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ABSTRACT 

 

In this study stylized gasoline blender’s optimal hedging strategy in the presence of ethanol 

mandates is analyzed. In particular, the main objective of this study is to investigate whether the 

ability to purchase RINs and the presence of tax incentives would affect blenders’ optimal 

hedging strategies. Multicommodity hedging method with Lower Partial Moments hedging 

criterion as a measure of downside risk is utilized in obtaining the optimal hedge ratios. Based 

on the obtained results, the Renewable Identification Number purchases do not reduce risk, 

hence, is not a good risk management tool in the presence of blenders’ tax credits. However, in 

the absence of tax credit, RINs can be used as a risk management tool.  
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Do RIN Mandates and Blender's Tax Credit Affect Blenders' Hedging Strategies? 

Introduction 

Oftentimes businesses want some degree of stability in their cash inflows or outflows in 

order to establish reliable financial planning and meet company’s financial obligations and 

commitments. Typically most businesses, whether it is an ethanol producer, a farmer, or a 

financial institution, are exposed to some degree of price risk on assets used or produced in their 

business activities. Therefore, businesses or individual investors use hedging as a risk 

management tool to reduce the risk of adverse price changes by taking positions in the futures or 

options markets. 

Traditionally, gasoline blenders used Methyl Tertiary Butyl Ether (MTBE) as a gasoline 

oxygenate to produce blended gasoline. By the end of 1990s, several states started banning 

MTBE after discovering its negative effects on health and environment as result of gasoline 

leakage incidents. In 2000, Environmental Protection Agency (EPA) recommended that the use 

of MTBE should be banned across all the states. By 2004, 18 states banned the use of MTBE and 

started switching to ethanol as a gasoline oxygenate.  

Several laws related to health and environmental protection, energy independence, and 

resulting economic incentives have accelerated the adoption of biofuels in the United States. 

Energy Policy Act of 2005 (EPAct) established the renewable fuel volume mandate by requiring 

that 7.5 billion gallons of national fuel supply be provided by renewable fuels by 2012. The 

Energy Independence and Security Act of 2007 (EISA) further expanded the EPAct by requiring 

36 billion gallons of renewable fuels blended into gasoline and diesel by 2022. Epact and EISA 

stipulates Renewable Fuel Standards (RFS1 and RFS2 respectively) and authorizes the EPA to 

facilitate the RFS mandates. 



 In addition, these biofuels related policies provide various incentives to biofuels producers 

and blenders. For instance, an ethanol blender, who is registered with Internal Revenue Service 

(IRS), is eligible for a Volumetric Ethanol Excise Tax Credit (VEETC) incentive in the amount 

of 45 cent per gallon of pure ethanol blended with gasoline. VEETC expires on December 31, 

2011. 

Renewable Identification Numbers (RINs) are developed as a tracking mechanism in order to 

implement the compliance with RFS mandates (Thompson et al 2010). EPA issues RINs for 

every batch of produced or imported biofuels that is in compliance with mandate guidelines. 

EPA requires fuel blenders submit specified amounts of RINs as a proof that they are blending 

biofuels into conventional fuels. The RINs can be obtained by purchasing biofuels from the 

producers. If blenders purchase more biofuels than their mandated amount, they can sell the extra 

RINs to other blenders to meet their mandates. Depending on the RIN prices (per RIN-gallon), 

the blenders have the flexibility either to purchase the biofuels (which comes with RINs) from 

the producers or to purchase RINs from other blenders. 

In this study stylized gasoline blender’s optimal hedging strategy in the presence of ethanol 

mandates is analyzed. In particular, the main objective of this study is to investigate whether the 

ability to purchase RINs and the presence of tax incentives would affect blenders’ optimal 

hedging strategies.  

 

Review of Hedging Literature 

There are very few studies have been done related to hedging in multi-commodity setting, 

most of which utilize traditional minimum-variance (MV) and mean-variance criteria that 

assume normality. Lower partial moments (LPM) criterion combined with copula approach is an 



alternative to the traditional criteria and presents a great potential in multi-commodity hedging. 

LPM criterion looks at risk from downside perspective and copulas are flexible enough to 

accommodate parametric and nonparametric distributions.  

MV criterion is the most commonly used approach in determining the optimal hedge ratio 

(e.g. Hull, 2003, p. 79). For instance, Ederington (1979) used MV criterion and proposed hedge 

effective-ness measure, r
2
, to evaluate Government National Mortgage Association (GNMA), 

Treasury Bill (T-Bill), corn, and wheat futures markets. One of their main findings is that the 

optimal hedge ratio was less than one in most cases, hence, optimal hedging strategy is not an 

equal and opposite hedge. Benninga, Eldor, and Zilcha (1983) examine MV hedge ratios in 

futures markets under two assumptions: 1) futures prices are unbiased and 2) basis between 

futures and spot prices is independent of spot price. They conclude that, under above 

assumptions, MV optimal hedge ratios are independent of preferences. However, later studies by 

other authors show the short-comings of this approach. Lence (1995) argues that MV approach 

relies on set unrealistic assumptions. For instance, it ignores transaction costs, borrowing and 

lending, and alternative investment activities. He concludes that MV hedge maximizes expected 

utility under restrictive assumptions, but results in sub-optimal hedging strategies when those 

assumptions are relaxed. 

Meyer (1987) showed that when the return distributions are elliptically symmetric then the 

two-moment decision model  (   ) is consistent with expected utility maximization. 

Furthermore, he showed that when    (     )   ⁄   , where   (     )     (   )   (   )⁄  

(prop. 6) holds   (   ) exhibits constant relative risk aversion (CRRA). By using these 

conditions, Nelson and Escalante (2004) showed that  ( (  ))   (   )   (      )   is 

a concave function in (   ) space and exhibits general CRRA preferences. They applied this 



mean-variance objective function to an optimal leverage, farm finance, and optimal broiler 

contract models. They found that this objective function provides better analytical solutions than 

that of linear mean-variance model.  

The hedgers are more concerned about their losses (downside risk) than extraordinary profits 

(upside potential) and therefore view risk as being downside deviations from the mean. Many 

studies (e.g. Unser, 2000) confirm this notion of downside risk. Thus, this implies that the 

appropriate way of minimizing risk is minimizing downside risk. Traditional risk minimization 

criteria, MV and mean-variance, can be used to minimize downside risk given the elliptical 

distributional assumptions underlying these criteria are met. However, recent studies challenged 

the validity of this assumption and many empirical studies confirmed that asset returns are not 

normal or elliptical in general. When the normality assumption is violated, the use of MV and 

mean-variance criteria leads to overhedging since upside potential is also considered as risk in 

the traditional hedging.  

An alternative approach, lower partial moments (LPM), was proposed by Fishburn (1977). 

This criterion accommodates any distributional assumptions and defines risk as shortfalls from a 

specific target return. Bawa (1978) established the relationship between the expected utility 

maximization method and the lower partial moment minimization method and showed that an 

nth order lower partial moment is compatible with stochastic dominance of order    . Lien 

and Tse (2000) applied lower partial moments of order one to three with different levels of target 

returns to analyze the behavior of optimal hedge ratios and compared them with MV based 

hedge ratios. The optimal hedge ratios were estimated by the empirical distribution function 

method and the kernel density estimation method. The study used data on spot and futures prices 

of Nikkei Stock Average (Nikkei 225) index which consists of daily observations from January 



1988 to August 1996. They found that LPM based strategies significantly differ from MV based 

strategies and if a hedger is concerned about downside-only risk, then MV hedge is 

inappropriate.  

Both Tzang & Leuthold (1990) and Fackler & McNew (1993) analysed optimal hedge ratios 

for soybean processors under mean-variance criterion in multi-commodity setting. Even though 

each study recommended somewhat different specific optimal hedge ratios, both obtained similar 

findings. They found that multiproduct hedging strategies provide significant risk reductions 

relative to optimal hedging strategies based on single commodity. However, Collins (2000) 

challenged the validity of these claims in his study of U.S. soy complex. He argues that neither 

multivariate hedging models nor the univariate counterpart better risk management over a simple 

equal and opposite hedging strategy. Power and Vedenov (2010) studied the LPM based hedging 

strategies in multi-commodity setting. They used the data determined kernel copula approach to 

model the joint distribution of cash and futures prices of underlying commodities. Optimal hedge 

ratios are estimated for representative Texas feedlot operation based on actual cash and future 

prices of corn and live cattle. Their results confirmed the findings of earlier studies where LPM 

based optimal hedge ratios are significantly lower than that of minimum-variance criterion. 

However, the results show that an optimal strategy for corn was a speculative position, which is 

somewhat unexpected.  

When returns on the underlying assets are non-normal then the linear correlation is not a 

useful indicator of dependence and the use of copula functions resolves this problem. Copulas 

can model dependence structure in both elliptical and non-elliptical distributions. Copula 

functions tackle the specification of marginal distributions and modeling the dependence 

structure separately (e.g. Cherubini and Luciano, 2003; Dowd, 2005; Fischer et al., 2009). Thus, 



copulas offer more flexibility, where we can first fit appropriate marginal distributions to each 

underlying risk variable and then fit appropriate dependence structure. In other words, copula 

functions break the construction of joint distributions into two separate parts: the choice of 

marginal distribution functions and the choice of copula function, thus allowing dependence 

structure to be modeled independently of the marginal distributions of random variables 

(Martellini and Meyfredi 2008).  

Fischer et al. (2009) compared the different copula models including Clayton and Gumbel 

copulas from Archimedean class, two hierarchical copula models from the generalized 

Archimedean copula family, Gaussian copula, and the Student-t copula. The Student-t copula is 

used as a benchmark. All models are estimated by maximum likelihood method. The data set 

used is returns on four assets from each of the German stock market (DAX), foreign exchange 

markets, and London Metal Exchange (LME). Their findings indicate that Student-t copula gives 

the best fit over all measures. Rotated Gumbel copulas outperform other approaches within the 

class of pair-copulas itself. Archimedean copulas outperform in the bivariate case, whereas 

Gaussian copula in higher dimensions with the latter having the best overall goodness-of-fit 

measure.  

 

Hedging Problem 

We assume that an independently owned gasoline terminal facility, which is not involved in 

refining process, is exposed to risk in the output and input markets. It purchases Reformulated 

Gasoline Blendstock for Oxygen Blending (RBOB) from the refinery and only blends and stores 

gasoline which is then transported to retail gas stations. We also assume that a gasoline blender 

hedges his non-tradable spot position of blended gasoline    in the output market,     of 



unblended gasoline (RBOB) and (   )   of pure ethanol in the input markets at the beginning 

of the period, t=0.  

The blender wants to minimize his risk by purchasing futures contracts for     units of 

RBOB and  (   )   units of pure ethanol, hence becoming a short hedger, at     in the 

futures market. Let    and   , denote spot prices at the beginning and at the end of hedging 

period respectively. Alternatively,    and    are the futures prices at time 0 and 1 respectively. 

Then, blender’s end-of period profit can be written as follows: 

 

 ( )           
  (       )  (         )    

       (     )    
  

   
  (  

    
 )     

    
  (  

    
 )  (         )    

  

                   (1) 

 

where                   are the spot prices of blended gasoline, RBOB gasoline, pure 

ethanol, and RIN respectively at the end of a hedging period. k is the ratio of RBOB to blended 

gasoline and the rest comes from an ethanol blending. The coefficient 0.45 represents the 

blenders’ tax credit per unit of pure ethanol blended.  The coefficient 0.043 corresponds to the 

minimum volume of oxygenate concentration required by EPA. For ethanol this requirement 

amounts to 4.3% in the total volume of blended reformulated gasoline if the blenders use 

averaged basis. Thus, blenders must use ethanol as an oxygenate, or alternative additive, in tha 

amount of 4.3% of total blended volume. The government does not mandate more than 10% 

ethanol blending and therefore k varies between 0.9 and 0.957, but it can be more on voluntary 

basis. Since the blenders’ have the option to fulfill their mandates by purchasing RINs instead of 

blending the physical product, (     )  
  is the amount of ethanol mandate that can be met 



with RIN purchase. Here, we are making an implicit assumption that other non-banned substitute 

oxygenate products’ costs or the amount per blended gasoline are small enough not to account 

for this alternative scenario. If not, the profit function needs to be properly modified.   

 

Minimum LPM hedge ratio 

As it was mentioned earlier, the LPM is a measure of downside risk and is compatible with 

stochastic dominance principle. The nth-order lower partial moment (LPMn) of a random 

variable r with a target return  ̅ is defined as follows: 

 

     ∫ ( ̅   )   ( )
 ̅

  
       (2) 

 

where  ( ) is the multivariate distribution function of a random return r. The return greater than 

 ̅ is desirable and anything lower considered as risk. Therefore, hedger tries to minimize any 

return below the target level and the h* attains the optimal hedge ratio when LPM function 

reaches the minimum.  

The joint distribution is constructed by copulas and they enable us to create multivariate joint 

distribution from univariate distributions. When modeling the joint distribution with copula, we 

first specify the marginal distributions, then choose the appropriate type of copula and estimate 

its parameters, and then we apply the copula function to marginals to get the joint distribution. 

Then, we can use that constructed joint distribution with desired hedging criterion to obtain the 

optimal hedge ratio. 

 

 



Empirical model and methodology 

  
  can be omitted from blender’s profit function since it serves as a scalar.  
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Lower partial moment of order 2, LPM2, will be used in the analysis. Blender’s objective is 

to minimize any shortfalls below the target profit. Thus, we have the following minimization 

problem for a blender to obtain the optimal hedge ratio: 

 

     ∫ ( ̅   ( ))
 
  ( ( ))

 ̅

  
      (4) 

 

where π is blender’s profit function as defined earlier    ̅ is the expected profit without hedging, 

  ( ) is the multivariate distribution of π  and             is a vector of hedge ratios. 

Before estimating the optimal hedge ratios using LPM criterion, the joint distribution of five 

price series needs to be constructed. Gaussian copula is chosen to model the joint distribution. 

First, empirical distributions of log-differenced values of price series are obtained and the 

dependence structure is modeled with Gaussian copula. Then ten thousand simulated log-

differenced series are generated using Gaussian copula and inverse empirical marginals. In order 

to accommodate the presence of a blenders’ tax credit  since it does not vary overtime  the 

simulated series are converted to levels by using sample average prices.  

 



Blenders’ tax credit  though expired in the end of 2011  and possibility of RIN purchases are 

considered separately and together in three scenarios.  

 

Data 

The price series for the analysis are obtained via datastream. New York Harbor oxygenated 

and non-oxygenated (RBOB) spot prices are used for blended (  ) and unblended (  ) gasoline 

prices respectively. For gasoline futures prices, nearby RBOB futures contract from NYMEX are 

used. Ethanol spot prices are for New York harbor and futures prices come from CBOT nearby 

ethanol futures contracts. RIN prices are obtained from HARTENERGY’s weekly Ethanol & 

Biofuels News and are based on survey of ethanol blenders. All the price series are daily prices 

and starting from June 23, 2006 to March 17, 2012 and sampled weekly to match the weekly 

RIN prices. The weekly RIN prices start from May 14, 2010 and end on March 17, 2012 that 

corresponds to 93 weekly observations. The dataset includes 1543 observations of five daily 

price series that resulted in 292 weekly series. Four-week rolling window is used in the analysis. 

The price series do not exhibit too much departure from normality based on visual inspection 

of sample summary statistics in table 1.  

 

Table1. descriptive statistics for price series at levels 

Variable Obs. Mean Std. Dev. Skewness Kurtosis 

P
B 1543 2.2546 0.5916 0.0563 -0.5217 

P
G

 1543 2.2296 0.5682 0.0151 -0.6112 

F
G

 1543 2.2574 0.5887 0.0896 -0.5320 

P
E
 1543 2.2366 0.4533 1.1720 4.2681 

F
E
 1543 2.0884 0.3983 0.3895 -0.3995 

P
RIN

 93 0.0245 0.0103 -0.1873 -0.6115 

 



All of the series exhibit positive Skewness with the prices of ethanol having the largest 

positive Skewness of 1.17 followed by its futures price. In terms of their kurtosis, only ethanol 

spot price exhibits excessive kurtosis and RIN price exhibits lower kurtosis than that of normal 

distribution. 

Since we have only 93 observations, the RIN prices are estimated using gasoline and ethanol 

futures and spot prices. RIN prices are first estimated using OLS regression, equation 5. Then, 

estimated coefficients are used with simulated price series, based on 292 weekly observations, to 

obtain RIN price. 

 

           
     

     
     

        (5) 

 

Estimated parameter coefficients are given in table 2: 

 

Table 2. Estimated OLS coefficients for ethanol RIN prices 

Ethanol RIN Coef. |t| P>|t| 

Intercept 0.016696 2.55 0.013 

RBOB spot -0.022767 -2.00 0.049 

RBOB futures 0.011543 1.10 0.275 

Ethanol spot -0.030161 -3.27 0.002 

Ethanol futures 0.047698 4.33 0.00 

R-square = 0.2427 

 

Empirical results and conclusion 

Optimal hedge ratios are calculated with target expected no-hedge profit for RIN and 45 cent 

tax credit scenario and RIN only scenario. Optimal hedging strategy in the presence of ethanol 

RIN purchases and blenders’ tax credit resulted in hedge ratio of h*=[-0.1, 1, 0.9]. This optimal 



hedging strategy tells that ethanol RIN is not purchased and the mandate is satisfied by blending 

10% of ethanol where the remaining comes from non-oxygenated gasoline. It is optimal for the 

blender to hedge all of his ethanol purchases and take a speculative position in the amount of 

10% of his non-oxygenated gasoline purchases.  

In the no-tax-credit scenario, the optimal hedging strategy suggests a hedge ratio of h*=[0.05, 

0.05, 0.91]. This strategy implies that in the absence of blenders’ tax credit it is optimal for a 

gasoline blender to hedge only 5% of non-oxygenated gasoline and ethanol purchases and buy 

ethanol RIN in the amount of 10% his ethanol purchases.  

Based on the obtained results, the RIN purchases do not reduce risk, hence, is not a good risk 

management tool in the presence of blenders’ tax credits. However  in the absence of tax credit  

RINs can be used as a risk management tool. The results are sensitive to accurate RIN price 

forecast, thus better modeling of the RIN prices is desired. Hierarchal nature of the RIN 

mandates and the ability to carry over the mandated amount to the next year adds more 

complexity to the modeling of RIN prices. Further separate study can be conducted to 

accomplish this task. 

 

 

 

 

 

 

 

 



References  

Bawa, V. S. (1978). Safety-First, Stochastic Dominance, and Optimal Portfolio Choice. The 

Journal of Financial and Quantitative Analysis, Vol. 13, No. 2, 255-271. 

Cherubini, U. & Luciano, E. (2003). Pricing and Hedging Credit Derivatives with Copulas. 

Economic Notes by Banca Monte dei Paschi di Siena SpA, Vol. 32, No. 2, 219–241. 

Collins, R. A. (2000). The risk management effectiveness of multivariate hedging models in the 

U.S. soy complex. Journal of Futures Markets, 20, 189–204. 

Dowd, K. (2005). Copulas and coherence: Portfolio analysis in a non-normal world. Journal of 

Portfolio Management, 32, 123–127. 

Ederington, L. H. (1979). The Hedging Performance of the New Futures Markets. The Journal of 

Finance, Vol. 34, No. 1, 157-170. 

Fackler, P. L., and Kevin P. McNew, K. P. (1993). Multiproduct Hedging: Theory, Estimation, 

and an Application. Review of Agricultural Economics, Vol. 15, No. 3, 521-535.  

Fischer, M., Köck, C., Schlüter, S., Weigert, F. (2009). An empirical analysis of multivariate 

copula models. Quantitative Finance, Vol. 9, No. 7, 839–854. 

Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. 

American Economic Review, 67, 116–126. 

Hull, J. (2002). Options, futures and other derivatives (5th ed.). Upper Saddle River, NJ: 

Prentice-Hall. 

Lence, S. H. (1995). The economic value of minimum-variance hedges. American Journal of 

Agricultural Economics, 77, 353–364. 

Lien, D., and Tse, Y. K. (2000). Hedging downside risk with futures contracts. Applied Financial 

Economics, 10, 163–170. 



Martellini, L., & Meyfredi, J. C. (2008). A copula approach to value-at-risk estimation for fixed-

income portfolios. CFA Digest, 38, 23–24. 

Meyer, J. (1987). Two-Moment Decision Models and Expected Utility Maximization. The 

American Economic Review, Vol. 77, No. 3, 421-430. 

Nelson, C. H. and Escalante, C. (2004). Toward exploring the location-scale condition: a 

constant relative risk aversion location-scale objective function. European Review of 

Agricultural Economics Vol. 31, No. 3, 273–287. 

Power, G. J. & Vedenov, D. (2010). Dealing with downside risk in a multi-commodity setting- A 

case for a “Texas hedge”? The Journal of Futures Markets  Vol. 30  No. 3  290–304. 

Thompson, W., S. Meyer, and P. Westhoff. 2010. The New Markets for Renewable 

Identification Numbers. Applied Economic Perspectives and Policy 32 (4):588-603. 

Tzang, D., and Leuthold, R. M. (1990). Hedge Ratios under Inherent Risk Reduction in a 

Commodity Complex. The Journal of Futures Markets, Vol. 10, No. 5, 497-504. 

Unser, M. (2000). Lower partial moments as measures of perceived risk: An experimental study. 

Journal of Economic Psychology, 21, 253–280. 


