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Abstract 

This paper examines the dynamics of volatility across major global exchanges for corn, wheat, 

and soybeans in the United States, Europe, and Asia. We follow a multivariate GARCH 

approach and account for the potential bias that may arise when considering exchanges with 

different closing times. The results indicate that agricultural markets are highly interrelated and 

there are both own- and cross-volatility spillovers and dependence among most of the 

exchanges. Chicago particularly plays a major role in terms of spillover effects over other 

markets. Additionally, the level of interdependence between exchanges has only increased in 

recent years for some commodities. 

 

Keywords: Volatility transmission, agricultural commodities, futures markets, Multivariate 

GARCH 
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1. INTRODUCTION  

In recent years, we have been witness to dramatic increases in both the level and volatility 

(fluctuations) of international agricultural prices (Gilbert, 2010). This has raised concern about 

unexpected price spikes as a major threat to food security, especially in less developed countries 

where food makes up a high proportion of household spending. The unprecedented price spikes 

in agricultural commodities during the 2007-2008 food crisis, coupled with shortages and 

diminishing agricultural stocks, resulted in reduced access to food for millions of poor people in 

a large number of low income, net food-importing countries. The recent escalation of several 

agricultural prices (particularly corn and wheat prices) and the prevailing high price volatility 

have reinforced global fears concerning volatile food prices. Attention has now turned to further 

examining food price volatility in global markets. 

It is fairly well established that traders in exchange markets, including hedgers and 

speculators, base their decisions on information generated domestically, as well as on 

information from other markets (Koutmos and Booth, 1995). In the case of agricultural 

exchanges, the important development of futures markets in recent decades, combined with the 

major informational role played by futures prices, have contributed to the increasing 

interdependence of global agricultural markets.1 Identifying the ways in which international 

futures markets interact is consequently crucial for properly understanding price volatility in 

agricultural commodity markets. Moreover, potential regulatory arrangements of agricultural 

futures markets, which are still being debated within the European Union (EU), United States, 

and The Group of Twenty (G-20), can be properly evaluated when linkages and interactions 

across exchanges are taken into account. The effectiveness of any proposed regulatory 

mechanism will depend on the level and forms of interrelation between markets. Moreover, the 

issue of interdependence and volatility transmission across international markets is of interest 

for international traders, investors and portfolio managers, allowing them to carry out hedging 

and trading strategies more successfully. 

This study evaluates the level of interdependence and volatility transmission in major 

agricultural exchanges between the United States (Chicago, Kansas), Europe (France, United 

Kingdom), and Asia (China, Japan). In particular, we examine the dynamics and cross-

dynamics of volatility across futures markets for three key agricultural commodities: corn, 

wheat, and soybeans. The period of analysis is 2004-2009 for corn and soybeans and 2005-2009 

for wheat. We follow a multivariate GARCH (hereafter MGARCH) approach that allows us to 

evaluate whether there is volatility transmission across exchanges, the magnitude and source of 

interdependence (direct or indirect) between markets, and ultimately how a shock or innovation 

in a market affects volatility in other markets. In particular, we estimate two MGARCH models: 

                                                      

 

 
1 As a reference, the average daily volume of corn futures traded in the Chicago Board of Trade (CBOT) has 

increased by more than 250% in the last 25 years (Commodity Research Bureau, Futures database). 
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T-BEKK and DCC models.2 The BEKK model is suitable to characterize volatility transmission 

across exchanges since it is flexible enough to account for own- and cross-volatility spillovers 

and persistence between markets. The DCC model, in turn, evaluates the degree of 

interdependence between markets, measured through a dynamic conditional correlation matrix, 

allowing us to examine if the degree of interdependence has changed across time. 

The paper contributes to the literature in several aspects. First, it provides an in-depth 

analysis of volatility transmission across several important exchanges of different agricultural 

commodities. Most of the previous research including Spriggs et al. (1982), Gilmour and 

Fawcett (1987), Goodwin and Schroeder (1991) and Mohanty et al. (2005) have either 

examined price volatility of agricultural commodities under a univariate approach or have 

focused on the interdependence and interaction of agricultural futures markets in terms of the 

conditional first moment of the distribution of returns.3 We explore futures markets interactions 

in terms of the conditional second moment under a multivariate approach. This approach 

provides better insight into the dynamic price relationship of international markets by 

incorporating volatility spillovers.4 Inferences concerning the magnitude and persistence of the 

shocks, which originate in one market and then transmit to the other markets, are shown to 

depend importantly on how we model the cross-market dynamics in the conditional volatilities 

of the corresponding markets (Gallagher and Twomey, 1998). In addition, with a multivariate 

model we can capture the feedback interrelationships among the volatilities across markets; this 

is important since it is widely accepted that financial volatilities move together over time across 

markets. 

Second, and contrary to previous related studies, we account for the potential bias that 

may arise when considering agricultural exchanges with different closing times. We 

synchronize our data by exploiting information from markets that are open to derive estimates 

for prices when markets are closed. Third, our sample period allows us to examine whether 

there have been changes in the dynamics of volatility due to the recent food price crisis of 2007-

2008; a period of special interest with unprecedented price variations. Finally, we apply 

different MGARCH specifications to analyze in detail the cross-market dynamics in the 

conditional volatilities of the exchanges. 

The estimation results indicate that there is a strong correlation between international 

markets. We find both own- and cross-volatility spillovers and dependence between most of the 

                                                      

 

 
2 The BEKK model stands for Engle and Kroner (1995) multivariate model; the acronym BEKK comes from 

synthesized work on multivariate models by Baba, Engle, Kraft, and Kroner, while T indicates that we use a T-

student density in the estimations (for reasons that will become clear later). The DCC model is Engle (2002) Dynamic 

Conditional Correlation model. 
3 Two exceptions are Yang et al. (2003) and von Ledebur and Schmitz (2009). The former examine volatility 

transmission in wheat between the United States, Canada and Europe using a BEKK model, but do not account for 

the asynchrony of returns; the latter examine volatility transmission in corn between the United States, Europe and 

Brazil using a restrictive specification. 
4 Our study is more in line with Karolyi (1995), Koutmos and Booth (1995), and Worthington and Higgs (2004), who 

examine volatility transmission in stock markets using multivariate models.  
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exchanges considered in the analysis. There is also a higher interaction between Chicago and 

both Europe and Asia compared to Europe and Asia. The results further indicate the major role 

of Chicago in terms of spillover effects over the other markets, particularly for corn and wheat. 

In the case of soybeans, both China and Japan also show important cross-volatility spillovers. In 

addition, the level of interdependence between exchanges for all commodities has not 

necessarily shown an upward trend in recent years. 

This paper is a shorter version of the study by Hernandez et al. (2011). The remainder of 

the paper is organized as follows. Section 2 presents the econometric approach used to examine 

volatility transmission among major agricultural exchanges. Sections 3 and 4 describe the data 

and how we address the problem of asynchronous trading hours among the markets considered 

in the analysis. The estimation results are reported and discussed in Section 5, while the 

concluding remarks are presented in Section 6. 

2. METHODOLOGY 

To examine interdependence and volatility transmission across futures markets of 

agricultural commodities, two different MGARCH models are estimated. The estimation of 

these models responds to the different questions we want to address and serves to better 

evaluate the cross-market dynamics in the conditional volatilities of the exchanges using 

different specifications. 

Following Bauwens et al. (2006), we can distinguish three non-mutually exclusive 

approaches for constructing MGARCH models: i) direct generalizations of the univariate 

GARCH model (e.g. diagonal and BEKK models, factor models), ii) linear combinations of 

univariate GARCH models (e.g. O-GARCH), and iii) nonlinear combinations of univariate 

GARCH models (e.g. CCC and DCC models, copula-GARCH models).5 Given the objective of 

our study, we apply the first and the third approach in the analysis. In particular, we estimate the 

T-BEKK and DCC models. 

The crucial aspect in MGARCH modeling is to provide a realistic but parsimonious 

specification of the conditional variance matrix, ensuring that it is positive definite. There is a 

dilemma between flexibility and parsimony. BEKK models, for example, are flexible but 

require too many parameters for more than four series. Diagonal BEKK models are much more 

parsimonious but very restrictive for the cross-dynamics; they are not suitable if volatility 

transmission is the sole object of the study. CCC models allow us to separately specify the 

individual conditional variances and the conditional correlation matrix of the series, but assume 

constant conditional correlations. DCC models allow, in turn, for both a dynamic conditional 

correlation matrix and different persistence between variances and covariances, but impose 

common persistence in the covariances. 

                                                      

 

 
5 The CCC model is Bollerslev (1990) Constant Conditional Correlation model, while O-GARCH is the orthogonal 

MGARCH. Examples of copula-GARCH models include Patton (2000) and Lee and Long (2009). 
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The MGARCH models employed in this paper cannot distinguish between idiosyncratic 

and aggregate shocks. To identify aggregate shocks, it would be necessary to estimate a factor 

GARCH model that captures the commonality in volatility clustering across different random 

variables. However, these models are intended to analyse the conditional volatilities for a large 

number of series, which makes them less suitable for this study. 

Consider the following model, 

   

),,0(~|    ,)( 1 tttttt HIy       (1) 

 

where }{ ty  is an Nx1 vector stochastic process of returns, with N being the number of 

exchanges considered for each of the three agricultural commodities to be studied (corn, wheat 

and soybeans),   is a finite vector of parameters, )(t  is the conditional mean vector, and t  

is a vector of forecast errors for the best linear predictor of ty  conditional on past information 

denoted by 1tI . The conditional mean vector )(t  can be specified as a vector of constants 

plus a function of past information, through a VAR representation for the level of returns. 

In the BEKK model with one time lag, the conditional variance-covariance matrix tH  is 

defined as 

 

,''' 1

'

11 BHBAACCH tttt       (2) 

 

where ijc  are elements of an NxN upper triangular matrix of constants C, the elements ija  of 

the NxN matrix A measure the degree of innovation from market i to market j, and the elements 

ijb  of the NxN matrix B show the persistence in conditional volatility between markets i and j. 

This specification guarantees, by construction, that the covariance matrices are positive definite. 

The conditional variance matrix tH  specified in expression (2) allows us to examine in 

detail the direction, magnitude and persistence of volatility transmission across markets. For 

instance, based on this specification, we are able below to derive impulse-response functions to 

illustrate the effects of innovations originated in one market and transmitted to the rest of the 

markets under analysis. 

In the DCC model, the conditional variance-covariance matrix tH  is defined as 

 

tttt DRDH        (3) 

 

where 

 

)...( 2/1

,

2/1

,11 tNNtt hhdiagD  ,     (4) 
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1,,   tiiitiiitii hh 
    

(5) 

 

i.e., tiih ,  is defined as a GARCH(1,1) specification, Ni ,...,1 , and 

 

)()( 2/1

,

2/1

,

 tiittiit qdiagQqdiagR    (6) 

 

with the NxN symmetric positive-definite matrix )( ,tijt qQ   given by 

 

,)1( 1

'

11   tttt QuuQQ    (7) 

 

and iititit hu  . Q  is the NxN unconditional variance matrix of tu , and   and   are 

non-negative scalar parameters satisfying 1  . The typical element of the conditional 

correlation matrix tR  will have the form 

tjjtii

tij

tij
qq

q

,,

,

,  . Essentially, tQ  is an 

autoregressive moving average type process that captures short-term deviations in the 

correlation around its long-run (unconditional) level. The normalization in (6) guarantees that 

tR
 
is a correlation matrix. 

The specification of tH  in expression (3) is appropriate to estimate the degree of 

interdependence between markets. A time-dependent conditional correlation matrix sheds light 

on how markets are interrelated both in the long and short run. 

3. DATA 

We have daily data on closing prices for futures contracts of corn, wheat, and soybeans 

traded on different major exchanges across the world, including Chicago (CBOT), Kansas 

(KCBT), Dalian-China (DCE), France (MATIF), United Kingdom (LIFFE), Japan (TGE), and 

Zhengzhou-China (ZCE). The United States, EU, and China are major players in global 

agricultural markets and trade, while Japan is a major importer. The exchanges considered are 

basically the leading agricultural futures markets in terms of volume traded. China is a special 

case, considering that it is both a major global producer and consumer of agricultural products; 

but at the same time it is a locally oriented and highly regulated market. 

The data was obtained from the futures database of the Commodity Research Bureau 

(CRB). Table A.1 details the specific exchanges and commodities in our data, as well as their 

starting sample period, price quotation, and contract unit. The final date in our sample is June 

30, 2009. 
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As documented by Protopapadakis and Stoll (1983), the interactions between 

international commodity markets may be investigated in its purest form using commodity 

futures prices instead of spot prices. Similarly, Yang et al. (2001) indicate that futures prices 

may play a better informational role than cash prices in aggregating market information, 

particularly for commodities traded in international markets. Garbade and Silver (1983), Crain 

and Lee (1996) and Hernandez and Torero (2010) also provide empirical evidence that spot 

prices move toward futures prices in agricultural markets by examining lead-lag relationships 

between them. 

Provided that futures contracts with different maturities are traded every day on different 

exchanges, the data is compiled using prices from the nearby contract, as in Crain and Lee 

(1996). The nearby contract is generally the most liquid contract. It is also widely accepted that 

nearby contracts are the most active and that more information is contained in these contracts 

(Booth and Ciner, 1997). In addition, to avoid registering prices during the settlement month or 

expiration date, the nearby contract considered is the one whose delivery period is at least one 

month ahead. Due to different holidays across exchanges, for example, we only include in the 

estimations those days for which we have available information for all exchanges. 

The analysis consists of separately examining market interdependence and volatility 

transmission across three different exchanges per commodity. In the case of corn, we examine 

the dynamics and cross-dynamics of volatility between the United States (CBOT), 

Europe/France (MATIF), and China (Dalian-DCE); for wheat, between the United States, 

Europe/London (LIFFE), and China (Zhengzhou-ZCE); for soybeans, between the United 

States, China (DCE), and Japan (Tokyo-TGE).6 The starting date is chosen according to the 

exchange with the shortest data period available for each agricultural commodity. Since the 

contract units and price quotations vary by market, all prices are standardized to US dollars per 

metric ton (MT).7 This allows us to account for the potential impact of the exchange rate on the 

futures returns. 

The daily return at time t is calculated as )/log( 1 ttt SSy , where tS  is the closing 

futures price in US dollars at time t. Table 1 presents descriptive statistics of the returns series 

considered, multiplied by 100, for each of the three agricultural commodities. Sample means, 

medians, maximums, minimums, standard deviations, skewness, kurtosis, the Jarque-Bera 

statistic, and the corresponding p-value are presented. CBOT exhibits, on average, the highest 

return across markets for all agricultural commodities and the highest standard deviation for 

corn and wheat. 

The distributional properties of the returns appear to be non-normal in all the series. As 

indicated by the p-value of the Jarque-Bera statistic, we reject the null hypothesis that the 

returns are well approximated by a normal distribution. The kurtosis in all markets exceeds 

                                                      

 

 
6 We find very similar results when considering the Kansas City Board of Trade (KCBT) instead of CBOT for wheat. 
7 The data for exchange rates were obtained from the Federal Reserve Bank of St. Louis. 
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three, indicating a leptokurtic distribution. Given these results, we use a T-student density for 

the estimation of the BEKK model.8 The procedure for parameter estimation involves the 

maximization of a likelihood function constructed under the auxiliary assumption of an i.i.d. 

distribution for the standardized innovations. For details on the T-student density estimation for 

MGARCH models, see Fiorentini et al. (2003). 

Table 1 also presents the sample autocorrelation functions for the returns and squared-

returns series up to two lags and the Ljung-Box (LB) statistics up to 6 and 12 lags. The LB 

statistics for the raw returns series reject the null hypothesis of white noise in some cases, while 

the LB statistics for the squared returns reject the null hypothesis in most cases. The 

autocorrelation for the squared daily returns suggests evidence of nonlinear dependency in the 

returns series, possibly due to time varying conditional volatility 

Figure 1, in turn, shows the daily returns in each of the three exchanges considered for 

each commodity. The figure indicates time-varying conditional volatility in the returns. The 

figure also provides some evidence of cross-market influences across exchanges. These results 

motivate the use of MGARCH models to capture the dependencies in the first and second 

moments of the returns within and across exchanges. 

4. THE ASYNCHRONOUS PROBLEM 

Given that the exchanges considered in the analysis have different trading hours, potential 

bias may arise from using asynchronous data. In particular, nonsynchronous trading can 

introduce spurious lagged spillovers even when markets are independent. To address this issue, 

we follow Burns et al. (1998) and Engle and Rangel (2009) and compute estimates for the prices 

when markets are closed, conditional on information from markets that are open. We 

synchronize the data before proceeding to estimate the models described in the previous section. 

Figure 2 illustrates the problem of using asynchronous data. Consider, for example, that 

we want to synchronize the returns of corn futures in France (MATIF) with the returns in 

Chicago (CBOT), which closes later. The synchronized return in France can be defined as 

 

    tftftfutfs yy ,1,,,         (8) 

 

where tfuy ,  is the observed, unsynchronized return in France at t, and tf ,  is the return that we 

would have observed from the closing time of France at t to the closing time of Chicago at t. 

Following Burns et al. (1998), we estimate the unobserved component using the linear 

                                                      

 

 
8 Bollerslev and Wooldridge (1992) show that estimating a MGARCH model using a quasi-maximum likelihood 

(QML) method can result in consistent parameter estimates, even though the conditional log-likelihood function 

assumes normality while the series are skewed and leptokurtic. We also estimated a BEKK model assuming 

normality of the innovations and obtained qualitatively similar results. Details are available upon request. 
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projection of the observed unsynchronized return on the information set that includes all returns 

known at the time of synchronization. 

First, we express the asynchronous multivariate GARCH model as a first order vector 

moving average, VMA(1), with a GARCH covariance matrix  

 

   tttttt HVMy ,11 )(    ,       (9) 

 

where M is the moving average matrix and t  is the unpredictable component of the returns, 

i.e., ttt MyE  )( 1 . 

Next, we define the unsynchronized returns as the change in the log of unsynchronized 

prices, )log()log( 1 ttt SSy , whereas the synchronized returns are defined as the change in 

the log of synchronized prices, )ˆlog()ˆlog(ˆ
1 ttt SSy . The expected price at t+1 is also an 

unbiased estimator of the synchronized price at t, provided that further changes in synchronized 

prices are unpredictable, i.e., )|)(log()ˆlog( 1 ttt ISES  . Thus, the synchronized returns are 

given by 

 

tt

ttt

tttttt

ttttt

M
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
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  (10) 

 

Finally, the synchronized vector of returns and its covariance matrix can be estimated as 

 

  )'ˆ(ˆ)ˆ()ˆ(   ,)ˆ(ˆ
,1 MIHMIyVMIy ttttt      (11) 

 

where I is the NxN identity matrix and M̂  contains the estimated coefficients of the VMA(1) 

model. 

We estimate M based on a vector autoregressive approximation of order p, VAR(p), 

following Galbraith et al. (2002). The estimator is shown to have a lower bias when the roots of 

the characteristic equation are sufficiently distant from the unit circle, and it declines 

exponentially with p. Since we work with returns data, the choice of a modest order for the 

VAR provides a relatively good approximation of M. 

In particular, M is estimated as follows. The VMA(1) is represented as the following 

infinite-order VAR process 
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  




 
1j

tjtjt yBy        (12) 

 

where the coefficients of the matrices jB  are given by 

 

  ,...2for    ,   , 1111   jMBBMB jj    (13) 

 

By applying a VAR approximation, we can obtain the VMA coefficients from those of 

the VAR. We fit the VAR(p) model with p>1 by least squares. From the p estimated coefficient 

matrices of dimension NxN of the VAR representation tptptt yByBy   ...11 , we 

estimate the moving average coefficient matrix of dimension NxN by the relation 11
ˆˆ BM   

based on (13). 

The results from the synchronized daily returns are finally compared with those from the 

(unsynchronized) weekly returns to select p.9 For different p values, we compare the 

contemporaneous and one-lag correlations (among exchanges) of the synchronized daily returns 

with the correlations obtained when using weekly returns. We find similar results for p=2 

through p=5. For parsimony, we select p=2. 

Table A.2 shows the contemporaneous correlation across exchanges for each commodity. 

We report the correlations for asynchronous, weekly, and synchronized returns. In general, 

weekly correlations are larger than daily correlations, and the synchronized returns correlations 

are closer to the weekly correlations than the unsynchronized returns correlations. For example, 

the correlation between CBOT and TGE is 0.127 for daily data, 0.455 for weekly data and 0.384 

when using the synchronized data. These results suggest that the synchronization method 

appears to solve the problem introduced by asynchronous trading. This allows us to fully exploit 

all the information contained in our data to analyze volatility dynamics across markets in the 

short run.10 

5. RESULTS 

This section presents the estimation results of the MGARCH specifications applied to 

examine volatility transmission in agricultural exchanges. We omit presenting the first moment 

equation estimation results to save space. These include the T-BEKK and DCC models. 

                                                      

 

 
9 Weekly returns are used as a measure to correct unconditional correlation between markets. Such data are relatively 

unaffected by the timing of the markets since the degree of asynchronicity is much lower (Burns et al., 1998). 
10 We also use daily return data, instead of lower frequency data such as weekly and monthly returns, because longer 

horizon returns can obscure temporary responses to innovations, which may last for a few days only (Elyasiani et al., 

1998). 
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Examining volatility as the second moment provides further insight into the dynamic price 

relationship between markets. 

Table 2 reports the estimated coefficients and standard errors of the conditional variance 

covariance matrix for the T-BEKK model. This model allows for both own- and cross-volatility 

spillovers and own- and cross-volatility dependence between markets. The iia  coefficients, 

i=1,...,3, quantify own-volatility spillovers (i.e. the effect of lagged own innovations on the 

current conditional return volatility in market i), while the iib  coefficients measure own-

volatility persistence (i.e. the dependence of the conditional volatility in market i on its own past 

volatility). Similarly, the off-diagonal coefficients ija  capture the effects of lagged innovations 

originating in market i on the conditional return volatility in market j in the current period, while 

the off-diagonal coefficients ijb  measure the dependence of the conditional volatility in market j 

on that of market i. The Wald tests reported at the bottom of the table reject the null hypothesis 

that the off-diagonal coefficients, ija  and ijb , are jointly zero at conventional significance 

levels. 

Several patterns emerge from Table 2. First, own-volatility spillovers and persistence are 

generally large and statistically significant pointing towards the presence of strong GARCH 

effects.11 Own innovation shocks appear to have a much higher effect in China than in the other 

exchanges. This market, however, also exhibits the lowest volatility persistence; in the case of 

Zhengzhou (wheat), it is not statistically significant. This could be explained by the fact that 

China is a regulated market where own information shocks could have a relatively important 

(short-term) effect on the return volatility, but where past volatility does not necessarily explain 

current volatility (as in other exchanges) due to market interventions. Contrary to China, 

exchanges in the United States, Europe and Japan derive relatively more of their volatility 

persistence from within the domestic market. 

Second, the cross-volatility effects, although smaller in magnitude than the own effects, 

indicate that there are spillover effects of information shocks and volatility persistence between 

the exchanges analyzed. In the case of information shocks, past innovations in Chicago have a 

larger effect on the current observed volatility in European and Chinese corn and wheat markets 

than the converse, which points towards the major role CBOT plays in terms of cross-volatility 

spillovers for these commodities. For soybeans, the major role of Chicago is less clear. There is 

a relatively large spillover effect from CBOT to China (DCE), but the effect from DCE to 

CBOT is also important; Japan similarly shows a large spillover effect (especially over China). 

Yet, in terms of cross-volatility persistence, there is a relatively important dependence of the 

observed volatility in the Chinese soybeans market on the past volatility in CBOT. 

                                                      

 

 
11 The GARCH effects are very similar to those found when estimating a diagonal T-BEKK model, which does not 

allow for cross-volatility spillovers and persistence. 
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The results with this model differ from those of Yang et al. (2003) who also use a BEKK 

model to examine volatility transmission in wheat between the United States (CBOT), Europe 

(LIFFE) and Canada for the period 1996-2002. The authors find that the U.S. market is affected 

by volatility from Europe (and Canada), while the European market is highly exogenous and 

little affected by the U.S. and Canadian markets. However, they recognize that the exogeneity 

and influence of the European market could be overestimated due to the time zone difference of 

futures trading between Europe and North America. We precisely find a major role of CBOT in 

terms of volatility transmission when controlling for differences in trading hours across 

exchanges. 

Despite the increase in the production of corn-based ethanol in recent years as well as the 

many regulations and trade policies governing agricultural products (like temporary export taxes 

and import bans), it is interesting that CBOT still has a leading role over other futures 

exchanges, including China's closed, highly regulated market. This result confirms the 

importance of Chicago in global agricultural markets. The fact that China has spillover effects 

over other exchanges (at least in soybeans) is also remarkable, and is probably because China is 

both a major global producer and consumer of agricultural products. Thus, any exogenous shock 

in this market may also affect the decision-making process in other international markets. 

Our results support the “meteor shower hypothesis” of Engle et al. (1990). According to 

this theory, foreign market news follow a process like a meteor shower hitting the earth as it 

revolves. The impact of this process is manifested in the form of volatility spillovers from one 

market to the next. This is in contrast to the alternative “heat waves hypothesis”, where 

volatility has only country-specific autocorrelation such that a volatile day in one market is 

likely to be followed by another volatile day in the same market, but not typically a volatile day 

in other markets. 

Figure 3 and Table 3 present the estimation results for the DCC model. Even though this 

model does not allow us to identify the source of volatility transmission, it helps us to address 

whether there is interaction among markets, as well as the magnitude of interdependence across 

time. The results indicate that markets are generally interrelated. Figure 3 shows both the 

estimated dynamic conditional correlations ( tij , ) and the constant conditional correlations 

(with confidence bands).12 The results show that the interaction between the United States 

(CBOT) and the rest of the markets (Europe and Asia) is higher compared with the interaction 

within the latter. In particular, the interaction between CBOT and the European markets is the 

highest among the exchanges for corn and wheat. We also observe that China's wheat market is 

barely connected with the other markets, while in the case of soybeans China has a higher 

association with CBOT than Japan, similar to the findings with the T-BEKK model. 

                                                      

 

 
12 The constant conditional correlations and their corresponding confidence bands (of one standard deviation) result 

from the estimation of a CCC model. 
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In terms of variation across time, in corn we observe high variability in the correlation 

between CBOT and MATIF (ranging from 0.20 to 0.55), with peak values after the 2007-2008 

crisis. It is also clear that the three estimated conditional correlations among corn exchanges 

have shown an upward trend in recent years. The same high variability and upward trend is 

observed in wheat when looking at the dynamics of the conditional correlation between Chicago 

and Europe (LIFFE). The other two correlations among wheat exchanges (CBOT-ZCE and 

LIFFE-ZCE), in contrast, do not show an upward trend, although they (moderately) increased 

during the recent crisis. For soybeans, the three dynamic conditional correlations are rather 

constant, coinciding with the correlations estimated with a CCC model.13 

The results for soybeans are also deduced from the estimated values of both   and   

reported in Table 3, which are close to zero for this commodity. In particular, parameters   and 

  can be interpreted as the “news” and “decay” parameters. These values show the effect of 

innovations on the conditional correlations over time and their persistence. As in soybeans, the 

estimated “news” parameters for corn and wheat are also small (  <0.01); only for corn   is 

significant at the 5% level. However, the estimated   parameters for these two commodities 

show a slow “decay” (  >0.98) and are statistically significant, contrary to the case of 

soybeans. 

It is worth noting that the residual diagnostic statistics, reported at the bottom of Tables 2 

and 3, generally support adequacy of the model specifications considered. In particular, the 

Ljung-Box (LB) statistics, up to 6 and 12 lags, show in most cases no evidence of 

autocorrelation in the standardized squared residuals of the estimated models at a 5% level. 

Considering that markets in China are highly regulated (and locally oriented), we also 

evaluate the robustness of our findings when excluding the corresponding Chinese exchanges 

(Dalian and Zhengzhou). In the case of corn, we both restrict the analysis to Chicago and 

MATIF and consider Japan (TGE) instead of Dalian; for wheat and soybeans, we just restrict 

the analysis to Chicago and LIFFE and Chicago and TGE. The estimation results are reported in 

Hernandez et al. (2011). Overall, the results are qualitatively similar to our base results, 

suggesting that our findings are not sensitive to the inclusion or exclusion of China. We still 

observe a high correlation between exchanges, particularly between Chicago and both Europe 

and Japan, as well as higher spillover effects from Chicago to the other markets than the 

                                                      

 

 
13 As shown in equation (5), the individual conditional variances iith  in the DCC model follow a GARCH(1,1) 

process. We have also estimated the DCC model assuming that the conditional variances follow an exponential 

GARCH (EGARCH) model introduced by Nelson (1991). This specification allows for asymmetric effects between 

positive and negative shocks. Figure A.1 in the Appendix reports the dynamic conditional correlations using this 

specification. The correlation patterns (trends) observed are qualitatively similar to our baseline results. In addition, 

we only find two markets where the parameter associated with the asymmetric effect in the EGARCH model is 

statistically significant at the conventional levels (Chicago for corn and China (ZCE) for wheat); in the other seven 

markets we do not observe differentiated effects between positive and negative shocks. The estimation results are 

available upon request. 



 

14 

 

converse. Similarly, only corn and wheat exchanges exhibit an increasing level of 

interdependence in recent years. 

5.1. Volatility transmission across time 

Next, we examine whether the dynamics of volatility between futures markets has 

changed across time, particularly after the recent food price crisis of 2007-2008. To divide our 

working sample into a period pre-crisis and a period post-crisis, we apply the test for the 

presence of structural breaks proposed by Lavielle and Moulines (2000). Compared to other 

tests for structural breaks, the test developed by Lavielle and Moulines is more suitable for 

strongly dependent processes such as GARCH processes (Carrasco and Chen, 2002). 

Similar to Benavides and Capistran (2009), we apply the test over the square of the 

synchronized returns, as a proxy for volatility. Table A.3 reports the break dates identified for 

each of the series of interest.14 Most of the breaks are during the first semester of 2008, period 

where the food crisis was felt most severely. Based on these break dates, we then divide the 

whole sample for each commodity into two different subsamples as follows: September 23rd 

2004 until February 26th 2008 and June 30th 2008 until June 30th 2009 for corn; May 10th 

2005 until June 22nd 2007 and November 5th 2008 until June 30th 2009 for wheat; and January 

5th 2004 until February 26th 2008 and August 1st 2008 until June 30th 2009 for soybeans. 

Tables A.4 and A.5 present the estimation results of the T-BEKK model for the periods 

pre- and post-crisis, based on the structural breaks identified above for each commodity. 

Overall, the pattern of own- and cross-volatility dynamics among the futures markets analyzed 

does not appear to have changed considerably when comparing the period before the food price 

crisis with the period after the crisis. Similar to the full-sample estimations, we generally 

observe large and statistically significant own-volatility spillovers and persistence suggesting 

the presence of strong GARCH effects. The only important variation when comparing the two 

periods is the much stronger own-volatility persistence exhibited by wheat exchanges after the 

crisis. 

The cross-volatility effects, in turn, are jointly statistically significant in both periods, 

supporting the presence of cross spillovers of innovation shocks and cross-volatility persistence 

between the exchanges. In general, the magnitudes of the cross effects are relatively smaller 

than the own effects in most markets, similar to our base results. The Wald tests, however, 

further indicate that the cross effects are remarkably stronger for corn and weaker for wheat in 

the period post-crisis, relative to the period pre-crisis; for soybeans, the degree of transmission 

does not appear to have changed between periods. This pattern closely resembles the dynamic 

conditional correlations across markets estimated with the DCC model for each commodity (see 

                                                      

 

 
14 The test of Lavielle and Moulines searches for multiple breaks over a maximum number of pre-defined possible 

segments, and uses a minimum penalized contrast to identify the number of breaking points. We allowed for two and 

three segments as the maximum number of segments and 50 as the minimum length of each segment, obtaining 

similar results. 
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Figure 3). The results also confirm the leading role of Chicago in terms of volatility 

transmission over the other markets in recent years. 

5.2. Impulse-response analysis 

In this subsection, we perform an impulse-response analysis to approximate the simulated 

response of exchanges, in terms of their conditional volatility, to innovations separately 

originating in each market. This exercise is based on the estimation results of the T-BEKK 

model and provides a clearer picture about volatility spillovers across exchanges. 

Impulse-response functions are derived by iterating, for each element iih  resulting from 

expression (2), the response to a 1%-innovation in the own conditional volatility of the market 

where the innovation first occurs. The responses are normalized by the size of the original shock 

to account for differences in the initial conditional volatilities across exchanges. 

Figure 4 presents the impulse-response functions for the three commodities as a result of 

innovations originated in each of the markets analyzed. For corn and soybeans, the plots show 

the impulse-response coefficients up to 100 days after the initial shock. For wheat, the plots 

show the responses up to 200 days, given the high persistence observed in these markets 

(especially from responses to innovations arising in Chicago). 

Consistent with the results shown above, the impulse-response functions confirm that 

there are important cross-volatility spillovers across markets and that Chicago plays a leading 

role in that respect, particularly for corn and wheat. The case of soybeans is interesting since a 

shock originated in CBOT, equivalent to 1% of its own conditional volatility, results in a higher 

(almost double) initial increase in China's own conditional volatility. Yet, a shock in China also 

has an important (although minor) effect on Chicago, while an innovation in Japan has a 

comparable effect on China. Another interesting pattern that emerges from the figure is the lack 

of persistence in the impulse-response functions corresponding to the Chinese markets: the 

adjustment process is very fast after an own or cross innovation. This is consistent with the fact 

that these markets are regulated, which provides further support to the robustness of our results. 

6. CONCLUDING REMARKS   

This paper has examined the dynamics and cross-dynamics of volatility across major 

agricultural exchanges in the United States, Europe, and Asia. We focus on three key 

agricultural commodities: corn, wheat, and soybeans. We analyze futures markets interactions in 

terms of the conditional second moment under a multivariate GARCH approach, which 

provides better insight into the dynamic interrelation between markets. We further account for 

the potential bias that may arise when considering agricultural exchanges with different closing 

times. 

The estimation results indicate that the agricultural markets analyzed are highly 

interrelated. There are both own- and cross-volatility spillovers and dependence between most 

of the exchanges. We also find a higher interaction between the United States (Chicago) and 
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both Europe and Asia compared to Europe and Asia. Furthermore, Chicago plays a major role in 

terms of spillover effects over the other markets, especially for corn and wheat. China and Japan 

also show important cross-volatility spillovers for soybeans. Additionally, the degree of 

interdependence across exchanges has not necessarily increased in recent years for all 

commodities. 

The leading role of Chicago over other international markets is interesting despite 

specific regulations and trade policies governing agricultural products, especially in closed, 

highly regulated markets like China. This result confirms the importance of the United States in 

global agricultural markets. The fact that China has spillover effects over other exchanges is 

similarly remarkable. The results further suggest that there has not been any decoupling of the 

U.S. corn market from other markets after the ethanol boom of 2006. 

Besides providing an in-depth analysis on futures markets' interrelations, this study 

intends to contribute to the ongoing debate on alternative measures to address excessive price 

volatility in agricultural markets, which include the potential regulation of futures exchanges. 

The results obtained suggest that if futures markets are eventually regulated, any potential 

regulatory scheme on these markets should be coordinated across exchanges; for example, 

through a global independent unit. Any local regulatory mechanism will have limited effects 

given that the exchanges are highly interrelated and there are important volatility spillovers 

across markets. 

To conclude, it is important to stress that the analysis above has focused on the volatility 

dynamics across markets in the short-run. Future research could examine long-term dynamics in 

volatility transmission across exchanges, which could provide further insights about the 

mechanisms governing the interdependencies between agricultural markets and help in any 

policy design.        
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Table 1: Summary statistics for daily returns 

Statistic Corn Wheat Soybeans 

  CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE 

Mean 0.042 0.041 0.031 0.035 0.011 0.020 0.039 0.008 -0.010 

Median 0.000 0.050 0.004 0.000 -0.025 0.000 0.126 0.029 0.067 

Maximum 9.801 8.498 8.627 8.794 6.026 14.518 6.445 5.244 10.267 

Minimum -8.076 -8.607 -3.353 -9.973 -10.602 -4.609 -10.530 -9.455 -14.985 

Std. Dev. 2.117 1.477 0.869 2.372 1.610 1.259 1.892 1.172 2.388 

Skewness 0.129 -0.140 2.610 -0.087 -0.235 3.298 -0.422 -0.776 -0.475 

Kurtosis 4.775 7.017 24.597 4.401 5.939 36.146 4.989 10.212 7.125 

Jarque-Bera 148.5 748.4 22790.7 80.0 355.5 45829.7 239.3 2788.7 918.5 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

# observations 1108 1108 1108 963 963 963 1230 1230 1230 

Returns correlations 

      Rho (lag=1) 0.009 0.072* 0.031 -0.021 0.027 -0.100 -0.016 0.097* 0.194* 

Rho (lag=2) -0.003 -0.040 -0.068 -0.026 0.016 -0.019 -0.006 0.101* 0.088*  

Ljung-Box (6) 2.642 15.194* 14.154* 5.893 7.498 13.262* 9.173 52.793* 57.499* 

Ljung-Box (12) 7.510 21.593*  16.212 10.268 21.490* 18.595 15.248 54.895* 64.516* 

Squared returns correlations 

      Rho (lag=1) 0.141* 0.100* 0.050 0.208* 0.134* 0.042 0.059* 0.184* 0.349* 

Rho (lag=2) 0.070 0.102* 0.075* 0.159* 0.132* -0.004 0.104* 0.146* 0.235* 

Ljung-Box (6) 55.936* 66.598* 11.112 124.940* 78.749* 2.189 115.250* 130.970* 344.260* 

Ljung-Box (12) 85.268*  136.390 11.847 166.510* 121.160* 3.069 221.730* 148.400* 390.390* 

Note: The symbol (*) denotes rejection of the null hypothesis at the 5% significance level. Rho is the autocorrelation 

coefficient. LB stands for the Ljung-Box statistic. CBOT=Chicago, MATIF=France-Paris; DCE=China-Dalian; 

LIFFE=United Kingdom-London; ZCE=China-Zhengzhou; TGE=Japan-Tokyo. 
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Table 2: T-BEKK model estimation results 

Coefficient Corn Wheat Soybeans 

 

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE 

  (i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3) 

ci1 0.377 -0.036 0.085 0.040 -0.119 -0.333 -0.001 0.115 0.140 

 

(0.107) (0.163) (0.542) (0.245) (0.048) (1.029) (0.026) (0.421) (0.525) 

ci2 

 

-0.037 -0.070 

 

0.036 0.360 

 

0.430 0.079 

  

(0.083) (0.860) 

 

(0.238) (0.640) 

 

(0.152) (0.104) 

ci3 

  

0.367 

  

0.410 

  

0.229 

   

(0.269) 

  

(1.149) 

  

(0.305) 

ai1 0.156 -0.018 0.041 0.135 0.043 0.055 0.129 0.198 0.073 

 

(0.048) (0.028) (0.035) (0.048) (0.026) (0.042) (0.042) (0.084) (0.079) 

ai2 0.091 0.204 -0.025 0.081 0.199 -0.125 -0.182 0.232 -0.194 

 

(0.067) (0.030) (0.041) (0.183) (0.068) (0.068) (0.070) (0.121) (0.126) 

ai3 0.098 0.065 0.638 -0.072 -0.066 0.526 0.026 -0.033 0.206 

 

(0.071) (0.166) (0.092) (0.104) (0.108) (0.086) (0.021) (0.021) (0.048) 

bi1 0.971 0.011 0.004 0.995 0.001 0.004 0.918 0.047 -0.055 

 

(0.014) (0.009) (0.043) (0.008) (0.003) (0.031) (0.025) (0.025) (0.044) 

bi2 -0.003 0.983 0.029 -0.017 0.976 0.037 0.186 0.759 0.088 

 

(0.013) (0.012) (0.023) (0.041) (0.014) (0.033) (0.062) (0.066) (0.095) 

bi3 0.009 -0.086 0.608 -0.058 -0.066 -0.398 0.005 0.003 0.979 

  (0.032) (0.111) (0.072) (0.254) (0.334) (0.402) (0.007) (0.009) (0.013) 

Wald joint test for cross-correlation coefficients( H0: aij=bij 0,  i≠j) 

Chi-sq 

  

31.600 

  

63.060 

  

40.479 

p-value     0.002 

  

0.000 

  

0.000 

Test for standardized squared residuals (H0: no autocorrelation) 

LB(6) 3.944 6.993 0.738 18.210 12.542 0.322 6.566 0.118 2.127 

p-value 0.684 0.321 0.994 0.006 0.051 0.999 0.363 1.000 0.908 

LB(12) 4.713 12.102 2.392 24.531 16.045 0.617 9.898 0.768 2.806 

p-value 0.967 0.438 0.999 0.017 0.189 1.000 0.625 1.000 0.997 

Log likelihood 

  

-5,169.3 

  

-4,857.0 

  

-6,696.7 

# observations     1,105 

  

960 

  

1,227 

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic. 
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Table 3: DCC model estimation results 

Coefficient Corn Wheat Soybeans 

 

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE 

  (i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3) 

i 0.636 0.027 0.183 0.355 0.046 0.972 0.037 0.303 0.440 

 

(0.578) (0.017) (0.051) (0.216) (0.031) (0.246) (0.019) (0.106) (0.771) 

i 0.126 0.127 0.620 0.100 0.146 0.265 0.056 0.166 0.087 

 

(0.062) (0.051) (0.210) (0.027) (0.047) (0.108) (0.010) (0.048) (0.083) 

i 0.740 0.873 0.372 0.833 0.851 0.000 0.933 0.646 0.853 

  (0.175) (0.045) (0.082) (0.060)   (0.047) (0.095) (0.013)  (0.079)  (0.186)  

 
  

0.006 

  

0.010 

  

0.000 

   

(0.003) 

  

(0.009) 

  

(0.013) 

 
  

0.989 

  

0.982 

  

0.000 

   

(0.007) 

  

(0.021) 

  

(2.155) 

Test for standardized squared residuals (H0: no autocorrelation) 

LB(6) 3.555 1.892 1.464 4.488 6.485 0.294 3.748 0.268 1.273 

p-value 0.737 0.929 0.962 0.611 0.371 1.000 0.711 1.000 0.973 

LB(12) 4.270 6.244 3.287 9.542 13.893 0.652 7.170 0.856 1.912 

p-value 0.978 0.903 0.993  0.656  0.308 1.000   0.846 1.000   1.000 

Log likelihood 

  

-5,454.3     -5,144.3     -6,911.6 

# observations     1,105     960     1,227 

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic. 

 



 

22 

 

Figure 1. Daily returns 

 

Note: CBOT=Chicago, MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo. 
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Figure 2. Asynchronous trading hours 

 
Note: This figure illustrates the problem of asynchronous trading hours in Chicago (CBOT), France (MATIF) and 

China (Dalian-DCE). The figures shows the opening and closing (local) times in each market, the asynchronous 

observed returns (y), and the unobserved missing fractions ( ) with respect to the last market to close (CBOT). 
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Figure 3. Dynamic conditional correlations (DCC model) 

 

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo. The dashed line is the estimated constant conditional correlation (with confidence 

bands of one standard deviation). 
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Figure 4. Impulse-response functions (T-BEKK model) 

 
Note: The responses are the result of a 1%-innovation in the own conditional volatility of the market where the 

innovation first occurs. The responses are normalized by the size of the original shock. CBOT=Chicago; 

MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou; TGE=Japan-

Tokyo. 
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APPENDIX 

Table A.1: Data 

 

Corn 

 Exchange Product, Symbol Starting Date Price Quotation Contract Unit 

CBOT Corn No.2 yellow, C 01/03/1994 Cents/bushel 5,000 bushels 

MATIF Corn, MC 05/09/2003 Euros/tonne 50 tonnes 

DCE Corn, XV 09/22/2004 Yuan/MT 10 MT 

TGE Corn No.3, CV 08/16/1994 Yen/MT 50 MT 

 

Wheat 

 Exchange Product, Symbol Starting Date Price Quotation Contract Unit 

CBOT Wheat No.2 soft, W 01/03/1994 Cents/bushel 5,000 bushels 

LIFFE Wheat EC, FW 08/06/1991 Pounds/tonne 100 tonnes 

ZCE Winter Wheat, WR  05/09/2005  Yuan/MT  10 MT 

 

Soybeans 

 Exchange Product, Symbol Starting Date Price Quotation Contract Unit 

CBOT Soybeans No.1 yellow, S 01/03/1994 Cents/bushel 5,000 bushels 

DCE Soybeans No.1, XT 01/02/2004 Yuan/MT 10 MT 

TGE Soybeans, GT  05/18/2000   Yen/MT  10 MT 

 Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China- 

Zhengzhou; TGE=Japan-Tokyo. Units of measure: 5,000 bushels of corn=127 MT (metric ton); 5,000 bushels of 

wheat (soybeans)=136 MT; 1000kg=1 MT; 1 tonne=1 MT. 
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Table A.2: Correlations for asynchronous, synchronized and weekly returns 

 

Corn 

Exchange Asynchronous Weekly Synchronized 

  CBOT MATIF DCE CBOT MATIF DCE CBOT MATIF DCE 

CBOT 1.000 0.359 0.168 1.000 0.421 0.212 1.000 0.444 0.255 

MATIF 

 

1.000 0.166 

 

1.000 0.251 

 

1.000 0.184 

DCE     1.000     1.000     1.000 

 

Wheat 

Exchange Asynchronous Weekly Synchronized 

  CBOT LIFFE ZCE CBOT LIFFE ZCE CBOT LIFFE ZCE 

CBOT 1.000 0.451 0.075 1.000 0.569 0.081 1.000 0.537 0.093 

LIFFE 

 

1.000 0.073 

 

1.000 0.059 

 

1.000 0.101 

ZCE 

  

1.000 

  

1.000 

  

1.000 

 

Soybeans 

Exchange Asynchronous Weekly Synchronized 

  CBOT DCE TGE CBOT DCE TGE CBOT DCE TGE 

CBOT 1.000 0.228 0.127 1.000 0.500 0.455 1.000 0.565 0.384 

DCE 

 

1.000 0.258 

 

1.000 0.349 

 

1.000 0.248 

TGE 

  

1.000 

  

1.000 

  

1.000 

 Note: The correlations reported are the Pearson correlations. CBOT=Chicago; MATIF=France-Paris; DCE=China-

Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou; TGE=Japan-Tokyo. 
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Table A.3: Estimated break dates 

Corn Wheat Soybeans 

Exchange Break Date Exchange Break Date Exchange Break Date 

CBOT 06/27/2008 (last) CBOT 02/22/2008 CBOT 02/27/2008 (first) 

MATIF 06/05/2008 LIFFE 06/25/2007 (first) DCE 07/31/2008 (last) 

DCE 02/27/2008 (first) ZCE 11/04/2008 (last) TGE 07/16/2008 

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo. The estimated break dates are based on Lavielle and Moulines (2000) test for 

structural breaks. 
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Table A.4: T-BEKK model estimation results, before the food crisis 

Coefficient Corn Wheat Soybeans 

 

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE 

  (i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3) 

ci1 0.735 0.170 0.294 0.343 -0.052 -0.615 0.160 -0.194 0.932 

 

(0.254) (0.094) (0.098) (0.283) (0.141) (0.200) (0.144) (0.473) (1.298) 

ci2 

 

-0.001 -0.003 

 

0.119 0.066 

 

0.303 0.667 

  

(0.040) (0.014) 

 

(0.100) (1.063) 

 

(0.619) (1.362) 

ci3 

  

0.000 

  

0.052 

  

-0.001 

   

(0.033) 

  

(1.342) 

  

(0.061) 

ai1 -0.216 -0.036 -0.058 -0.044 -0.023 0.060 0.033 0.263 -0.124 

 

(0.057) (0.053) (0.066) (0.092) (0.045) (0.042) (0.060) (0.182) (0.117) 

ai2 -0.149 0.099 -0.079 0.063 0.245 0.003 0.028 -0.171 0.045 

 

(0.152) (0.051) (0.040) (0.255) (0.092) (0.108) (0.231) (0.182) (0.282) 

ai3 -0.101 0.089 0.546 -0.076 -0.114 0.575 0.090 0.005 0.468 

 

(0.155) (0.099) (0.251) (0.200) (0.068) (0.114) (0.112) (0.055) (0.144) 

bi1 0.864 -0.052 -0.057 -0.473 0.363 -0.032 0.922 0.020 -0.002 

 

(0.030) (0.020) (0.020) (0.485) (0.230) (0.042) (0.089) (0.126) (0.179) 

bi2 0.095 1.005 0.020 1.819 0.520 0.110 0.220 0.852 0.203 

 

(0.071) (0.010) (0.017) (0.225) (0.509) (0.059) (0.170) (0.376) (0.280) 

bi3 0.254 -0.061 0.792 0.522 -0.087 -0.032 -0.051 -0.002 0.729 

  (0.140) (0.066) (0.159) (0.307) (0.097) (0.190) (0.113) (0.052) (0.163) 

Wald joint test for cross-correlation coefficients( H0: aij=bij 0,  i≠j) 

Chi-sq 

  

70.535 

  

278.888 

  

133.794 

p-value     0.000 

  

0.000 

  

0.000 

Test for standardized squared residuals (H0: no autocorrelation) 

LB(6) 1.540 5.987 1.667 3.735 5.051 0.794 2.242 0.353 1.229 

p-value 0.957 0.425 0.948 0.712 0.537 0.992 0.896 0.999 0.976 

LB(12) 1.810 8.182 2.612 9.019 11.013 2.432 5.671 1.285 2.483 

p-value 1.000 0.771 0.998 0.701 0.528 0.998 0.932 1.000 0.998 

Log likelihood 

  

-3,475.7 

  

-1,184.4 

  

-4,665.4 

# observations 

  

789 

  

491 

  

926 

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic. 

Before the crisis corresponds to 09/23/2004–02/26/2008 for corn, 05/10/2005–06/22/2007 for wheat, and 

01/05/2004–02/26/2008 for soybeans. 
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Table A.5: T-BEKK model estimation results, after the food crisis 

Coefficient Corn Wheat Soybeans 

 

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE 

  (i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3) 

ci1 0.605 1.121 -0.278 1.325 0.758 0.057 0.960 0.371 -0.778 

 

(0.406) (0.345) (0.080) (0.608) (0.510) (0.316) (0.412) (0.173) (0.500) 

ci2 

 

-0.085 0.003 

 

0.030 -0.096 

 

0.000 0.000 

  

(0.347) (0.032) 

 

(0.346) (0.346) 

 

(0.000) (0.000) 

ci3 

  

0.000 

  

0.000 

  

(0.000) 

   

(0.095) 

  

(0.742) 

  

(0.000) 

ai1 0.225 0.305 -0.091 0.133 0.037 -0.057 -0.210 -0.011 -0.215 

 

(0.144) (0.131) (0.052) (0.247) (0.187) (0.091) (0.134) (0.081) (0.177) 

ai2 -0.098 -0.420 0.100 -0.348 -0.055 0.002 0.342 0.331 0.495 

 

(0.169) (0.160) (0.054) (0.217) (0.122) (0.113) (0.151) (0.133) (0.169) 

ai3 0.130 -0.131 0.748 0.226 -0.081 0.483 -0.147 -0.157 0.443 

 

(0.212) (0.121) (0.156) (0.289) (0.295) (0.134) (0.081) (0.090) (0.135) 

bi1 0.791 -0.146 -0.086 0.703 -0.165 -0.018 0.796 -0.099 0.450 

 

(0.044) (0.050) (0.020) (0.251) (0.135) (0.127) (0.213) (0.092) (0.159) 

bi2 0.180 0.924 0.166 0.093 1.038 -0.005 -0.229 0.846 -0.231 

 

(0.098) (0.104) (0.030) (0.227) (0.124) (0.017) (0.113) (0.113) (0.234) 

bi3 0.528 0.455 0.517 0.132 0.197 0.906 0.105 0.101 0.761 

  (0.240) (0.202) (0.107) (0.227) (0.179) (0.119) (0.085) (0.033) (0.092) 

Wald joint test for cross-correlation coefficients( H0: aij=bij 0,  i≠j) 

Chi-sq 

  

341.026 

  

39.221 

  

110.368 

p-value     0.000 

  

0.000 

  

0.000 

Test for standardized squared residuals (H0: no autocorrelation) 

LB(6) 4.150 2.792 4.148 3.050 7.081 4.655 7.079 15.238 4.435 

p-value 0.656 0.835 0.657 0.803 0.314 0.589 0.314 0.019 0.618 

LB(12) 14.804 5.819 7.172 7.800 17.658 12.630 9.456 19.936 6.059 

p-value 0.252 0.925 0.846 0.801 0.127 0.397 0.664 0.068 0.913 

Log likelihood 

  

-1,254.9     -289.0     -73.9 

# observations     232     147     198 

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic. After 

the crisis corresponds to 06/30/2008–06/30/2009 for corn, 11/05/2008–06/30/2009 for wheat, and 08/01/2008–

06/30/2009 for soybeans. 
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Figure A.1. Dynamic conditional correlations (DCC-EGARCH model) 

 
Note: CBOT=Chicago, MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo. The dashed line is the estimated constant conditional correlation (with confidence 

bands of one standard deviation). 

 


