errors is not consid-

ered. However, for the case of pea aphid control in lentil production using dimethoate the

correlation between weather and aphid infestation prediction errors does not affect pesti-

cide use throughout the growing season because of tight restrictions imposed on dimethoate

application.

Our paper further extends the stochastic optimal control and pest management litera-

ture in two notable ways. First, though our general framework is within the pest manage-

ment context, the tools developed in this paper, i.e. the stochastic envelope theorem and

stochastic comparative dynamics can be found applicable in many other fields that require

a dynamic and stochastic environment. Second, our paper extends pest management litera-

ture by considering the dynamic climate influence and the stochastic relationship between

weather prediction and pest invasion prediction, which can be viewed as an extension of

Marsh, Huffaker, and Long. (2000) and Olson and Roy (2002). For future studies, we

suggest to relax the condition that, in our analytical model, ρ Ãθ̃ is constant over time.

If the mathematical sophistication allows, one can examine how dynamic changes in the

correlation could impact the results. The limitations of our model lie in the simplifying

assumptions on the functional forms and assumptions driven by limited data availability

pertaining to the effects of pests on crop growth, effectiveness of pesticides, the role of

climate, and historical aphid records.

25



Notes

1We use subscripts to denote derivatives throughout the current and the following sec-

tion.

2Notice that the covariance and correlation are equal because standard errors for dθ̃ and

for dÃ are dt.

3In the specific case we simplify the formulation for analytical tractability and as-

sume that µθ , µA, σθ , σA are constant over time. In other words, the rate of change of

weather conditions and pest populations and standard errors of corresponding prediction

errors throughout the growing season are assumed to be constant.

4In this section, the subscripts are used to denote time index (weeks).

5Note that β11 in equation (55) stands for the growth rate of aphid (µA), since the

parameter has the meaning of how much percentage of aphid change could happen if time

increase by one unit.
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Appendix

Appendix 1a

According to Ito’s Lemma, if X1, ...,Xn are stochastic diffusion processes and

Y = f (X1, ...,Xn) where f is twice differentiable, then (See Kao 1996):

dY =
n

∑
i=1

fXidXi +
1
2

n

∑
i=1

n

∑
j=1

fXiX jdXidX j

To show (3), apply Ito’s Lemma to equation (2) to get:

dA = Atdt +Aθ dθ +AÃdÃ+A
θ ÃdθdÃ+Aθ tdθdt +AÃtdÃdt +

1
2

(
AÃÃdÃdÃ+Aθθ dθdθ

)
According to white noise properties (See Kamien and Schwartz, 1991 for instance), we

have: dθdÃ = σθ ρAθ dt; dθdθ =
(
σθ
)2dt; dÃdÃ = dt; dθdt = 0,and dÃdt = 0.

Then,

dA = Atdt +Aθ dθ +AÃdÃ+A
θ Ãρσ

θ dt +
1
2

AÃÃdt +
1
2

Aθθ

(
σ

θ

)2
dt

substituting equation (1) for dθ , we get equation (3):

dA =

(
At +Aθ µ

θ +
1
2

Aθθ

(
σ

θ

)2
+

1
2

AÃÃ +A
θ Ãρ

θ̃ Ã
σ

θ

)
dt +Aθ σ

θ (θ , t)dθ̃ +AÃdÃ

Appendix 1b

Similarly, since L(t) = L
(
A
(
u(t) ,θ(t), t, Ã

)
,θ(t, θ̃), t

)
, by Ito’s Lemma, we have:

dL = Ltdt +Lθ dθ +LAdA+LθAdθdA+Lθ tdθdt +LAtdAdt +
1
2
(LAAdAdA+Lθθ dθdθ)

Using equations (1), (4) and dAdA =
(
σA)2dt and dθdθ =

(
σθ
)2dt, we have

dL =
(

Lt +Lθ µθ +LAµA + 1
2Lθθ

(
σθ
)2

+ 1
2LAA

(
σA)2

+Lθ Aρ θ̃ Ãσθ σA
)

dt

+
(
Lθ σθ (θ , t)+LAAθ σθ (θ , t)

)
dθ̃ + LAAÃdÃ

Appendix 2

To show that θ = θ (0)e[µ
θ−(σθ

2 )
2
]t+σθ θ̃ is indeed a solution to (29). Take derivatives of

theta with respect to its arguments to get: θt =

[
µθ − (σθ)

2

2

]
θ (0)e[µ

θ−(
σθ)

2

2 ]t+σθ θ̃=

[
µθ − (σθ)

2

2

]
θ
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θ
θ̃
= σθ θ (0)e[µ

θ−(
σθ)

2

2 ]t+σθ θ̃ = σθ θ

θ
θ̃ θ̃

= (σθ )2θ (0)e[µ
θ−(

σθ)
2

2 ]t+σθ θ̃ = (σθ )2θ

Then by Ito’s lemma, we have:

dθ =

(
θt +

θ
θ̃ θ̃

2

)
dt +θ

θ̃
dθ̃ = µ

θ
θdt +σ

θ
θdθ̃

wich is the differential expression in (29).

Appendix 3

Similar to appendix 2, for A = A(0)e[µ
A−(

σA)
2

2 −uβ ]t+σAÃθ α , we calculate: At =

[µA− (σA)
2

2 −uβ ]A(0)e[µ
A−(

σA)
2

2 −uβ ]t+σAÃθ α = [µA− (σA)
2

2 −uβ ]A

AÃ = σAA(0)e[µ
A−(

σA)
2

2 −uβ ]t+σAÃθ α = σAA

AÃ = σAA(0)e[µ
A−(

σA)
2

2 −uβ ]t+σAÃθ α = σAA

AÃÃ =
(
σA)2A(0)e[µ

A−(
σA)

2

2 −uβ ]t+σAÃθ α =
(
σA)2A

Aθ = αA(0)e[µ
A−(

σA)
2

2 −uβ ]t+σAÃθ α−1 = α

θ
A

Aθθ = α (α−1)A(0)e[µ
A−(

σA)
2

2 −uβ ]t+σAÃθ α−2=α(α−1)
θ 2 A

AÃθ
= ασAA(0)e[µ

A−(
σA)

2

2 −uβ ]t+σAÃθ α−1 = ασA

θ
A

Again, by Ito’s lemma,

dA =
(

At +
AÃÃ

2 + Aθθ

2

)
dt +Aθ dθ +AÃdÃ+AÃθ

dθdÃ

= [µA +αµθ +ασAσθ ρAθ + α(α−1)
θ 2 ]Adt +σAAdÃ+ασθ Adθ̃

Appendix 4

L = eµY tθ γ A
Amax

= A(0)
Amax

e[µ
Y+µA−(

σA)
2

2 −uβ ]t+σAÃθ α+γ

Lt = [µY +µA− (σA)
2

2 −uβ ]eµY tθ γ A
Amax

= [µY +µA− (σA)
2

2 −uβ ]L

LÃ = σA A(0)
Amax

e[µ
Y+µA−(

σA)
2

2 −uβ ]t+σAÃθ α+γ = σAL

LÃÃ =
(
σA)2 A(0)

Amax
e[µ

Y+µA−(
σA)

2

2 −uβ ]t+σAÃθ α+γ =
(
σA)2L

Lθ = (α + γ) A(0)
Amax

e[µ
Y+µA−(

σA)
2

2 −uβ ]t+σAÃθ α+γ−1 = α+γ

θ
L
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Lθ θ = (α + γ)(α + γ−1) A(0)
Amax

e[µ
Y+µA−(

σA)
2

2 −uβ ]t+σAÃθ α+γ−2 = (α+γ)(α+γ−1)
θ 2 L

LÃθ
= (α + γ)σA A(0)

Amax
e[µ

Y+µA−(
σA)

2

2 −uβ ]t+σAÃθ α+γ−1 = α+γ

θ
σAL

Thus, based on Ito’s Lemma and substituting equation (29) for dθ , keeping in mind that

dθdt = 0 and dÃdt = 0, we get:

dL =
(

Lt +
LÃÃ

2 + Lθθ

2

)
dt +Lθ dθ +LÃdÃ+LÃθ

dθdÃ+LÃtdtdÃ+Ltθ dθdt

=
(

Lt +
LÃÃ

2 + Lθθ

2

)
dt +Lθ

(
µθ θdt +σθ θdθ̃

)
+LÃdÃ+LÃθ

σθ θρ Ãθ dt

=
(

Lt +
LÃÃ

2 + Lθθ

2 +Lθ µθ θ +LÃθ
σθ θρ Ãθ

)
dt +LÃdÃ+Lθ σθ θdθ̃

=
(

µY +µA−uβ + (α+γ)(α+γ−1)
2θ 2 +(α + γ)µθ +(α + γ)σAσθ ρ Ãθ

)
Ldt +σALdÃ+(α + γ)Lσθ dθ̃
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Figures

Figure 1. The optimal pesticide usage path
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Figure 2. The optimal usage path with constraint
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Tables

Table 1. Summary of parameters used in the empirical analyses

Parameter Value (unit) Source Description

σA 0.44 Regression Analysis Standard deviation of aphid diffusion process
σθ 0.21 Regression Analysis Standard deviation of climate diffusion process
µA 0.32 Regression Analysis Growth rate of aphid
µY 0.137 Regression Analysis Growth rate of crop

ρ 0.72 Regression Analysis Correlation coefficient between weather
and aphid prediction errors (ρ Ãθ̃ )

T 14 weeks Oplinger et al., (1990) A full growing season
α -0.037 Regression Analysis Marginal effect of climate on aphid growth
β 0.85 Elbakidze et al. (2011) Pesticide efficiency
γ -0.074 Regression Analysis Marginal effect of climate on crop growth
r 0.0035 Marsh et al. (2000) Discount rate
P 0.295 $/lb Painter (2011) Per pound lentil price

W 4.84 $/Acre Painter (2011) Per acre pesticide cost
A(0) 1 Assumed Initial number of aphids
Amax 1.8×107 Oplinger et al., (1990) Carrying capacity of aphid per acre

µθ 0.17 Regression Analysis Growth rate of climate index
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Table 2. Regression Results

SUR formulation (55) Equation (56)

VARIABLES lnθ lnA lnY

T 0.0227*** 0.0407***
-0.00188 -0.00526

lnθ -0.0374 -0.0742
-0.166 -0.235

A -0.0568*
-0.0316

Constant 4.813*** -0.176 7.751***
-0.191 -0.881 -1.764

Observations 137 137 23
R-squared 0.514 0.463 0.16

Standard errors in parentheses
** p<0.01, ** p<0.05, * p<0.1
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Table 3. T-test for pesticide usage comparison

H0 : uρ=0 ≤ uρ=0.72

week 1 2 3 4 5 6 7 8 9 10 11 12 13 14
p-value with
constraint 0.65 0.8 0.3 0.09 0.1 0.15 0.08 0.25 0.88 0.96 0.75 0.99 0.99 0.99
p-value without
constraint 0.99 0.99 0.86 0.67 0.23 0.05 0.09 0.12 0.11 0.26 0.33 0.88 0.97 0.99
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