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Abstract 
 

Environmental weeds are plants that invade natural ecosystems and are considered to 

be a serious threat to nature conservation.  Environmental weeds have been implicated 

in the extinction of several indigenous plant species, and they also threaten ecosystem 

stability and functional complexity.  Historically, emphasis has been placed on 

chemical control, manual pulling of small plants, excluding tourists and feral pig 

control measures. Recently, biological control has been introduced to control weed 

infestations. These methods of control have been applied alternatively, with little 

consideration of the long- term effectiveness.  As the threat from environmental 

weeds is becoming more fully recognised, an integrated, strategic, ecological and 

economical approach to weed management is needed. 

 

A deterministic dynamic programming model is developed for this purpose in this 

paper.  A case study for the environmental weed scotch broom is presented, to assess 

the ways in which this approach can address the policy issues that face the community 

in the management of an environmental weed.  The model takes account of the weed 

population dynamics and thirty-two combinations of control developed from the five 

basic control measures.  The dynamic programming model is developed for three 

different cases, first with weed density as the state variable, second, with weed density 

and seed bank as state variables and third, with weed density and seed bank as state 

variables and with a budget constraint for the control variables.  Results are presented 

and policies for managing weeds in natural ecosystems are recommended.  
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1. Introduction 

 

Weed invasions have long been recognised as posing major problems in agricultural 

and pastoral systems, but the study of exotic plants within natural ecosystems is still 

in its infancy (Humphries et al. 1991).   

 

The economics of management strategies for Scotch Broom (Cytisus scoparius (L.) 

Link, hereafter referred to as broom) is the focus of this paper.  The ecology of broom 

is well understood in both its native (Memmott et al. 1993; Paynter et al. 1998, 2000) 

and exotic range (Williams 1981; Smith & Harlen 1991; Smith 1994; Downey & 

Smith 2000; Parker 2000; Sheppard, Hodge & Paynter 2000).  

 

Broom is an exotic leguminous shrub, native to Europe, which invades pastoral and 

woodland ecosystems and adjoining river systems (Hosking, Smith & Sheppard 1998; 

Sheppard & Hosking 2000) in cool, high rainfall regions of southeastern Australia. 

Broom plants can survive for over 20 years and form dense closed thickets.  

Flowering is in spring, seed set (the only method of reproduction) is in summer, and 

buds remain dormant over winter.  

 

Broom has invaded 10,000 hectares (Waterhouse 1988) of eucalypt woodland at 

Barrington Tops National Parks in New South Wales, where it forms dense stands that 

have significant impacts on vegetation structure, flora and fauna.  In addition, within 

the park broom blocks the tracks and prevents access to watercourses.  Broom now 

poses a serious threat in many regions including the Australian Alps National Parks in 

New South Wales and Victoria, and in western Tasmania.  It has also been recorded 

around Perth, Western Australia.  The total area infested in Australia is estimated 

currently to be over 200,000 hectares and is still spreading (Hosking et al. 1998). 

Broom is considered to be one of the major environmental weeds of temperate 

Australia.  Broom is also an invader in other regions such as New Zealand and 

western North America, where it is considered to be serious pest plant (Parsons & 

Cuthbertson 1992; Hosking  et al. 1998).   
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Physical control of broom is complicated by its large, long-lived soil seed bank, and 

biological control agents have yet to have any significant impact in Australia.  At 

present the control measures undertaken by the Barrington Tops National Park 

management includes; excluding tourists, pulling out small plants manually, applying 

herbicide, feral pigs control and biological control. These methods of control are 

applied alternatively, with little consideration of the long- term effectiveness. 

 

The aim of this paper is to answer some of the policy questions of relevance to the 

management of the broom problem in Barrington Tops National Park.  In addressing 

this problem, the paper has been organised as follows: we first review policy issues 

surrounding the management of broom in natural ecosystems. Then we develop a 

dynamic optimisation model for broom management. We present results for the 

unconstrained model and the constrained model. Finally we discuss the implications 

of the results and suggest some conclusions. 

 

2. Policy issues surrounding the management of broom in 

natural ecosystems 

 

National Park Services manage most of the nations natural ecosystems.  In the 

Australian states, national parks and wildlife services are funded from general 

government revenue and any income, which they receive, is paid into that revenue.  

They are therefore, dependent entirely on the political process for funds.  

 

Given the non-commercial nature of public conservation and recreational land, 

political factors play a much greater role in determining effort and methods used to 

control weeds on public land than on private land (Hartley and Tisdell 1981).  

 

Due to deficiencies in political mechanisms and the presence of market failure weed 

control and management on public conservation and recreational land is unlikely to be 

optimal from an economic viewpoint.  On conservation lands in particular, there may 

be insufficient control of weeds because of lack of funding.   
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Conservation pressure groups in Australia in recent years seem to have concentrated 

political action on increasing the area set aside for national parks but have not exerted 

as much pressure for increased funding of park management. 

 

Within this broad context, policy issues surrounding the management of broom can be 

summarised as follows, 

 the budget available for park management is limited, 

 there is uncertainty of future funding, and 

 methods of controlling broom are limited due to government rules/regulations. 

 

These issues pose the following kinds of policy questions. 

 What areas should the National Park and Wildlife Service concentrate on, in 

controlling broom? Should areas with endangered species be controlled first? 

 What are the benefits of a continuous budget for the coming periods/years? 

 What combination of controls will best meet agency objectives in controlling 

broom? 

 Is biological control worth doing? 

 Is eradication strategy worth pursuing? 

 

In approaching these policy questions, a deterministic dynamic programming model 

for broom management has been developed and is described in the following section.  

The model takes account of broom population dynamics, combinations of control 

measures, two state variables (weed density and the seed bank) and a budget 

constraint. 

 

3. A dynamic optimisation model for broom management 

 
Following land use on Barrington Tops, it is assumed that, a tract of land of 80,000 

hectares is presently used for biodiversity protection, recreation and livestock 

production (Odom et al. 2001).  We have omitted watershed protection as one of the 

uses for the land.  From the aspect of broom management the land can be defined in 

terms of four variables; the fraction of sites occupied by broom, the fraction of sites 

that are unsuitable for broom establishment, the fraction of open sites (areas suitable 
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for broom but not yet colonised), and the average number of viable seeds per site. 

These variables describe the initial state of the land. It also must be assumed that the 

same inputs could be applied to the whole area (Odom et al. 2001). 

 

The three outputs of the Park are measured and valued as follows. Biodiversity is 

measured in terms of number of species preserved, recreation quantity in terms of 

number of group visits, and agricultural output is measured as percentage of potential 

yield (Odom et al. 2001).   The net annual benefit obtained from the area in time t (Bt) 

is defined as: 

 

      uttagrtrectbiot cuwBwBwBB   (1) 

where, Bbio Brec and Bagr are the benefits (as prices x quantity) provided by each of the 

three outputs, namely biodiversity, recreation and agriculture. The values of the 

outputs are functions of weed density (wt), with dBj/dwt < 0 for all j = bio, rec, agr. 

The last term in the equation represents the costs of broom control, where (u) is a 

vector of control measures and (c) is a vector of per unit costs of control.  

 

Net benefit is maximised by choosing control measures each period that maximises 

the present value of a stream of annual net benefits, given the initial state. 

 

3.1  Control measures  

 

For simplicity, the only costs considered are those of weed control and these depend 

on the control method used. Six control options are possible, and a number identifies 

them: 

0. no control 

 1.   exclude tourists 

 2.   pull out manually 

 3. apply herbicides  

 4. control pigs 

5. biological control 
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In the model, the particular control applied is represented by a 1x5 vector of zeros and 

ones, a zero in a given position indicates no control, while a one indicates that the 

corresponding control is being applied.  For example, u = [1 0 0 1 0] indicates that 

both tourist exclusion (1) and pig control (4) are being undertaken. There are 32 

control strategies as shown in Table 1.  The first row represents no control and the 

remaining rows are the control methods (1…5) as described above, followed by 26 

combination of controls each represented by a row of the matrix.  The cost of control 

is calculated by multiplying the control vector ut by the (5x1) cost vector cu.  

 

3.2   Population dynamics 

 

The dynamics of broom population growth are introduced through the difference 

equation (state transition equation): 

 tttt uwfww ,1   (2) 

where, wt is the weed density in the present period and wt + 1 is the weed density in the 

next period.   The function f () represents the biological model to simulate the spread 

of broom from Rees and Paynter (1997).  In this model there are four state variables: 

weed density, sites unsuitable for colonisation, sites open for colonisation, and the 

size of the seed bank. The parameter values for this simulation model are presented in 

Table 2, and the initial conditions of the area are presented in Table 3.  

 

The transition of a given tract of land from an unsuitable to a suitable site for broom 

depends on the probability of disturbance (pdist), which is affected by factors such as 

presence of tourists and wild pigs. The simulation model operates with four state 

variables and hence contains four differential equations. At this stage, only one of 

those state variables, weed density (wt), is relevant in the economic model, because 

this is the factor that directly affects biodiversity, recreation value and agricultural 

output.    

 

The control methods directly affect four biological parameters the probability that a 

site is disturbed (pdist), the probability that a seedling survives the first year (ps), the 

probability that a seed is retained in the parental site (fh), and weed density (wt).  The 
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effects of the control methods on these parameters are shown in Table 4, and their 

composition is now explained.  

 

Values of the parameters are presented as proportion from the base values shown in 

Table 2. The estimation of these parameters was based on the logical relationship 

between the control method and the parameter, ie. where the parameter is expected to 

increase or decrease with a particular control.   Integrated weed management options 

and the effects of treatment on the biology of broom were constructed from a basic 

lifecycle diagram of scotch broom and associating treatments to the various stages. 

 

 When control methods were combined, the effects on the parameters were estimated 

from two assumptions.  If the controls affect different stages of the weed life cycle, 

then the parameter values were added.  If the controls affect the same stage of the 

weed life cycle, then the parameter values were added in a partially additive manner. 

 

Parameter values of 1.0 indicate no effect, these values appear in the first row for the 

no control option, and also control options 1 (excluding tourist) and 4 (pig control) 

which are directly related in reducing the spread but no effect on the weed density.  

For example, the second row (excluding tourist) reduces (pdist) by 0.2 and (ps) by 0.33, 

but increases (fh )  by 1.23 per cent.  

 

3.3  Maximisation of net benefits 

 

The objective of the analysis is to choose a sequence of decision variables or 

management inputs )( tu  that maximises the present value of a stream of annual net 

benefits, given the initial state. 

 

The problem of maximising the net present value of the stream of benefits obtained 

from the area over a planning horizon of T years is solved through dynamic 

programming.  The recursive equation with one state variable is: 

 

      11,max  ttttttt wVuwBwV   (3) 
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where Bt is the one-period return (as in equation 1) and  is the discount factor (1+r)
-1

 

for the given discount rate r (Taylor & Duffy,1994). The first term in this equation 

represents benefits in the present year and the second term represents benefits from 

the future.  The recursive solution of (3) is executed from t =T to t=1, subject to the 

state transition equation (2). 

 

The values of biodiversity and recreation output are described by the function: 

 

 
)(

)(

min

minmax

tjmj

tjj

jj
wxk

wxV
P




 ; for j = bio, rec (4) 

where, ( ) is the production rate, ( P ) is the price, ( maxV ) is the maximum number of 

species preserved or maximum number of recreational visits, ( minx ) is the weed 

concentration, and ( mk ) is the half-saturation constant (Cacho 2000). 

 

The value of agricultural output is described by the function: 

 

  )(exp1 minmax tjagrmagragragr wxkVP   (5) 

where,  ( ) is the production rate, ( P ) is the price of agricultural output, ( maxV ) is the 

maximum potential yield, ( minx ) is the weed concentration, and ( mk ) is the half-

saturation constant.  The parameter minx  determines the intercept on the horizontal 

axis, mk determines the slope of the curve and maxV determines the intercept on the 

vertical axis.  

 

Agricultural output is measured as percentage of potential yield, the price of this 

output is estimated by multiplying the gross margin per hectare times the number of 

hectares in pasture.  The output parameters are presented in Table 5 and the control 

costs are presented in Table 6. 

 

Values of the parameters maxV , minx  and mk were estimated in consultation with 

National Parks and Wildlife Service staff and were also based on research by Panetta 

and James (1999).   The prices of outputs (Pj) were obtained from three different 

sources. The authors set the benefits of biodiversity protection, at a basic value of 
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$100,000 to represent one species' worth.  They then tested the solutions for the effect 

of changes in this value. Benefits for recreation in terms of number of visits were 

obtained from Sawtell (1999) and confirmed by Tier (2001) research on Barrington 

Tops. Prices for agricultural output, in terms of gross margins, were obtained from 

NSW Agriculture, and were prepared by Davies (2000).  

 

 

3.4  The state transition equation 
 

Assumptions regarding broom population growth, and the effect of control methods 

on biological parameters and state variables, affect the state transition equation, which 

is represented by a simulation model. The state transition equation for each of the first 

six control options (including no control) is presented in Figure 1.  

 

The 45
o
 dotted line represents the steady state for any given population density (wt) at 

a given time t. Points below this reference line represent strategies that will cause 

broom density to decrease, whereas points above the line represent strategies that will 

cause density to increase. The only line falling above the line is no control. All control 

methods cause wt to decrease over time.  

 

3.5   The inclusion of the seed bank 

 

The dynamic optimisation model is further extended to include the seed bank as the 

second state variable in the analysis. Broom population dynamics and the seed bank 

population dynamics are now introduced through difference equations: 

 

),,(1 ttttt uswfww         (6) 

 tt ss 1 ),,( ttt uswg         (7) 

 

The functions (.)f  and (.)g  represent the biological model to simulate the spread of 

broom (Rees and Paynter 1997), where ts  is the seed density (per square metre) in 

time )(t . 
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The recursive equation is now expressed as 

 

 ),(),(max),( 111  ttttttttt swVuwBswV       (8) 

 

The recursive solution of (8) is executed from Tt   to 1t , subject to the state 

transition equations (6) and (7). 

 

The model was solved for a planning horizon (T) of 45 years.  The numerical 

deterministic Dynamic Programming technique was implemented in the Matlab 

(Mathworks 1999) program with the discount rate of 6 per cent.  The choice of the 

discount rate was based on the recommended rates by the Australian government 

taking into consideration the emphasis on time-preference principle with the 

suggested rates ranging from 4 to 7 per cent (Sinden & Thampapillai 1995). 

 

The model was solved for the base case parameters of Tables 1 to 6, with no 

constraint on the budget available to control weeds.  An extended version of the 

model was also solved by incorporating the constraint 

 Kcu ut .   for all Tt ,...0      (9) 

 

where the term on the left is the annual cost of control and K  is the budget available.   

The model was solved for a budget constraint of 000,50K . 

 

4. Results 

 
4.1  Unconstrained by the budget 
 

In the process of obtaining the optimal solution, the model was allowed to run for a 

maximum time of 45 years and the results provide the optimal state paths for both the 

weed density (Figure 2) and the seed bank (Figure 3). 

 

 

As Figure 2 illustrates, the initial weed density was specified at 0.1.  It also shows the 

optimal weed density path from the present year to year 45 with integrated weed 

management.  With the application of control measures, the weed density is expected 
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to drop sharply from the present year to year 11.  Density then stabilises and oscillates 

in a narrow range to year 45, at a weed density level of 0.0201- 0.0207.  The results 

imply that it is not possible to reduce the weed density to zero.  Practically this is true, 

due to the large, long-lived soil seed bank any movement on top of the soil can 

activate germination, natural disasters like floods and fire can also activate 

germination.   

 

Starting with an initial seed density of 50 seeds per square metre, as indicated by 

Figure 3, the seed density is expected to increase sharply to year 2, to a seed density 

level of 332 seeds per square metre.  Between year 2 and year 3 the change is very 

minimal but after year 3 a sudden drop occurs to year 12 where the seed density is 

about 114 seeds per square metre.  Thereafter, it stabilises at a range of 121 to 132 

seeds per square metre up to year 45.   

 

It is very interesting to compare Figures 2 and 3.  Before the steady state has been 

reached, the seed density first increases then decreases as the weed density decreases.  

After attaining the steady state, as the weed density decreases the seed density 

increases and as the seed density decreases the weed density increases. By year 45 the 

weed density is left on a decreasing state while the seed density is on the increasing 

state.  Hence, reducing the weed density does not mean the seed bank reduces as well. 

 

4.1.1   The optimal state transition 

 

As mentioned in section 3.4, the assumptions regarding broom population growth, and 

the effect of control methods on biological parameters and state variables affects the 

state transition equation.  

 

The role of the optimal state transition in this case is to provide a “package” that could 

be used to tackle the problem each year depending on the levels of the weed density 

and the seed bank.  The optimal state transition results are presented in two stages. 

First the optimal state transition for the weed density is presented when the seed 

density is low and when the seed density is high (Figure 4).  Second, the optimal state 

transition for the seed density is presented with low levels of weed density, and then 

with high levels of the weed density. 
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The optimal state transition for the weed density shows a decrease in the weed density 

in both cases, as shown by Figure 4. The two curves illustrating the weed density in 

the next state for both higher and lower levels of the seed density are below the 45
0 

dotted line.   The control measures have been more effective on the weed density with 

low levels of the seed density than the weed density with high levels of the seed 

density.  This is shown by the distance of the curves from the dotted line. 

 

The optimal state transition for the seed density as shown by Figure 5, indicates a 

decrease in the seed density when the weed density is low. This is shown by the curve 

below the 45
0
 dotted line.  When the weed density is high, the seed density shows an 

increase in the seed density level up to 2,317 seeds per square metre, then the seed 

density level starts to decrease.  This implies that control measures have been 

effective from this point.   

 

 In this case, the only control measure which targets the seed bank is biological 

control. Bio-control measures takes time to work, and the optimal state transition 

pattern shows that the seed bank did not respond fully to the control measure until at a 

density level of 2,317 seeds per square metre. 

 

Control measures seem to be more effective with low levels of weed density than high 

levels as shown by the curves in Figure 5.   This is because the low weed density 

curve is below the 45
0 

dotted line while the high weed density curve is mostly above 

the dotted line with a small portion appearing just under the 45
0 

dotted line. 

 

4.1.2   The decision rule 

 

The optimal state transition equation generates the decision rule for broom control. 

Table 7 presents the decision rule for different levels of the weed density.  As the 

results show, in areas where the seed density is low and the weed density is also low, 

the optimal strategy is 1, which means no control is the optimal strategy.  For areas 

where the seed density is low but the weed density is medium density (0.287) to high-

density (0.501), the optimal strategy is number 24. In fact, a combination of manual 
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pull, herbicide application and biological control is the optimal strategy in reducing 

the weed density level to 0.2054 and 0.3579 respectively.  

 

For areas with high seed density levels and low weed density levels (0 to 0.141), the 

optimal strategy is number 16, which means a combination of pig control and 

biological control is the optimal strategy.   Areas where the seed density is high but 

the weed density is medium dense (0.287) to high (0.501), the optimal strategy is 

number 28.  This means a combination of manual pull, herbicide application, pig 

control and biological control is the optimal strategy, which reduces the weed density 

to 0.2344 and 0.3831 respectively. 

 

The decision rule derived from the seed bank optimal state transition is presented in 

Table 8.  The results shows that for areas with zero weed density and zero seed 

density, the optimal strategy is number 1, which means no control is required.  In 

areas where the weed density is low and the seed density is also low, the optimal 

strategy is number 5, for a seed density level of 4 seeds per square metre. This means 

that pig control is the optimal measure to reduce the level to 2 seeds per square metre.  

With low seed density levels of 250 and 594 seeds per square metre, and low weed 

density levels the optimal strategy is 6, this means biological control is the optimal 

measure to be used to reduce the seed density levels to 125 and 297 seeds per square 

metre respectively. 

 

For areas with high weed density levels, and low seed density levels the optimal 

strategy is 24, which means a combination of manual pull, herbicide application and 

biological control is the optimal control strategy to be used in order to keep the seed 

density at lower levels.   Areas with high weed density but seed density is medium 

dense of 2,317 seeds per square metre to high density of 3,350 seeds per square metre, 

the optimal strategy is 28, which is a combination of manual pull, herbicide 

application, pig control and biological control. 

 

The optimal control options for different levels of the weed density and the seed bank 

are summarised in Table 9.  The weed density levels are presented vertically in the 

first column, while the seed density levels are presented horizontally.  For each of the 

weed density level there is a corresponding seed density level and the Dynamic 
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Programming technique computes the optimal control strategy for each level.  

Strategies are defined in Table 1. 

The net present value (NPV) of the optimal solution obtained from the unconstrained 

model is $ 210,180,000 for the planning horizon, at a total cost of $1,027,611 which 

has been discounted annually to the present value. 

 

4.2  Constrained by the budget 
 

 

The second run of the Dynamic Programming model was then carried out with a 

budget constraint of $50,000.  This amount is used for illustration purposes only as 

the model has been designed to accommodate any size for the budget constraint.  

Results are presented in the same way as the unconstrained model so that the two sets 

of results can be compared. 

 

The results of the optimal state paths for both the weed density and the seed bank are 

both opposite to the optimal state paths from the unconstrained model.  With the 

inclusion of the budget constraint, the optimal weed density path (Figure 2) indicates 

a decrease in the weed density for a very small proportion of about 0.02 between 

years 0 and 3.  There after the weed density increases to a level of 0.16 by year 45.  

This occurs because control measures are limited by the constraint to what can be 

afforded and as a result the weed density increases. 

The optimal seed density path under budget constraint  (Figure 3) also indicates an 

increase in the seed density unsteadily, with a drop in year 6 and 10 and increased 

steadily thereafter to a seed density level of 878 seeds per square metre. 

 

The density paths of the constrained model results in an increase in both the weed 

density as well as the seed density.  The effectiveness of the control measures shows 

very little on the weed density path in the constrained model unlike the unconstrained 

model.  On the other hand, the effectiveness of the control measures on the seed 

density does not show up at all in the constrained model like how the unconstrained 

model shows a reduction in the seed density. The constrained model proves that the 

biological control aimed at reducing the seed bank could not be afforded by the 

available budget.   
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4.2.1   The optimal state transition under a budget constraint 

 

In this case the role of the optimal state transition is to provide a “package” that could 

be used to tackle the problem each year depending on the budget available.   The 

optimal state transition for the weed density is presented in Figure 6.  The first curve 

under the 45
0
 line represents the weed density under the budget constraint and the 

second curve represents the unconstrained weed density. 

 

The optimal state transition for the weed density shows a decrease in the weed density 

in both cases (Figure 6).  Although the unconstrained weed density curve shows more 

reduction of the weed density than the constrained curve.  Therefore the control 

measures are more effective in reducing the weed density in the unconstrained model, 

because the budget constraint limits the control measures to be used. 

 

The optimal state transition for the seed density as shown by Figure 7, indicates an 

increase in the level of seed density when a budget constraint is imposed.  This is 

shown by the constrained curve being above the unconstrained curve and the 45
0
 line.   

 

4.2.2   The decision rule under a budget constraint 

 

The generated decision rule for different levels of weed density with low levels of the 

seed bank for both the constrained model and the unconstrained model is presented in 

Table 10.  For areas with low seed density and low levels of weed density the optimal 

strategy is number 1 with a budget constraint.   Areas with a low (0.060) to medium 

(0.287) weed density at the same low levels of the seed density the optimal strategy to 

be used is 11 under the budget constraint. In this case, only 83% of manual pull and 

herbicide application can be used to reduce the weed density to 0.0479 and 0.2290 

respectively.   For areas with low seed density levels and high weed density levels 

(0.501) the optimal strategy is 4, which means only herbicide application is the 

optimal method to reduce the weed density to 0.3919. 

 

The decision rule derived from the seed bank optimal state transition is presented in 

Table 11.  The presented results are for areas with high levels of weed density. 
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For areas with high levels of weed density and low levels of seed density the optimal 

control strategy is 4, this means the optimal method which can be afforded by the 

budget is herbicide application.  

 

In areas with high weed density and a medium dense (0.250) to high seed density 

(3.350), the optimal control strategy, which can be afforded is strategy 11. This means 

83% of manual pull and herbicide application is the optimal measure.  The response 

of the seed density is the same as above except for the last three levels of the seed 

density, which shows a slight decrease in the seed density.  

 

The optimal control options for different levels weed density and the seed bank under 

a budget constraint are summarised in Table 12.  The optimal control options under a 

budget constraint are different from the optimal control options of the unconstrained 

model.  Only a few of the control measures can be applied at a full proportion.  Most 

of the control measures are limited by the budget constrained in such a way that only 

a fraction of the combinations in the strategies can be afforded. The description of the 

control strategies, which can not be applied fully, is presented in Table 13.  

 

The net present value (NPV) of the optimal solution obtained from the constrained 

model is $ 203,170,000 for the planning horizon, at a total cost of $ 695,371, which 

has also been discounted annually to the present value.  

 

5. Discussion and Conclusion 

 
This paper has presented an application of a deterministic Dynamic Programming 

model for broom management.  The results of the unconstrained version of the model 

indicates that, both the weed density and the seed bank can only be reduced up to an 

optimal level, where a steady state is achieved.  It can also be noted that reducing the 

weed density alone does not necessarily mean the seed bank reduces as well.  Hence, 

combination of controls which target the weed density and the seed bank are 

important, and as we have seen, the control methods are more effective on areas with 

low levels of both the weed density and the seed bank.  In addition, the decision rule 

derived from the optimal state transition for both the weed density and the seed bank 
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indicates that biological control appears as the optimal control measure in 77 optimal 

control options out of 81 (Table 9). 

 

In the optimal solution, the annual costs range from a minimum value of $15,000 to a 

maximum value of $136,848, with most costs being around $76,848, which exceeds 

the budget constraint value by about 50%.  Thus, the budget constraint saves about 

$330,000 but results in a reduction in net benefits of about $7,000,000. It was also 

noted that, biological control was hardly ever affordable under the budget constraint. 

 

In this paper, we have assumed that we are certain of all the parameters (Tables 2, 3, 

5, and 6) used in the model. However, risks are considered to be an important aspect 

in our research problem, although this was not taken into account due to the 

complications of the model.  Another limitation is that sensitivity analysis of the 

effectiveness of biological control has not been undertaken at this stage of the model 

although it is considered important as an extension to the model.  Odom et al. (2001) 

conducted a sensitivity analysis of the initial parameters in a model with one state 

variable (weed density) with control measures applied alternatively, and the results 

showed that herbicide prices and herbicide effectiveness were most sensitive to 

changes in parameter values. In addition the value of biodiversity was tested and the 

results showed that, the predicted biological systems stayed stable after $100,000. 

 

The model has been able to answer some of the policy questions outlined in Section 2.  

The benefits of having a continuous budget for the coming years can be 

accommodated by switching the budget value in the model to obtain optimal 

solutions.  The model indicates that the best combinations of controls, which will 

meet the objectives of the agency in controlling broom, are strategy 16, for areas with 

low weed density and high levels of seed density; strategy 24, for areas with low 

levels of seed density and high levels of weed density; and strategy 28, in areas where 

both the weed density and the seed density are at high levels.  The model also 

indicates that biological control is worth undertaking, as it appears in all the 

strategies, which meets the agency objectives, and in almost all-optimal control 

options of the unconstrained results.  As the results showed, an eradication strategy is 

not worth pursuing, since it is not possible to reduce both the weed density and the 

seed density to zero.  
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Figure 1.  The state transition equation      

           

           

           

           

           

           

           

           

           

           

           

           

           

           

  

 

 

 

Figure 2.  The optimal weed density path 
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Figure 3.   The optimal seed density path      

           

           

           

           

           

           

           

           

           

           

            

 

           

 

 

 

 

Figure 4.  Optimal state transition for the weed density 
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Figure 5.  Optimal state transition for the seed bank 

 

 

           

           

           

           

           

           

           

           

           

           

            

 

 

 

Figure 6.   Optimal state transition for the weed density under a budget 

                   constraint  
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Figure 7.  Optimal state transition for the seed bank under a budget constraint  

 

           

           

           

           

           

           

           

           

           

           

            

 

Table 1: The matrix of control measures, by management strategy  

           

 

 

 

 

 

           

           

           

           

           

           

           

           

           

           

           

  

Strategy exclude manual herbicide pig biological 

tourist pull application control control

1 0 0 0 0 0

2 1 0 0 0 0

3 0 1 0 0 0

4 0 0 1 0 0

5 0 0 0 1 0

6 0 0 0 0 1

7 1 1 0 0 0

8 1 0 1 0 0

9 1 0 0 1 0

10 1 0 0 0 1

11 0 1 1 0 0

12 0 1 0 1 0

13 0 1 0 0 1

14 0 0 1 1 0

15 0 0 1 0 1

16 0 0 0 1 1

17 1 1 1 0 0

18 1 1 0 1 0

19 1 1 0 0 1

20 1 0 1 1 0

21 1 0 1 0 1

22 1 0 0 1 1

23 0 1 1 1 0

24 0 1 1 0 1

25 0 0 1 1 1

26 0 1 0 1 1

27 1 1 1 1 0

28 0 1 1 1 1

29 1 0 1 1 1

30 1 1 0 1 1

31 1 1 1 0 1

32 1 1 1 1 1
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Table 2: Biological parameters  
 

Parameter Value Description 

pdist 0.05 probability that a site is disturbed 

pg 0.04 probability that a seed becomes a seedling 

ps 0.3 probability that a seedling survives the first year 

Pd  0.5 probability that a seed is lost from the seedbank 

(decay) 

Amin 3 minimum age for reproduction of broom 

Amax 20 maximum plant age 

F  5300 seed production per site (numbers per square metres) 

fh 0.73 probability that seed is retained in the parental site 

pso 1.0 probability that site becomes suitable for colonisation 

after senescence 

fr 0.6 fraction of broom plants that are reproductive 
Source:  Rees & Paynter (1997) 

 Downey & Smith (2000) 

 Sheppard, Hodge, Paynter & Rees (2001) 

 Paynter, Downey & Sheppard (2001) 

 

 

 

 

Table 3: Initial conditions of the area 

 

 

Variable Fraction 

Area occupied by broom 0.125 

 

Sites that are unsuitable for broom 0.4 

 

Sites that are suitable  for broom 0.6 

 

Areas open  for colonisation  0.475
 a
 

 
a 

Areas suitable for broom but not yet colonised  
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Table 4: Matrix of control effects 
 

 

Strategy Control Pdist Ps fh wt 

1 0 1.0 1.0 1.0 1.0 

2 1 0.2 0.33 1.23 1.0 

3 2 1.4 0.33 0.55 0.8 

4 3 1.6 0.3 0.27 0.6 

5 4 0.2 0.67 1.23 1.0 

6 5 0.2 0.07 0.04 0.6 

7 1,2 1.3 0.17 0.96 0.8 

8 1,3 1.5 0.14 1.1 0.6 

9 1,4 0.1 0.51 0.62 1.0 

10 1,5 0.1 0.3 1.21 0.6 

11 2,3 0.9 0.18 0.42 0.5 

12 2,4 1.3 0.51 0.96 0.8 

13 2,5 1.3 0.3 0.53 0.5 

14 3,4 1.5 0.52 1.1 0.6 

15 3,5 1.5 0.27 0.25 0.4 

16 4,5 0.1 0.64 1.21 0.6 

17 1,2,3 0.8 0.02 0.8 0.5 

18 1,2,4 1.2 0.34 0.34 0.8 

19 1,2,5 1.2 0.13 0.94 0.5 

20 1,3,4 1.4 0.36 0.5 0.6 

21 1,3,5 1.4 0.15 1.08 0.4 

22 1,4,5 0.0 0.47 0.6 0.6 

23 2,3,4 0.8 0.36 0.82 0.5 

24 2,3,5 0.8 0.15 0.4 0.3 

25 3,4,5 1.4 0.49 1.08 0.4 

26 4,5,2 1.2 0.47 0.94 0.5 

27 1,2,3,4 0.7 0.19 0.21 0.5 

28 2,3,4,5 0.7 0.32 0.8 0.3 

29 3,4,5,1 1.3 0.32 0.46 0.4 

30 4,5,1,2 1.1 0.31 0.32 0.5 

31 5,1,2,3 0.7 0.02 0.8 0.3 

32 1,2,3,4,5 0.6 0.16 0.19 0.3 

 

 

 

 

Table 5: Output parameters 
 

Parameter Biodiversity Recreation Agriculture 

maxV  130 15000 1.2 

mk  0.18 0.3 -2.0 

minx  0.6 0.6 0.9 

p  100,000 138 1,680,000 
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Table 6:  Control costs 

 
Method Cost ($/year) 

1. exclude tourists 5,000 

2. manual pull 15,000 

3. apply herbicide  45,000 

4. control pigs  15,000 

5. biological control 76,848 

 

 

 

 

 

Table 7: The decision rule for different levels of weed density 

 

 

Initial weed 

density (wt) 

Optimal 

control 

strategy 

Final weed 

density with 

low seed 

density levels 

Optimal 

control 

strategy 

Final weed 

density with 

high seed 

density levels 

0 1 0 16 0.0049 

0.001 1 0.0009 16 0.0058 

0.060 24 0.0430 16 0.0542 

0.141 24 0.1010 16 0.1207 

0.287 24 0.2054 28 0.2344 

0.378 24 0.2703 28 0.2977 

0.432 24 0.3088 28 0.3352 

0.464 24 0.3316 28 0.3574 

0.501 24 0.3579 28 0.3831 
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Table 8: The decision rule for different levels of seed density 

 

Initial seed 

density (St) 

(x10
3
 /m

2
) 

Optimal 

control 

strategy 

Final seed 

density with 

low weed 

density levels 

Optimal 

control 

strategy 

Final seed 

density with 

high weed 

density levels 

0.000 1 0.000 24 1.2217 

0.004 5 0.002 24 1.2238 

0.250 6 0.125 24 1.3467 

0.594 6 0.297 24 1.5187 

1.571 16 0.786 24 2.0072 

2.317 16 1.159 28 2.3802 

2.770 16 1.385 28 2.6067 

3.041 16 1.521 28 2.7422 

3.350 16 1.675 28 2.8967 

 

 

 

Table 9: Optimal control options 

 

 

Weed 

density 

 Seed bank 

       0 

 

4.2 

 

250 

 

594 

 

1571 

 

2317 

 

2770 

 

3041 

 

3350 

0.000  1 5 6 6 16 16 16 16 16 

0.001  1 5 6 6 16 16 16 16 16 

0.060  24 24 6 6 16 16 16 16 16 

0.141  24 24 28 24 16 16 16 16 16 

0.287  24 24 24 25 24 28 28 28 28 

0.378  24 24 24 28 24 28 28 28 28 

0.432  24 24 24 28 24 28 28 28 28 

0.464  24 24 24 28 24 28 28 28 28 

0.501  24 24 24 24 24 28 28 28 28 
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Table 10: Decision rule for the weed density under a budget constraint  

 

  

Initial weed 

density (wt) 

Optimal 

control 

strategy 

Final weed 

density 

unconstrained 

 

Optimal 

control 

strategy 

Final weed 

density 

with $50,000 

constraint 

0 1 0 1 0 

0.001 1 0.0009 1 0.0009 

0.060 24 0.0430 11 0.0479 

0.141 24 0.1010 11 0.1125 

0.287 24 0.2054 11 0.2290 

0.378 24 0.2703 11 0.3015 

0.432 24 0.3088 11 0.3446 

0.464 24 0.3316 4 0.3645 

0.501 24 0.3579 4 0.3919 

 

 

 

Table 11: Decision rule for the seed density under a budget constraint  

 

Initial seed 

density (St) 

(x10
3
 /m

2
) 

Optimal 

control 

strategy 

Final seed 

density 

unconstrained 

Optimal 

control 

strategy 

Final seed 

density with 

$50,000 

constraint 

0.000 24 1.2217 4 1.3842 

0.004 24 1.2238 4 1.3863 

0.250 24 1.3467 11 1.4860 

0.594 24 1.5187 11 1.6580 

1.571 24 2.0072 11 2.1465 

2.317 28 2.3802 11 2.5195 

2.770 28 2.6067 11 2.7460 

3.041 28 2.7422 11 2.8815 

3.350 28 2.8967 11 3.0360 
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Table 12: Optimal control options under a budget constraint 

 

 

Weed 

density 

Seed bank 

0 

 

4.2 

 

250 

 

594 

 

1571 

 

2317 

 

2770 

 

3041 

 

3350 

0.000 1 5 5 5 5 5 5 5 5 

0.001 1 5 5 5 5 5 5 5 5 

0.060 11 11 17 5 5 5 5 5 5 

0.141 11 11 11 17 10 10 10 10 10 

0.287 11 11 11 17 11 11 11 11 11 

0.378 11 11 11 11 11 11 11 11 11 

0.432 11 11 11 11 11 11 11 11 11 

0.464 4 4 11 11 11 11 11 11 11 

0.501 4 4 11 11 11 11 11 11 11 

 

 

 

 

 

Table 13: Control strategy description under a budget constraint  

  

Strategy exclude 

tourist 

manual 

pull 

herbicide 

application 

pig 

control 

biological 

control 

1 0 0 0 0 0 

4 0 0 1 0 0 

5 0 0 0 1 0 

10 0.6109 0 0 0 0.6109 

11 0 0.8333 0.8333 0 0 

17 0.7692 0.7692 0.7692 0 0 
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