

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

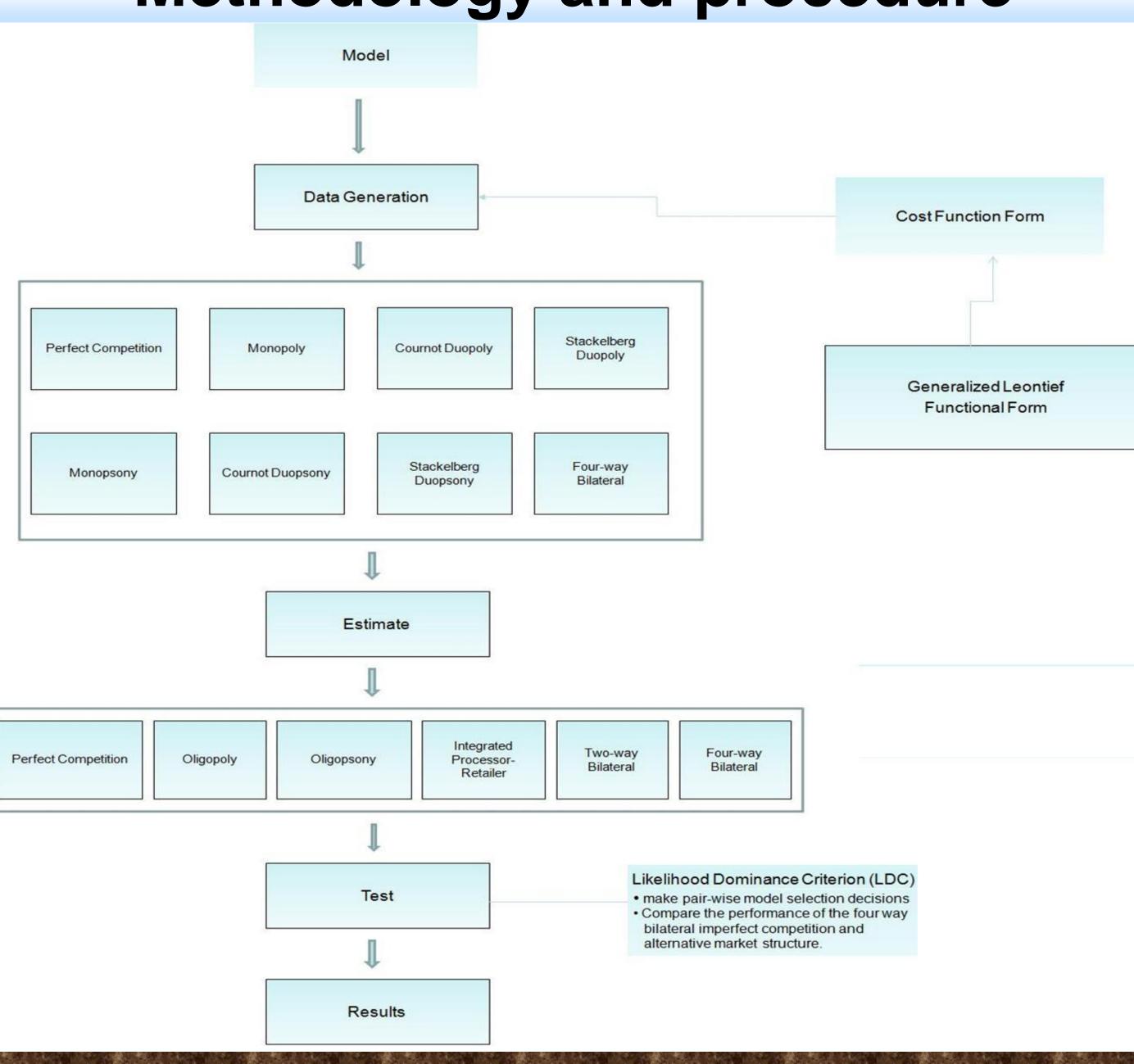
Estimating Market Power Exertion under Bilateral Imperfect Competition

Estimating Market Power Exertion under Bilateral Imperfect Competition
Seongjin Park, Chanjin Chung, Sungill Han
Selected Paper prepared for presentation at the Agricultural & Applied Economics Association's 2012 AAEA Annual Meeting, Seattle, Washington, August 12-14, 2012
Copyright 2012 by authors. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Estimating Market Power Exertion under Bilateral Imperfect Competition Seongjin Park, Chanjin Chung, Sungill Han Oklahoma State University

Background

- Food processing and retailing industries increasingly concentrated.
- Empirical models have not been flexible enough to consider the full range of bilateral relationship between buyers and sellers.


Objective

- Develop a market power estimation procedure for bilateral imperfect competition between retailers and processors.
- Test true market power estimation model against alternative model.

Extension from previous studies

- Previous NEIO methods assume only on one-side of market transactions.
- Consider bilateral relationship between sellers and buyers for potential oligopoly/oligopsony market power exertion.
- Monte Carlo simulation to test for estimation bias from inappropriately modeling market structures.

Methodology and procedure

Data generating equation

	L Golden Grantiers
59	Equations
Perfect competition	$\begin{split} P^p &= P^f + a_{11}w + a_{22}v + 2a_{12}(wv)^{\frac{1}{2}} + 2y^p(b_1w + b_2v) + t(c_1w \\ &+ c_2v) \\ L &= a_{11} + a_{12}(v/w)^{\frac{1}{2}} + y^pb_1 + tc_1 \\ K &= a_{22} + a_{12}(w/v)^{\frac{1}{2}} + y^pb_2 + tc_2 \\ P^r &= P^p + r_{11}w_1 + r_{22}v + 2r_{12}(w_1v)^{\frac{1}{2}} + 2y^r(d_1w_1 + d_2v) + t(g_1w_1 \\ &+ gv) \\ L_1 &= r_{11} + r_{12}(v/w_1)^{\frac{1}{2}} + y^rd_1 + tg_1 \\ K &= r_{22} + r_{12} * (w_1/v)^{\frac{1}{2}} + y^rd_2 + tg_2 \end{split}$
Four way bilateral imperfect competition	$\begin{split} P^p &= P^f + a_{11}w + a_{22}v + 2a_{12}(wv)^{\frac{1}{2}} + 2y^p HP(b_1w + b_2v) + \\ t(c_1w + c_2v) - \frac{(1+\phi_1)HP}{\varepsilon_d^p} + \frac{(1+\phi_2)HP}{\varepsilon_s^f} \\ L &= a_{11} + a_{12}(v/w)^{\frac{1}{2}} + y^p HPb_1 + tc_1 \\ K &= a_{22} + a_{12}(w/v)^{\frac{1}{2}} + y^p HPb_2 + tc_2 \\ P^r &= P^p + r_{11}w_1 + r_{22}v + 2r_{12}(w_1v)^{\frac{1}{2}} + 2y^r HR(d_1w_1 + d_2v) + \\ t(g_1w_1 + g_2v) - \frac{(1+\phi_3)HR}{\varepsilon_d^r} + \frac{(1+\phi_4)HR}{\varepsilon_s^p} \\ L_1 &= r_{11} + r_{12}(v/w_1)^{\frac{1}{2}} + y^r HRd_1 + tg_1 \\ K &= r_{22} + r_{12}(w_1/v)^{\frac{1}{2}} + y^r HRd_2 + tg_2 \end{split}$

Results

Simulated (true) market structure	Perfect competition			Monopolistic			Monopsonistic		Integrated processor- retailer			Two way bilateral imperfect competition			Four way bilateral imperfect competition			
	N	Α	1	N	Α	1	N	Α	1	N	Α	1	N	Α	1	N	Α	1
Perfect competition*	53	25	53	1000	0	0	1000	0	0	1000	0	0	1000	0	0	1000	0	0
Monopoly	1000	0	0		=	•	1000	0	0	1000	0	0	1000	0	0	1000	0	0
Cournot duopoly®	1000	0	0	957535	2	9.70	1000	0	0	1000	0	0	1000	0	0	1000	0	0
Stackelberg duopoly ^a	1000	0	0	127	2	27	1000	0	0	1000	0	0	1000	0	0	1000	0	C
Monopsony	1000	0	0	1000	0	0	្	24	2	1000	0	0	1000	0	0	1000	0	0
Cournot duopsony ^c	1000	0	0	1000	0	0	-	23	-	1000	0	0	1000	0	0	1000	0	0
Stackelberg duopsony ^c	1000	0	0	1000	0	0	9	21	2	1000	0	0	1000	0	0	1000	0	C
Four way bilateral imperfect competition ^d	1000	0	0	1000	0	0	1000	0	0	1000	0	0	1000	0	0	æ	-	-

22	# DATASA 10 10 10 10 10 10 10 1	95% Confidence Interval (CI)							
			Monopoly	Monopsony					
Simulated (true) market structure	True market power parameter (φ)	Bias	CI	Bias	CI				
Perfect competition	$\phi_1 = 0$	0.2857	(0.2315, 0.3552)	0.36948	(0.0378,0.7773)				
Stackelberg duopoly	$\phi_1 = 0.4$	0.6214	(0.4243,1.0645)	-0.2631	(-0.3766,0.3943)				
Monopsony	$\phi_3 = 1$	0.3732	(0.1637, 0.4285)	*	€:				
Four way bilateral imperfect competition	$\phi_1 = \phi_2 = \phi_3 = \phi_4 = 0.2$	0.4243	(0.3511,0.6843)	0.7409	(0.6310,0.8531)				

Econometric specification

 ϕ_1 : Processor oligopoly market power parameter, ϕ_2 : Processor oligopsony market power parameter

 ϕ_3 : Retailer oligopoly market power parameter, ϕ_4 : Retailer oligopoly market power parameter

Stackelberg duopoly is industrial level market power parameter

Ho is the monopolistic power specification

Ho is the monopsonistic powers pecification

Ho is the four way bilateral imperfect competition specification

	Econometric specificati	on							
		95% Confidence Interval (CI)							
Simulated (true) market structure			way bilateral ect competition		r way bilateral fect competition				
Simulated (true) market structure	True market power parameter (φ)	Bias	CI	Bias	CI				
	$\phi_1 = 0$	0.1415	(0.0191, 0.1687)	0.2440	(0.1660, 0.3753)				
Derfect competition	$\phi_2 = 0$			0.3337	(0.2742,0.4173)				
Perfect competition	$\phi_3=0$	0.0349	(0.0002, 0.1329)	0.0525	(0.0082,0.0752)				
	$\phi_4 = 0$			0.0291	(0.0152,0.0453)				
	$\phi_1 = 0.4$	0.0122	(0.0033, 0.4234)	0.2354	(0.1622, 0.1643)				
Cts ekelbeer duesely	$\phi_2 = 0.4$			-0.0114	(-0.4073,0.4104)				
Stackelberg duopoly	$\phi_3 = 0.4$	0.3872	(0.0135, 0.4013)	-0.3673	(-0.0262,0.0356)				
	$\phi_4 = 0.4$			-0.3836	(-0.0133,0.0171)				
	$\phi_1 = 1$	0.8096	(0.0724,0.8253)	0.7311	(0.2648,0.8174)				
NA	$\phi_2=1$			-0.5592	(-0.2401,0.5929)				
Monopsony	$\phi_3=1$	0.1721	(-0.2048,0.3054)	0.4827	(0.4135,0.5493)				
	$\phi_4=1$			-0.5055	(-0.4093 ,0.5580)				
	$\phi_1 = 0.2$	0.4448	(0.2173, 0.6595)	S 3 88	20				
Four way bilateral	$\phi_2 = 0.2$			853	72				
Imperfect competition	$\phi_3 = 0.2$	0.0598	(-0.1388,0.1414)	323	21				
	$\phi_4 = 0.2$			356	81				

Conclusions

 ϕ_1 : Processor oligopoly market power parameter, ϕ_2 : Processor oligopsony market power parameter

 ϕ_3 : Retailer oligopoly market power parameter, ϕ_4 : Retailer oligopoly market power parameter

- Likelihood Dominance Criterion (LDC) reject the alternative in favor of the null model specification 100% of the time.
- Results show that in most cases erroneous market structure modeling results in biased market power parameter estimates.
- A few exceptions were found when true Stackelberg duopoly, monopsony, and four way bilateral data were tested against alternative market structure models.

References

- Chung, C and E. Tostao. 2012. "Effects of horizontal consolidation under bilateral imperfect competition between processors and retailers." Journal of Applied Economics 44:3379-3389.
- Paul, C. J. M. 2001. "Market and cost structure in the US beef packing industry: a plant-level analysis." American Journal of Agricultural Economics 83:64-76.
- Pollak, R. A., and T. J. Wales. 1991. "The likelihood dominance criterion." Journal of Econometrics 47:227-242.
- Raper, K. C., H. A. Love, and C. R. Shumway. 2000. "Determining market power exertion between buyers and sellers." Journal of Applied Econometrics 15(3):225-252.
- Tostao, E. and C. Chung. 2005. "Horizontal consolidation in the US food processing industry: Boon or Bane?" Southern Agricultural Economics Association Annual Meetings in Little Rock, Arkansas, February 5-9.