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Economics of global yield gaps: A spatial analysis   
 

Abstract 

  

In this paper, we contribute to the existing literature of global yield gap analysis by using 

geo-spatial dataset on crop yields, agro-climatic factors and selected socio-economic variables. 

In line with the literature, we link yield gaps to technical efficiencies. By treating each grid-cell 

as a farm unit, we employ data envelopment analysis to calculate relative farm efficiencies with 

respect to a technically efficient global production frontier.  We then apply spatial econometric 

techniques to relate the calculated efficiency scores to population, irrigation, fertilizer use, 

market access, institutional strength and market influence. We find that the effects of the socio-

economic variables on the efficiency scores are not consistent and will typically vary by 

geographic region, crop type and on the scope of analysis (all areas, irrigated areas only, rainfed 

areas only). However, we can see some general trends. Most of the total impacts of socio-

economic variables on efficiency scores are positive. For example, across all crops, regions and 

all areas, estimates of the total impact of irrigation, fertilizer use, institutional strength and 

market influence are generally positive. In regions wherein efficiency scores are low, the key 

variables which positively affect these scores are market influence and fertilizer use. By 

changing the coverage from all areas to either rainfed or irrigated areas, we generally see 

changes in the statistical significance of  some variables.  
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I. Background and Motivation 

Over the past fifty years, most of the growth in global crop production has been driven by 

greater cropping intensity and, especially, growth in crop yields (Bruinsma, 2009). However, 

some authors have recently raised concerns that agricultural yield growth may be slowing in 

critical parts of the world (Fischer, Byerlee, & Edmeades, 2009; FAO, 2006; Ramankutty, 2010; 

Tweeten & Thompson, 2009). Since there are limits to increasing crop yields in areas wherein 

intensive agriculture is already being practiced, global average yields can only be increased 

significantly if the differences in crop yields within and among countries are narrowed down.   

The causes of yield differences, or yield gaps
1
, can be attributed to several factors. 

Physical factors which directly influence crop growth include temperature, humidity, soil 

conditions and solar radiation (van Ittersum & Rabbinge, 1997). Biophysical factors such as 

pests, weeds, crop varieties and diseases also contribute to these gaps (Duwayri, Tran, & 

Nguyen, 2000). There are also socio-economic factors which influence crop yields. These 

include supply and demand conditions, commodity and input prices, access to transportation 

systems as well as farm extension services and technologies (Fageria, 1992). Other socio-

economic factors include labor shortages, welfare conditions and the farmer’s prevailing 

knowledge and skills (Duwayri et al., 2000). Depending on its causes, some yield gaps are more 

challenging to understand than others. In addition, it is not always commercially beneficial to 

                                                           
1
Yield gaps have at least two components namely yield potential and actual yields. The actual yields are typically 

based on the average yield observed from a sample of farmers in a specific location and season (Lobell, Cassman, & 

Field, 2009; Singh et al., 2009). On the other hand, yield potential has several definitions. It can be the yields 

attained in experimental stations, yields which are economically profitable for farmers, yields from mathematical 

crop models or the maximum value of observed yields (De Datta, 1981; Evans, 1993; Fageria, 1992; Singh et al., 

2009). Some of these definitions have limitations. For example, crop yields from mathematical simulation models 

may be generated under unrealistic assumptions of perfect management and lack of natural constraints to crop 

growth. Maximum observed yields are only applicable in yield gap analysis if these are attained via intensive 

farming, generally with irrigation present (Lobell et al., 2009). 
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close these gaps, especially if input costs are high, farmers have poor access to markets, and if 

they face significant production risks (Evans, 1993; Herdt, 1979).Given these complications, 

understanding the causes of yield gaps is critical. 

In the literature, studies typically use crop production data collected at country, state or 

regional level (Bravo-Ureta et al., 2006; FAO, 2000; Liu & Myers, 2008; Nisrane et al., 2011; 

Sekhon et al., 2010; Singh et al., 2009). However, national level data can only provide 

information on average yields even though there is great heterogeneity in yields within a country.  

More recently, the availability of global data sets on crop yields at a grid cell level permits the 

assessment of global yield gaps at a highly disaggregated level (Licker et al., 2010; Neumann et 

al., 2010). However, to our knowledge, only the paper of Neumann et al (2010) use satellite data 

in calculating and explaining yield gaps across the world. The authors used stochastic frontier 

analysis (SFA) which is an econometric technique that has been widely used in estimating and 

explaining farm inefficiencies which are directly related to crop yields gaps. The authors then 

attributed the estimated inefficiencies to differences in land management practices. Proxy 

variables used to capture the effects of land management practices include slope, irrigation, 

population in the agricultural sector, as well as distance to markets (i.e. market accessibility) and 

spatially disaggregated purchasing power parity (i.e. market influence).   

Despite being innovative, the paper has some limitations. Some of the economic variables 

considered in the study might not be appropriate proxy variables for land management practices. 

For example, the authors defined market influence as measure of the suitability of yield-

improving investments in agriculture; hence, areas with greater market influence have higher 

yields. The authors constructed the proxy for market influence using national data on purchasing 

power parity (PPP) and distances to nearest markets (i.e. market access). However, PPP can only 
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provide information on the purchasing power of different currencies and it might not be a good 

measure of farm investment suitability.  

In addition, the authors did not take advantage of the spatial nature of the data. The 

authors used the maximum likelihood technique proposed by Battese and Coelli (1995) in order 

to estimate the production frontier and technical efficiencies. This approach which is tailored to 

panel data assumes that the efficiency terms are independently distributed. However, given the 

spatial nature of the data it is possible that the efficiency terms are correlated across space. As a 

solution for this problem, the authors used an ad-hoc approach by extracting a random sample of 

10% from the grid cells with at least 3% cropping area to ensure that each observation are 

independent (i.e. reduced spatial autocorrelation). A better alternative is to model the spatial 

autocorrelation in the data as a spatial stochastic process. Once modeled, the spatial interaction 

of one location to other location can be used as an explanatory variable (Anselin, 2007).  

The main goal of this paper is to contribute to the existing literature on yield gap analysis 

by using updated geo-spatial data and spatial econometric techniques in explaining the nature of 

yield gaps across geographic groups. Specifically, we use spatially-disaggregated production 

data for maize, wheat and rice as well as satellite data on agro-climatic and socio-economic 

factors at 0.5 degree resolution (around 50 km. x 50 km. at the equator). We employ a two-stage 

approach. In the first stage, we calculate technical efficiency scores using data envelopment 

analysis (DEA), a non-parametric technique. These calculated scores which represent the gap 

between observed yields and technically efficient yields are determined for all areas and across 

irrigated and rainfed areas. In the second stage, we examine the relationship between these 

efficiency scores and key socio-economic factors via the spatial Durbin Tobit model. We 
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estimate the spatial model for 8 geographic groups to highlight the regional differences in the 

impacts of the socio-economic factors on the calculated efficiency scores. 

II. Data and Methods 

Methods: Crop yield, a partial measure of farm productivity, is related to the concept of 

technical efficiency. Technical efficiency is associated with firms which produce more output 

given a set of inputs (Coelli et al., 2005; Farrell, 1957). In this context of this paper, yield gaps 

can be attributed to the existing inefficiencies across farms. To determine relative efficiencies 

across producer, researchers map out all possible input-output combination given existing 

technologies via a production frontier. In the literature, the production frontier is typically 

estimated using DEA or SFA. DEA, a non-parametric approach, uses mathematical 

programming in constructing the frontier and in calculating relative firm efficiencies (Banker, 

Charnes, & Cooper, 1984). In contrast, SFA, a parametric approach, relies on econometric 

methods (Battese & Coelli, 1995; Coelli, 1995).  As summarized by Odeck (2007), the main 

advantages of using DEA are 1) it does not require an explicit functional form when estimating 

the production frontier and 2) relative efficiencies are calculated by looking at the most efficient 

firms within the dataset. However, DEA is heavily influenced by sampling errors and/or errors in 

data measurement.  

In the literature, DEA models have been geared towards calculating inefficiencies in 

either input use or output production. Input-oriented models aim to maximize the reduction in 

input use while still maintaining the same optimal level of output. On the other hand, output-

oriented models maximize the potential increase in output given a set of input (Murillo-

Zamorano, 2004). Because it deals with inefficiencies in output production, output-oriented 

models are more suitable in yield gap analysis. Aside from input/output orientation, it also is 
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necessary to impose assumptions regarding the returns to scale in production. Initial studies on 

DEA assume constant returns to scale technology (CRS). Following Charnes, Cooper and 

Rhodes (1978), an output-oriented optimization model with CRS technology can be written as:  

         
  

               ∑     
 
      

                       
  ∑      

 
    

In the optimization problem above, there is a single output and multiple inputs. The efficiency 

factor is (  ) maximized given the observed output and inputs for each observation in the dataset 

(     
 ) and the constraints in the convex combinations of output and inputs levels. The input-

output weight for each observation is defined by  . Once solved, the efficiency factors can be 

used to calculate the efficiency scores         wherein efficient firms have scores closer to 1 

(or to 100 if scaled). These scores represent how far the observed output is from the technically 

efficient frontier given its observed input use. 

Under CRS technology, it is implicitly assumed that firms are operating at an optimal 

scale. However, this assumption might be too restrictive given actual data and can lead to 

efficiency scores which are biased by returns to scale. A solution for this problem is to impose 

variable returns to scale in production (VRS). This is operationalized by imposing an additional 

constraint in the optimization problem above such that the input-output weights would sum to 1 

(∑   
 
     ) (Färe, Grosskopf, & Lovell, 1983). With VRS technology, each firm is compared 

to firms with similar scale; thus, efficiency scores tend to be higher and more firms are efficient 

under VRS than in CRS. For this reason, we calculate the efficiency scores under VRS.  

The efficiency scores are calculated for all areas as well as separately for irrigated and 

rainfed areas. Imposing separate production frontiers for irrigated and rainfed areas is important 
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since irrigated areas are typically more productive than rainfed areas. Moreover, it allows us to 

check if the impacts of the socio-economic variables on the efficiency scores are similar or 

divergent across irrigated and rainfed areas. In line with Neumann et al, we use agro-climactic 

variables in the calculation of farm efficiencies. Output per grid-cell is measured by crop yields 

while inputs include precipitation, temperature, terrain constraint, and soil constraint. 

Once calculated, we then relate the efficiency scores to selected socio-economic factors 

via the Tobit model. In the literature, this is the most commonly used model in explaining the 

DEA scores (Begum et al., 2011; Odeck, 2007; Ramalho, Ramalho, & Henriques, 2010; 

Speelman et al., 2008; Thiam, Bravo-Ureta, & Rivas, 2005). A generalized Tobit model can be 

expressed using the following equation: 

  {

           
              
                

               

wherein   is the latent dependent variable (i.e. efficiency scores),   is a vector of explanatory 

variable and   is the error term which is independent and normally distributed with mean zero 

and positive variance. The main argument for using the Tobit model is that the efficiency scores 

follow a censored data generating process with values in the interval [0, 1]. However, DEA 

scores typically have values equal to 1 but none with zeroes (McDonald, 2009). This can lead to 

misspecification issues since the Tobit model requires that there should be positive probabilities 

of observing both corner values. Despite the lack of zero observations, this model still provide 

reasonable estimates of DEA scores when compared to other estimation methods (Hoff, 2007).  

However, we cannot directly use the Tobit model because it is likely that the calculated 

efficiency scores are correlated across space. It is also likely that the socio-economic variables 

that will be used to explain the efficiency scores are spatially correlated due to the nature of the 
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data. As noted by McMillen (1992), heteroskedasticity is generally associated with the presence 

of spatial autocorrelation in the data and which in turn can lead to inconsistent estimates for 

limited dependent variable models.  

A generalized spatial regression model which takes into account both the influence of the 

neighboring values of the dependent variable and those of the independent variables is the spatial 

Durbin model (Anselin, 1988). This model builds on the traditional spatial autoregressive model 

and is expressed by the following equation: 

                 

wherein   is the spatial correlation parameter,  is the spatial weight matrix and    represent 

the neighboring values of the explanatory variables. Note that the estimates of the parameter 

      capture the marginal effects of the neighboring values of the explanatory variables on 

the dependent variable.  

In order to account for the spatial interaction among the efficiency scores and the 

explanatory variables, we use the Spatial Durbin Tobit model (SDT) developed by LeSage 

(2000). LeSage proposed a Gibbs sampling method for estimating spatial models with 

autoregressive limited dependent variables. This method replaces the censored unobserved 

observations on the dependent variable using estimated values. With these non-censored values, 

it is possible estimate the model parameters via maximum likelihood or Bayesian techniques. 

Furthermore, this method can account for heteroskedasticity issues and also creates posterior 

distributions regarding the model’s parameters which in turn permit statistical inferences 

regarding their mean and dispersion. To implement the model, we use the code provided by 

LeSage in his Spatial Econometrics Toolbox (2010) for Matlab.  
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We estimate the model for 8 world regions in order to see the differences in the 

significance and marginal impacts of each socio-economic variable to the efficiency scores. For 

each world region, the spatial weights matrices are constructed using row-standardization and 

using neighborhood contiguity based on Euclidean distance. We assumed that the relevant 

neighbors for each observation are within a distance of 100 km. It is required that all 

observations have at least 1 neighbor in order for the model to solve; thus, we drop the 

observations which do not meet this requirement.  

Data: We collected a variety of geo-spatial and national level data from several sources 

(Table 1). Most of the geo-spatial data represent the 2000-2001 period. We use yield data for 

maize, wheat and rice from Monfreda et al. (2008). Temperature and precipitation data were 

taken from Worldclim (Hijmans et al., 2005) while soil fertility, terrain and slope constraints 

were collected from Global Agro-Ecological Zones (GAEZ) model (Fischer et al., 2002).  Socio-

economic variables used in this study include population, fertilizer use, irrigation, market access 

and proxy variables for market influence and institutional strength. Population is based on the 

Gridded Population of the World, Version 3 (2005). Fertilizer application rates is taken from 

Potter et al. (2010) while area of irrigated land is collected from MIRCA (Portmann, Siebert, & 

Döll, 2010). For market access, we use the global accessibility maps by Nelson (2008) which 

measures the travel time in minutes to the nearest city with population of 50,000 or more for 

each grid cell. A proxy for market influence is the Gross Cell Product (GCP) maps by Nordhaus 

(2006). It is a spatially disaggregated measure of GDP and it is mostly based on detailed 

economic data collected at the state or province level. To measure institutional strength, we 

combine the national-level data on the ranges of Corruption Perception Index (CPI) by 

Transparency International and the urban extent maps from the Global Rural-Urban Mapping 
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Project, Version 1 (2004). We assumed that, within a country, areas which have high 

concentration of urban extents have stronger local institutions (high scores of Corruption 

Perception) compared to areas which are more rural. 

To separate rainfed from irrigated systems, we used the data on irrigation. Specifically 

we assumed that irrigated (rainfed) systems have irrigated land areas which are greater than or 

equal to (less than) 5000 hectares. In addition, we only focus on grid-cells which have more than 

5% cropland area in order to exclude the effect of marginal lands using the Global Cropland and 

Pasture Data maps by Ramankutty (2011).  

III. Results and Discussions 

Distribution of Efficiency Scores: The DEA scores are mapped to show the global 

distribution of technical efficiency scores (Figures 1 to 9). From the maps, we see that areas 

which have (low) high efficiencies are typically adjacent to each other together which suggests 

spatial clustering. To formally quantify the degree of spatial clustering in the efficiency scores, 

the Moran’s I test is conducted. The Moran’s I test provides a global measurement of spatial 

autocorrelation among neighboring observations (Anselin, 1996). We implemented the Moran’s I 

test on the efficiency scores for each geographic region. The results confirm that there is 

clustering in the efficiency scores. Specifically, there is statistically significant and positive 

spatial autocorrelation among the calculated efficiency scores (Table 2). 

Scores which considers all areas are illustrated in Figures 1 to 3. Looking at maize, we 

see that high scores (≥ 70%) are generally situated in North America, the European Union and in 

the northeastern China. At a glance, we see that even at country-level, the distribution of 

technical efficiency scores is quite heterogeneous. For example, scores in North America tend to 

decline in areas situated near the eastern coast while scores in China are generally lower in the 
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southern than in the northern regions. Regions with low efficiency scores (≤ 30%) include 

Central America, Sub-Saharan Africa (excluding South Africa), South and South East Asia. This 

implies that these regions generally have large maize yield gaps due to technical inefficiency. 

Efficiency scores in Russia, Latin America and Australia are generally less than in North 

America but are still relatively high compared to the rest of the world. Unlike maize, efficiency 

scores for wheat are more dispersed. High scores are generally located in the European Union, 

North America and northeastern China. There are also some patches of technically efficient areas 

in Africa and South Asia although these regions are still dominated by areas with low efficiency 

scores. In Russia, areas near the Black Sea are more efficient compared to the rest of the country. 

Looking at rice, we see that most efficient areas are located in China and in parts of the European 

Union. Within South East Asia, Viet Nam and parts of Thailand and Indonesia have high 

efficiency scores compared to other countries in the same region. Despite large concentration of 

low efficiency scores, there are still some areas in India and Pakistan which have relatively high 

scores. In Latin America, areas in Argentina are technically more efficient than those in Brazil. 

Similar to the previous maps, rice efficiency scores in Africa are generally low which is 

indicative of large yield gaps for this crop in this region. 

Efficiency scores generated for rainfed and irrigated areas are also mapped separately. In 

general, the distribution of rainfed efficiency scores is quite similar to the case wherein all areas 

are considered especially for maize and wheat (Figures 4 to 6). Rainfed maize and wheat areas 

with high scores are again situated in North America and in the European Union. Central 

America, Africa and South East Asia are generally dominated by low efficiency scores which 

indicate significant yield gaps in rainfed maize and wheat for these regions. Relative to these 

regions, Latin America and Russia generally have high scores. For rainfed rice, the improvement 
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in efficiency scores is more visible. We can see improvements in the efficiency scores in parts of 

Argentina, Indonesia and Ukraine. This occurs because we are excluding the majority of 

technically efficient areas (namely in northeast China) which in turn alters the technically 

efficient set of observable rice yields. 

Similar to the case of rainfed areas, it is difficult to distinguish if there are changes in the 

distribution of scores for irrigated areas versus all areas (Figures 7 to 9). The maps show that 

most irrigated areas are located in South Asia, South East Asia and in China. For maize and 

wheat, high scores are located in North America, the European Union and in northern China 

while low efficiency scores are observed in South and South East Asia and in southern China. 

For irrigated rice, high efficiency scores are again located in China and in parts of the European 

Union while low efficiency scores are situated in South Asia and in parts of South East Asia. 

To clearly illustrate the changes in the distribution of technical efficiency scores for all 

areas, rainfed areas and irrigated areas, we use cumulative histograms (Figures 10 to 12). We 

plot the cumulative distribution of efficiency scores for 8 geographic regions. We also include 

the global distribution as a baseline such that distributions to the left (right) of the global 

distribution have relatively low (high) efficiency scores. Starting with maize, we see that the 

global distribution does not change dramatically if we separate irrigated and rainfed areas 

(Figure 10). Roughly 50% of global scores are in the interval [1, 20] for all cases which suggest 

large yield gaps for this crop globally. Among the regions, scores in N & C America are always 

on the right of these graphs which indicates that this region generally have high efficiency scores 

compared to the rest of the world. It is interesting to note that there are some regions which show 

changes in the distribution of scores when irrigated and rainfed areas are separated. For example, 

in the case of all areas we see that the distribution for the EU & Russia and C & E Asia are close 
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to the global distribution. However, in the case of rainfed areas the distribution for C & E Asia 

approaches that of N & C America. Under this case, more that 50% of rainfed areas in C & E 

Asia have scores in the interval [1, 30] while it is higher for EU & Russia (75%). In the case of 

irrigated areas, the distribution for EU & Russia is closer to N & C America while the 

distribution for C & E Asia approaches the global distribution. Regions which have distributions 

on the left of the global distribution include L America, SS Africa, M East & N Africa, S Asia 

and SE Asia & Oceania. For these regions, greater than 75% of the all areas and rainfed areas 

have efficiency scores in the interval [1, 30] which suggests that these regions are generally 

inefficient compared to other world regions. There are some notable changes in the distribution 

of scores under the case of irrigated area in particular for M East & N Africa and for L America. 

For L America (M East & N Africa), the distribution shifts to the left (right) and moves away 

from (closer to) the global distribution. 

Compared to maize, the distribution of scores is less dispersed in the case of wheat 

(Figure 11). Globally, around 25% of the efficiency scores are in the interval [1, 20] for all cases. 

This implies that yield gaps in wheat are generally smaller relative to maize since more observed 

wheat yields are closer to the technically efficient frontier. Similar to maize, we see that the 

distribution of scores for N & C America is always on the right for these graphs. The distribution 

of scores for EU & Russia is close to the global distribution for all cases. For C & E Asia, the 

distribution is closer to N & C America in the case of all areas and irrigated areas while it is 

close to EU & Russia in the case of rainfed areas. Distribution of efficiency scores for S Asia, L 

America, and SE Asia & Oceania are always on the left of the global distribution. At least 75% 

of the scores in these regions are within the interval [1, 30] which implies large inefficiencies in 

wheat production for these regions. We can also observe this for M East & N Africa and SS 
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Africa in the case of all areas and for rainfed areas. However, we see that if we focus on irrigated 

areas the distribution of scores in these regions shifts to the right. This is indicative that in these 

regions irrigated areas have relatively high efficiency scores. In all cases, the distribution for SE 

Asia & Oceania region is always on the right which suggest that wheat production in this region 

is relatively inefficient compared to the rest of the world.  

Efficiency scores for rice are more dispersed compared to maize and wheat (Figure 12). 

More importantly, there are notable changes in the global distribution of scores between rainfed 

and irrigated areas. If all areas are considered, roughly 50% of global scores are within the 

interval [1, 30] while this increases to at least 60% if we look at rainfed areas. However, we see a 

sizable decline in the case of irrigated areas (at least 30%). This implies greater efficiency in 

observed irrigated rice yields compared to rainfed rice yields. The distribution for C & E Asia is 

always on the right relative to other regions which suggests that rice production in this region is 

quite efficient. Other regions on the right of the global distribution are N & C America and EU & 

Russia. Looking at all areas, we see that regions to the left of the global distribution include M 

East & N Africa, SS Africa, S Asia and SE Asia & Oceania. If we focus only at rainfed areas, S 

Asia and SE Asia & Oceania shifts and moves closer to the global distribution while the 

distributions for M East & N Africa and SS Africa remain unchanged. In the case of irrigated 

areas, the distribution of scores for S Asia and for SE Asia & Oceania shifts to the left (becomes 

more inefficient). In general, L America always follows the global distribution for rice. 

Estimation results: We estimate the SDT model for all areas, rainfed areas and irrigated 

areas for each world regions (Tables 3 to 5). Explanatory variables for the calculated efficiency 

scores include population (POP), fertilizer use (FERT), irrigation (IRRIG), market accessibility 

(ACCESS) and proxy variables for market influence (GCP) and an index for institutional 
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strength (INSTI). Interpretation of the parameter estimates is not straight forward since the 

spatial model takes into account the neighboring values of the efficiency scores and the 

neighboring values of the explanatory variables. Given this, the marginal effect of an explanatory 

variable in a grid-cell will not only affect the efficiency scores in that location but also the scores 

in neighboring grid-cells.  

As discussed by LeSage and Fischer (2007), in models with spatial lags the changes in 

the explanatory variables result in direct impacts in its own region as well as indirect impacts to 

other regions. A formal method for calculating summary measures of the direct, indirect and total 

impacts and their corresponding statistical measures of dispersion was introduced by Pace and 

LeSage (2006). The authors defined the direct impact as the average impact of changes in a 

variable within a region such that the feedback effects from neighboring regions are accounted 

for. On the other hand, the total effect measures the average impact in a typical region if we 

change a variable in all regions. This measure includes both the direct and indirect impacts. 

Finally, the indirect effects which capture the spill-over effects across space can be calculated 

from the difference between the total and direct impacts. The methods used to calculate these 

summary impacts are in the Spatial Econometrics Toolbox by LeSage. 

Estimates of total impacts are shown in Tables 6 to 8. We focus our discussion on 

geographic regions which have large distribution of low efficiency scores based on the maps and 

on the cumulative histograms (i.e. L America, SS Africa, SE Asia & Oceania, S Asia). Starting 

with maize, we see that in L America population (-) and irrigation (+) are key factors affecting 

the efficiency scores when all areas are considered. If we focus on rainfed areas, population, 

irrigation and institutional strength have negative total impacts on efficiency. None of the socio-

economic variables have statistically significant total impacts on irrigated maize in this region. 
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Looking at all areas in SS Africa, we see that all variables except market access have statistically 

significant and positive total effect on efficiency. In the case of rainfed areas, population, market 

access, institutional strength and market influence have increasing total effects on efficiency 

scores for this region. In S Asia, market influence has positive total impacts on efficiencies for 

both rainfed and irrigated areas. For irrigated areas, institutional strength negatively affects 

efficiency for this region. For SE Asia & Oceania for both all areas and rainfed areas, variables 

which significantly affect the efficiency scores are fertilizer use (+), institutional strengths (+), 

market influence (+) and market access (-). If we focus only on irrigated areas, fertilizer use and 

institutional strength positively impacts efficiency. 

In the case of wheat production, we see that in L America key drivers of efficiency scores 

include fertilizer use (-), market access (-), and institutional strength (+) when all areas are 

considered. The same factors plus market influence (-) are the main contributors to efficiency 

under rainfed areas. Institutional strength (+) is the only statistically significant variable in the 

case of irrigated areas in this region. In SS Africa, only population (-) is statistically significant 

for both all areas and rainfed areas. Likewise, fertilizer use (+) is the only statistically significant 

variable under the case of irrigated areas. In rainfed and irrigated areas in S Asia, main 

contributors to efficiency scores are institutional strength (-) and market influence (+). Irrigation 

also increases efficiency scores for irrigated areas in this region. In SE Asia & Oceania, only the 

case of irrigated areas has statistically significant coefficients. For this region, the total effect on 

efficiency of population and institutions are negative while it is positive for market influence. 

For rice production, we see that most of the statistically significant variables are in L 

America, S Asia and SE Asia & Oceania. If all areas are considered, irrigation contributes 

positive to efficiency scores in L America while fertilizer use has an adverse impact. For rainfed 
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areas, institutional strength has an adverse effect while market access has a positive impact on 

efficiency scores under irrigated areas. Efficiency scores for rice are positively affected by 

market influence for all cases in S Asia. Variables which have negative impacts on scores for 

rainfed areas in this region include institutional strength and irrigation. In SE Asia & Oceania, 

key drivers of efficiency scores are fertilizer use (+) institutional strength (-). For both rainfed 

and all areas, market influence contributes positively to efficiency scores in this region. Market 

access also contributes to efficiency scores in the case of all lands (-) and irrigated lands (+). 

The results discussed above show that the effects of the socio-economic variables on the 

efficiency scores are not always consistent and will typically vary by geographic region, crop 

type and scope of analysis (all areas, rainfed areas, irrigated areas). For example, the impact of 

fertilizer in maize is consistently positive across all regions but for wheat and rice, its impacts are 

mixed. In the case of rice, the total impact of irrigation on the efficiency scores are either zero or 

negative for all areas, rainfed areas and irrigated areas. However, we can also see some general 

trends. Most of the total impacts of socio-economic variables on efficiency scores are positive. 

For example, across all crops and regions the total impact of irrigation, fertilizer use, institutional 

strength and market influence are generally positive in the case of all areas. For rainfed areas, 

fertilizer use and market influence are the key drivers of efficiency. These are also the drivers for 

irrigated areas plus market access. If we look at each crop for all cases and regions, we see that 

irrigation, fertilizer use, institutional strength and market influence are the important factors 

affecting efficiency scores for maize. For wheat and rice, the main contributors to efficiencies are 

fertilizer use and market influence. At regional level and for all crops and cases, we see that in L 

America, institutional strength (+) and market access (-) generally have statistically significant 

total impacts. For S Asia, market influence (+) and institutional strength (-) are the key drivers. 
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For SE Asia & Oceania, market influence (+) and fertilizer use (+) are important contributors to 

efficiency. In the case of SS Africa, all except population generally have positive total impact on 

efficiency. The results also indicate that by changing the coverage from all areas to either rainfed 

or irrigated areas, we generally see that some variables become statistically significant while 

some become insignificant. However, as long as the estimate is statistically significant in the 

case of all areas we see that the signs of these estimates are generally consistent if we focus on 

either rainfed or irrigated areas.  

Finally, we explore the results of the model by isolating the direct and indirect effects of 

the socio-economic variables on the efficiency scores (Tables 9 and 10). In general, these results 

indicate that there are variables which do not have statistically significant total effect but have 

statistically significant direct/indirect effects. For example, for rainfed maize in L America, we 

see that irrigation (-) and market influence (+) become statistically significant in terms of its 

direct effect. This is also true for the direct effects of fertilizer use (+), institutional strength (+) 

and market influence (+) on efficiency scores of rainfed rice in SS Africa. In most cases, the 

indirect effect is generally larger than direct effect. Examples of these include fertilizer use (-) 

and market access (-) for rainfed wheat in L America and institutional strength (+) for rainfed 

maize in S Asia.  However, there are some instances wherein the signs of the direct and indirect 

impacts are different. This is true in the case of fertilizer use and market access for rainfed maize 

in S Asia and in irrigation in SE Asia & Oceania. 

IV. Conclusion 

 

In this study, we revisit global yield gap analysis by examining technical efficiencies in 

global crop production and by relating these to selected socio-economic variables. To calculate 

these efficiencies across the world, we apply data envelopment analysis on geo-spatial data on 
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crop yields and agro-climatic factors. This non-parametric approach allows us to generate scores 

which represent how far the observed crop yields are from the technically efficient frontier given 

its observed agro-climatic inputs. We then relate these efficiency scores to selected socio-

economic variables namely population, irrigation, fertilizer use, market access, institutional 

strength and market influence. We apply spatial econometric techniques in our estimation to 

account for the spatial correlation in the data and in the calculated scores. Specifically, we 

estimated the spatial Durbin Tobit model using the methods outlined by LeSage (2000). The 

results of the study show that the global distribution of calculated efficiency scores varies among 

countries. More importantly, these scores vary within countries and this highlights the 

importance of using spatial data on global yield gap analysis. We find that the effects of the 

socio-economic variables on the efficiency scores are not always consistent and will typically 

vary depending on region, crop and scope. However, we can also see some general trends. Most 

of the total impacts of socio-economic variables on efficiency scores are positive. For example, 

across all crops  and regions the total impact of irrigation, fertilizer use, institutional strength and 

market influence are generally positive if we look at all areas. By changing the coverage from all 

areas to either rainfed or irrigated areas, we generally see that some variables become 

statistically significant while some become insignificant. However, the signs of these estimates 

are generally consistent if we examine all areas or if we limit our focus on rainfed or irrigated 

areas. Given the spatial model, we can also explore the direct and indirect impacts of the socio-

economic variables on the efficiency scores. In some cases, there are variables which do not have 

statistically significant total effect but have statistically significant direct/indirect effects. The 

indirect effect is generally larger than direct effect which shows the importance of using spatial 

econometric techniques to account for the spatial interaction in the data.  
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Figure 1. Efficiency Scores of Maize: All Areas 

 
 

Figure 2. Efficiency Scores of Wheat: All Areas 

 
 

Figure 3. Efficiency Scores of Rice: All Areas 
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Figure 4. Efficiency Scores of Maize: Rainfed Areas 

 
 

Figure 5. Efficiency Scores of Wheat: Rainfed Areas 

  
 

Figure 6. Efficiency Scores of Rice: Rainfed Areas 
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Figure 7. Efficiency Scores of Maize: Irrigated Areas 

 
 

Figure 8. Efficiency Scores of Wheat: Irrigated Areas 

  
 

Figure 9. Efficiency Scores of Rice: Irrigated Areas 
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Figure 10. Cumulative distribution of Maize efficiency scores 
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Figure 11. Cumulative distribution of Wheat efficiency scores 
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Figure 12. Cumulative distribution of Rice efficiency scores 
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Table 1. Data description 

Variables Data Description Source 

Crop yields 

Yields for maize, rice and 

wheat 

(metric tons per hectare) 

Monfreda et al. (2008) 

Temperature 
Sum of monthly temperature in 

Fahrenheit 
Worldclim (Hijmans et al., 2005) 

Precipitation 
Sum of monthly precipitation 

in millimeters 

Soil constraint Scale [1-100] 

100 – no constraint 

1 – not suitable for agriculture 

Global Agro-Ecological Zones model (Fischer et al., 2002) 
Terrain slope 

Irrigation 

Total area equipped for 

irrigation 

(1000 hectares) 

MIRCA (Portmann, Siebert, & Döll, 2010) 

Population in 1000 Gridded Population of the World, Version 3 (2005) 

Gross cell 

product 

2005 US $ per capita at 

purchasing power parity 

exchange rates 

Nordhaus (2006) 

Land 

accessibility 
Travel times in hours Nelson (2008) 

Fertilizer use Kilogram per hectare Potter et al. (2010) 

Institutional 

strength 
Scale [1-100] 

Calculated from of Corruption Perception Index by 

Transparency International & from the Global Rural-Urban 

Mapping Project, Version 1 (2004) 

 

Table 2. Moran’s I statistics of the efficiency scores
2
 

Geographic 

Regions 

Maize Wheat Rice 

All 

Areas 

Irrigated 

Areas 

Rainfed 

Areas 

All 

Areas 

Irrigated 

Areas 

Rainfed 

Areas 

All 

Areas 

Irrigated 

Areas 

Rainfed 

Areas 

N & C America 0.93* 0.92* 0.94* 0.87* 0.86* 0.89* 0.86* 0.86* 0.81* 

L America 0.89* 0.82* 0.93* 0.88* 0.83* 0.93* 0.88* 0.83* 0.89* 

EU & Russia 0.87* 0.81* 0.84* 0.95* 0.92* 0.94* 0.88* 0.84* 0.89* 

SS Africa 0.80* 0.79* 0.79* 0.83* 0.77* 0.85* 0.75* 0.42* 0.80* 

M East & N 

Africa 
0.88* 0.86* 0.85* 0.93* 0.95* 0.85* 0.92* 0.89* 0.91* 

S Asia 0.94* 0.86* 0.91* 0.86* 0.77* 0.89* 0.80* 0.76* 0.83* 

C & E Asia 0.89* 0.80* 0.87* 0.88* 0.82* 0.87* 0.79* 0.78* 0.75* 

S E Asia & 

Oceania 
0.47* 0.41* 0.55* 0.93* 0.85* 0.93* 0.57* 0.71* 0.54* 

  

                                                           
*
 Statistically significant at 5% level of significance 
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Table 3. Estimation results of the spatial Durbin Tobit model: All Areas
3
 

 

Regions 
N & C 

America 
L America 

EU & 

Russia 
SS Africa 

M East & 

N Africa 
S Asia 

C & E 

Asia 

S E Asia & 

Oceania 

Maize                 

Constant -12.686* 2.617* 2.545* -0.277_ -6.370* 0.199_   4.932* 1.837* 

POP -0.002* -0.002* -0.001* -0.001* -0.002_ -2E-04_ 4E-04_ -0.001* 

IRRIG -0.011_ -0.044* -0.035* 0.026_ -0.022_ 0.006* -0.039* -0.004_   

FERT 0.250* 0.054_ 0.032* 0.084* 0.081* 0.003_   0.043* 0.049* 

ACCESS 0.387* -0.165* 1.064* -0.015_   0.134_ 0.246* 0.413* -0.033_ 

INSTI 0.633* -0.091_ 0.209* 0.044* 0.247* -0.043_ 0.053_ 0.032_ 

GCP 0.189* 0.225* 0.193* 0.255* 0.437* -0.243* 0.126_ -0.003_   

W*POP 0.012* -0.003_ -0.001 _  0.001* 0.005* 1E-04_   -0.003* 9E-06_   

W*IRRIG 0.047* 0.094* 0.038* 0.051* 0.033_ -0.005_ 0.048* 0.031_ 

W*FERT -0.092* -0.055_ 0.012_   -0.082_ -0.059_ -0.001_   -0.030_ -0.005_   

W*ACCESS 0.556_ 0.096_ -0.634* 0.061_ 0.033_   -0.239* -0.665* -0.010_   

W*INSTI -0.408* 0.076_ -0.093* -0.011_   -0.007_   0.044_   -0.063_ 0.068_ 

W*GCP -0.367* -0.144_ 0.004_   -0.136_ -0.526* 0.335* -0.164_ 0.144_ 

ρ 0.870* 0.894* 0.665* 0.811* 0.829* 0.960* 0.912* 0.506* 

Wheat                 

Constant -4.543* 3.892* 1.813* 1.584_ 1.503_ 3.688_ -4.543_ 3.892* 

POP -0.001_ 0.001_    -1E-04_    -0.001_ 0.001* -1E-04_ -0.001* 0.001_   

IRRIG 0.027* -0.064* -0.021* 0.129* -0.012_ 0.037* 0.027* -0.064_ 

FERT 0.115* 0.041_ 0.047* -0.249* 0.072* 0.094* 0.115* 0.041_ 

ACCESS 0.081_    -0.179* 0.728* 0.015_    -0.085_ 0.100_ 0.081_   -0.179* 

INSTI 0.328* -0.163* 0.294* -0.081_ 0.102* -0.099_ 0.328* -0.163_ 

GCP 0.047_ -0.023_    0.114* 0.044_    -0.016_    0.144_ 0.047* -0.023_   

W*POP 0.011* -0.002_ 0.002* -0.001_ -0.001_    9-E05_   0.011_ -0.002_ 

W*IRRIG -0.004 _   0.093* -0.024* 0.004 _   0.027* -0.026* -0.004_   0.093_ 

W*FERT -0.055* -0.203* 0.031* 0.405* -0.025_ -0.099* -0.055* -0.203_ 

W*ACCESS 0.487* -0.114_ -0.751* -0.012_    0.205_ -0.120_ 0.487_ -0.114_ 

W*INSTI -0.271* 0.23* -0.261* 0.135_ -0.133* 0.010_    -0.271_ 0.230* 

W*GCP -0.072_ -0.103_ -0.110* -0.185_ 0.171_ -0.055_     -0.072* -0.103_ 

ρ 0.918* 0.860* 0.877* 0.865* 0.886* 0.929* 0.918* 0.860* 

Rice                 

Constant 27.837* 5.582* 1.872_ 1.744* -3.511_ 8.023* 5.238* 14.325* 

POP 0.004* -0.001_   -0.002_ 0.001_ 1E-04_   __4E-04_ 2E-04_  -0.001* 

IRRIG 0.041_ 0.081* -0.017_ -0.130* -0.018_ 0.048* 0.018_ -0.022_ 

FERT -0.016_   0.157* 0.010_   0.039_   0.051_ 0.004_   -0.002_   0.136* 

ACCESS -0.886* -0.111_ 1.097* -0.017_   -0.038_   1.099* 0.238_ -0.161* 

INSTI 0.509* -0.200* 0.542* 0.058_ 0.020_   -0.463* 0.303* -0.254* 

GCP 0.376* 0.195_ 0.417* 0.249_ 0.399_ -0.046_   0.249_ 1.015* 

W*POP -0.015* -0.001_   0.002_ -0.001_ 0.001_ 1E-04_   -0.001_ 0.001_ 

W*IRRIG -0.004_   0.022_   0.017_ 0.311* 0.011_   -0.043* -0.070* -0.003_   

W*FERT 0.131_ -0.302* -0.049_ -0.079_ 0.019_   -0.028_ 0.075* 0.001_   

W*ACCESS -1.178_ 0.110_ -0.557_ 0.019_   0.163_ -1.062* -0.350_ 0.107* 

W*INSTI -0.848* 0.161_ -0.466* -0.031_   0.212_ 0.249_ -0.185* 0.046_   

W*GCP 0.221_ -0.144_ -0.281* -0.113_   -0.437_ 0.303_ -0.332_ -0.702* 

ρ 0.711* 0.885* 0.839* 0.829* 0.834* 0.902* 0.844* 0.666* 

                                                           
*
 Statistically significant at 5% level of significance 
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Table 4. Estimation results of the spatial Durbin Tobit model: Rainfed Areas
4
 

 

Regions 
N & C 

America 
L America 

EU & 

Russia 
SS Africa 

M East & 

N Africa 
S Asia 

C & E 

Asia 

S E Asia & 

Oceania 

Maize                 

Constant -15.061* 4.944* 5.234* -0.312_ 1.356_ -4.397_ 14.078* 1.384_ 

POP -0.005* -0.002* -4E-04_   -0.001* -0.001_ -0.001* 0.003_ -0.001_ 

IRRIG -0.051_  -0.286* -0.140_ 0.185* -0.209_ -0.094 _  0.027_   -0.190_ 

FERT 0.291* 0.095* 0.056* 0.056_ 0.034_ 0.004_   -0.029_   0.032_ 

ACCESS 0.545* -0.074_ 1.103* 0.010_   -0.036_ 0.346* 0.453* -0.038_ 

INSTI 0.738* -0.148_ 0.310* 0.024_ -0.016_   0.044_   0.783* -0.016_   

GCP 0.181* 0.158* 0.407* 0.264* 0.035_   0.201_ -0.316_ 0.033_   

W*POP 0.019* -0.005* 2E-04_   0.002* -0.004_ 4E-04_   -0.019* -0.004_ 

W*IRRIG 0.419_ 0.047_   -0.444* -0.212_ 0.527_ -0.450* 0.223_   0.513_ 

W*FERT -0.039_ -0.080_ 0.018_ -0.049_ 0.023_   -0.049* 0.068_ 0.025_ 

W*ACCESS 0.478_ -0.053_   -0.463* 0.039_ -0.021_   -0.007_   -0.519* -0.019_   

W*INSTI -0.423* 0.088_ -0.119* 0.016_ 0.162* 0.111_ -0.831* 0.160* 

W*GCP -0.459* -0.085_ -0.143* -0.116_ 0.100_ 1.342* 0.089_   0.105_ 

ρ 0.786* 0.887* 0.463* 0.797* 0.474* 0.744* 0.723* 0.474* 

Wheat                 

Constant -1.922_ 4.172* 2.638* 2.126* 4.751* 28.479* 5.448* 2.721* 

POP -0.001_ 1E-04_   -1E-04_   2E-04_   0.001_ 0.001_ 0.004_ -0.002_ 

IRRIG 0.223_ 0.101_ -0.123_ 0.401* -0.217_ -0.182_ -0.523_ -0.049_   

FERT 0.128* -0.004_   0.077* -0.617* 0.024_   0.014_   0.005_   0.012_   

ACCESS 0.331* -0.020_   0.736* 0.056_ -0.069_   -0.012_   0.286* 0.005_   

INSTI 0.389* -0.079_ 0.397* -0.158* 0.206_ -0.318* 1.054* -0.154* 

GCP 0.064* 0.015_   0.204* -0.052_   0.666_ -0.098_   -1.042* 0.001_   

W*POP 0.013* -0.004_ 0.003* -0.002_ -0.002_ -0.002_ -0.011* -2E-04_   

W*IRRIG -0.720_ 0.055_   0.288_ -0.120_   -0.594_ -0.458_ 0.669_ -0.010_   

W*FERT -0.041* -0.147* 0.060* 0.790* 0.018_   -0.095* 0.079_ -0.059_ 

W*ACCESS 0.300_ -0.251* -0.662* -0.035_   0.179_ -0.054_   -0.124_ -0.089_ 

W*INSTI -0.382* 0.135* -0.320* 0.194* -0.249* -0.396* -1.025* 0.161* 

W*GCP -0.028_   -0.187_ -0.178* 0.003_   -0.097_   0.516_ 0.951* 0.018_   

ρ 0.893* 0.883* 0.775* 0.862* 0.729* 0.756* 0.748* 0.858* 

Rice                 

Constant 22.154* 7.765* 6.314* 1.720* -2.599_ 67.861* -9.460_ 19.874* 

POP -0.003_ -1E-05_ -0.002_ 0.001_ -0.001_ 0.001_ -0.006_ -0.001_ 

IRRIG 1.212_ 0.352_ 0.176_ 0.093_ -1.144* -0.909* 0.102_ -1.638* 

FERT 0.250_ 0.122_ -0.121* 0.206* 0.102_ -0.045_ -0.184_ 0.187* 

ACCESS -0.490_ 0.094_ 1.419* 0.059_ -0.014_ 0.676* 0.174_ -0.159* 

INSTI 0.550* -0.144_ 0.501* 0.156* 1.232* -0.919* 2.417* -0.277* 

GCP 0.649* 0.248_ 0.314_ 0.256_ 0.070_ -0.127_ -0.223_ 0.946* 

W*POP -0.006_ -0.002_ -0.004_ -0.001_ 0.001_ -0.001_ -0.010_ 0.003_ 

W*IRRIG 0.163_ -0.524_ -0.356_ -0.023_ 0.149_ -1.042_ -0.771_ 1.055_ 

W*FERT 0.071_ -0.163_ -0.006_ -0.228* 0.084_ -0.093_ 0.304_ 0.369* 

W*ACCESS -1.174_ -0.084_ -0.878_ -0.066_ 0.104_ -0.367_ -0.345_ 0.138* 

W*INSTI -0.793* 0.043_ -0.374* -0.134* -0.964* -0.975* -1.379* -0.027_ 

W*GCP 0.149_ -0.149_ -0.081_ -0.115_ 0.194_ 1.133_ 0.714_ -0.662_ 

ρ 0.596* 0.865* 0.708* 0.864* 0.759* 0.622* 0.633* 0.478* 

                                                           
*
 Statistically significant at 5% level of significance 



32 
 

Table 5. Estimation results of the spatial Durbin Tobit model: Irrigated Areas
5
 

Regions 
N & C 

America 
L America 

EU & 

Russia 
SS Africa 

M East & 

N Africa 
S Asia 

C & E 

Asia 

S E Asia & 

Oceania 

Maize                 

Constant -8.739* -2.115_   3.022_   -4.051_   -6.396 _  12.472* 4.488* 6.112* 

POP -0.002_  -0.003_   -0.002* 0.002_   -1E-04_   -1E-04_   -0.002* -0.001* 

IRRIG 0.005_   -0.043_   -0.045* -0.092_   -0.018_   0.004_   -0.087* -0.038* 

FERT 0.115* -0.010_   0.016_   -0.055_   0.057_   0.049* 0.098* 0.124* 

ACCESS -0.185_   -0.351_   -0.283_   0.209_   0.592_   1.518* 0.006_   -0.244* 

INSTI 0.567* -0.090_   -0.045_   -0.435_   0.052_   0.011_   0.109* -0.009_   

GCP 0.360* 0.550_   0.363* 0.747* 1.244* -0.193* 0.099_   0.364* 

W*POP 0.002_   0.003_   -0.001_   -4E-04 _  0.007* -3-E03_   -4E-04_   1E-04_   

W*IRRIG 0.045* 0.138* 0.040_   0.173_   0.005_   -0.001_   0.086* 0.056* 

W*FERT -0.150* -0.122_   0.021_   0.240_   -0.032_   -0.088* -0.082* -0.071* 

W*ACCESS 1.295* 0.531_  1.444* -0.272_   -0.484_   -1.677* -0.242_   0.163_   

W*INSTI -0.349* 0.151_  0.106_   0.641_   0.210_   -0.349* -0.075_   0.004_   

W*GCP -0.345* -0.012_  -0.053_   -0.589_   -1.241* 0.500* -0.109_   0.106_   

ρ 0.777* 0.723* 0.680* 0.546* 0.774* 0.881* 0.884* 0.469* 

Wheat                 

Constant 5.193_   2.340_  9.126* 2.182_   2.403_   9.867* 4.118_   16.223* 

POP -4E-04_   0.001_  -1E-04_   -0.006_   0.001_   -5E-05_   -2E-04  -2E-04_   

IRRIG 0.040* -0.083* -0.043* 0.230_   -0.014_   0.040* -0.015_   0.001_   

FERT 0.076* 0.035_  0.086* 0.794_   0.085* 0.118* 0.078* -0.023_   

ACCESS -0.265_   -0.581* -0.167_   0.405_   0.094_   1.426* 0.050_   -0.001_   

INSTI 0.255* 0.012_  0.339* -0.361_   0.268* -0.044_   0.064_   -0.236* 

GCP -0.063_   0.058_  0.266* 0.453_   0.121_   0.155_   0.107_   -0.007_   

W*POP 0.002_   -0.002_  -4E-04_   0.004_   0.001_   -1E-04_   -2E-04_   -0.008* 

W*IRRIG 0.027_   0.092_  -0.003_  0.335_   0.022_   -0.008_   0.050* 0.004_   

W*FERT -0.149* -0.081_  0.030_  0.463_   -0.029_   -0.150* -0.055* 0.072_   

W*ACCESS 0.083_   -0.137_  -1.528* -1.983* 0.228_   -1.436* 0.160_   -0.658* 

W*INSTI -0.245* 0.260_  -0.350* 0.721_   -0.347* -0.234_   -0.127_   -0.044_   

W*GCP 0.092_   -0.301_  -0.216_  -1.683* 0.197_   0.039_   0.109_   0.777* 

ρ 0.828* 0.611* 0.810* 0.491* 0.851* 0.859* 0.863* 0.645* 

Rice                 

Constant 29.967* 7.898_   3.237_   0.655_   -4.661_   8.983* 6.701* 14.983* 

POP 0.004* -0.002_   -0.002_   0.005_   0.001_   0.001* 7E-05_   -0.001* 

IRRIG 0.056_   0.031_   -0.042* -0.386* -0.016_   0.050* 0.010_   -0.003_   

FERT -0.083_   -0.034_   0.018_   -0.896_   0.059_   0.009_   -0.001_   0.066* 

ACCESS -0.526_   -0.45_   0.294_   -0.240_   0.738_   2.056* 0.355_   -0.111_   

INSTI 0.372* -0.074_   0.538* -1.219_   -0.023_   -0.542* 0.393* -0.014_   

GCP 0.401* 0.143_   0.546* 0.696_   0.709_   0.057_   0.218_   0.808* 

W*POP -0.005_   0.002_   0.002_   -0.010_   0.003_   -0.001_   4E-04_   0.002* 

W*IRRIG 0.005_   0.017_   0.032_   0.489_   -0.022_   -0.038* -0.073* 0.005_   

W*FERT 0.193_   -0.355_   -0.042_   1.706* 0.065_   -0.036_   0.073* 0.015_   

W*ACCESS -1.030_   1.336* 0.224_   0.370_   0.888_   -2.207* -0.272_   0.481* 

W*INSTI -0.740* 0.154_   -0.397* 1.540_   0.270_   0.340_   -0.276* -0.289* 

W*GCP 0.271_   -0.156_   -0.450* -0.123_   -0.704_   0.169_   -0.243_   -0.143_   

ρ 0.597* 0.716* 0.767* 0.214* 0.739* 0.873* 0.811* 0.637* 

                                                           
*
 Statistically significant at 5% level of significance 
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Table 6. Estimated total effects from the spatial Durbin Tobit model: Maize
6
 

 

Regions 
N & C 

America 
L America 

EU & 

Russia 
SS Africa 

M East & 

N Africa 
S Asia 

C & E 

Asia 

S E Asia 

& Oceania 

All Areas                 

POP 0.078* -0.048* -0.004   0.004* 0.02* -0.003   -0.029* -0.001   

IRRIG 0.279* 0.48* 0.009   0.408* 0.07   0.016   0.106   0.055   

FERT 1.235* -0.006   0.129* 0.007   0.128   0.037   0.158   0.09* 

ACCESS 7.381* -0.661   1.29* 0.245* 1.007   0.199   -2.868* -0.087* 

INSTI 1.762* -0.139   0.346* 0.177* 1.432* 0.014   -0.115   0.202* 

GCP -1.391* 0.76   0.589* 0.631* -0.531   2.35   -0.433   0.289* 

Rainfed Areas               

POP 0.065* -0.064* -0.000287   0.004* -0.01   -0.002   -0.058* -0.01   

IRRIG 1.768   -2.103   -1.088* -0.135   0.614   -2.12   0.915   0.623   

FERT 1.194* 0.132   0.137* 0.035   0.108* -0.18   0.141   0.11* 

ACCESS 4.785* -1.133* 1.194* 0.238* -0.109* 1.333   -0.246   -0.11* 

INSTI 1.489* -0.538* 0.358* 0.198* 0.278* 0.609   -0.174   0.276* 

GCP -1.319* 0.656   0.492* 0.727* 0.26* 6.143* -0.82   0.265* 

Irrigated Areas               

POP 0.002   0.00011   -0.007   0.003   0.03* -0.004   -0.019* -0.002   

IRRIG 0.233* 0.351   -0.014   0.194   -0.053   0.032   -0.012   0.035   

FERT -0.16   -0.477   0.119   0.412   0.113   -0.337   0.145   0.101* 

ACCESS 5.025* 0.64   3.648* -0.143   0.493   -1.389   -2.067   -0.156   

INSTI 0.99* 0.22   0.194* 0.461   1.187* -2.907* 0.3   -0.01   

GCP 0.065   1.969   0.972* 0.349   0.014   2.627* -0.086   0.897* 

 

Table 7. Estimated total effects from the spatial Durbin Tobit model: Wheat 

 

Regions 
N & C 

America 
L America 

EU & 

Russia 
SS Africa 

M East & 

N Africa 
S Asia 

C & E 

Asia 

S E Asia 

& Oceania 

All Areas                 

POP 0.128* -0.011   0.018* -0.015* 0.005   -0.004   -0.006   -0.01   

IRRIG 0.278* 0.209   -0.363* 0.982   0.137   0.165   0.5* -0.059   

FERT 0.747* -1.184* 0.637* 1.161   0.415* -0.061   0.055   -0.258   

ACCESS 7.052* -2.129* -0.187   0.023   1.071   -0.278   2.071   -0.658   

INSTI 0.7* 0.488* 0.273* 0.408   -0.285   -1.3   0.439   -0.201   

GCP -0.307   -0.916   0.035   -1.044   1.396* 1.283   -0.192   0.561   

Rainfed Areas               

POP 0.108* -0.033   0.011* -0.019* -0.003   -0.006   -0.031* -0.016   

IRRIG -4.694   1.365   0.723   2.029   -3.023   -2.617   0.595   -0.423   

FERT 0.83* -1.313* 0.605* 1.257   0.158   -0.334   0.332* -0.345   

ACCESS 6.021* -2.363* 0.335   0.151   0.407   -0.31   0.641   -0.618   

INSTI 0.072   0.489* 0.343* 0.267   -0.16   -3.001* 0.123   0.056   

GCP 0.342   -1.503* 0.115   -0.359   2.118* 1.754* -0.366   0.142   

Irrigated Areas               

POP 0.007   0.000187   -0.003   -0.004   0.014* -0.001   -0.004   -0.026* 

IRRIG 0.394* 0.02   -0.242* 1.145   0.049   0.237* 0.259   0.017   

FERT -0.431* -0.111   0.617* 2.54* 0.382* -0.237   0.169   0.149   

ACCESS -1.065   -1.88   -8.933* -3.171   2.202   -0.085   1.561   -1.991   

INSTI 0.061   0.718* -0.058   0.721   -0.54   -2.006* -0.457   -0.845* 

GCP 0.16   -0.633   0.274   -2.479   2.163* 1.413* 1.597   2.328* 

                                                           
*
 Statistically significant at 5% level of significance 
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Table 8. Estimated total effects from the spatial Durbin Tobit model: Rice
7
 

 

Regions 
N & C 

America 
L America 

EU & 

Russia 
SS Africa 

M East & 

N Africa 
S Asia 

C & E 

Asia 

S E Asia & 

Oceania 

All Areas                 

POP -0.04* -0.019   0.002   -0.002   0.009   0.007   -0.006   -0.000165   

IRRIG 0.131   0.902* -0.004   1.064* -0.043   0.053   -0.338* -0.077   

FERT 0.405   -1.268* -0.244   -0.241   0.427* -0.24   0.474* 0.416* 

ACCESS -7.339* -0.025   3.373   0.012   0.776   0.397   -0.714   -0.163* 

INSTI -1.199* -0.348   0.474* 0.16   1.412* -2.243   0.77   -0.632* 

GCP 2.115* 0.438   0.855* 0.808   -0.231   2.713* -0.554   0.952* 

Rainfed Areas               

POP -0.021   -0.018   -0.019   -0.003   -0.003   0.001   -0.044* 0.005   

IRRIG 3.361   -1.248   -0.624   0.483   -4.145   -5.252* -1.862   -1.128   

FERT 0.804   -0.3   -0.437* -0.166   0.781   -0.374   0.332   1.075* 

ACCESS -4.257   0.085   1.896   -0.057   0.369   0.826   -0.476   -0.038   

INSTI -0.619   -0.758* 0.44* 0.167   1.126   -5.063* 2.864* -0.587* 

GCP 2.03   0.733   0.8* 1.045   1.106   2.668* 1.355   0.547* 

Irrigated Areas               

POP -0.001   -0.000244   0.001   -0.007   0.016   0.003   -0.003   0.003   

IRRIG 0.154   0.181   -0.045   0.134   -0.152   0.093   -0.339* 0.004   

FERT 0.285   -1.411   -0.1   1.048   0.487* -0.217   0.383* 0.226* 

ACCESS -3.948   3.196* 2.261   0.177   6.391   -1.222   0.431   1.042* 

INSTI -0.932* 0.28   0.614* 0.415   0.96   -1.614   0.618   -0.85* 

GCP 1.703* -0.038   0.412   0.749   0.014   1.828* -0.135   1.88   

 

  

                                                           
*
 Statistically significant at 5% level of significance 
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Table 9. Estimates of direct and indirect impacts of selected variables on efficiency scores: Rainfed Areas
8
  

Regions 
N & C 

America 
L America EU & Russia SS Africa 

M East & N 

Africa 
S Asia C & E Asia 

S E Asia & 

Oceania 

Maize                   

D
ir

ec
t 

POP -0.004* -0.006* -4E-04_ -4-E04_ -0.002_ -0.001_ -0.004_ -0.002_ 

IRRIG -0.009_ -0.413* -0.189_ 0.161_ -0.173_ -0.303_ 0.133_ -0.154_ 

FERT 0.312* 0.098* 0.059* 0.054_ 0.037_ -0.015_ -0.008_ 0.036_ 

ACCESS 0.640* -0.147_ 1.109* 0.026_ -0.040_ 0.450* 0.367_ -0.041_ 

INSTI 0.754* -0.174* 0.313* 0.036_ -0.002_ 0.104_ 0.670* -0.003_ 

GCP 0.147* 0.192* 0.411* 0.297* 0.045_ 0.823* -0.379_ 0.044_ 

In
d

ir
ec

t 

POP 0.069* -0.057* 1-E04_ 0.005* -0.008_ -0.001_ -0.054* -0.008_ 

IRRIG 1.777_ -1.690_ -0.899* -0.296_ 0.787_ -1.817_ 0.782_ 0.777_ 

FERT 0.882* 0.035_ 0.078* -0.019_ 0.071_ -0.165_ 0.149_ 0.074_ 

ACCESS 4.145* -0.986* 0.085_ 0.212* -0.070_ 0.883_ -0.613_ -0.069_ 

INSTI 0.734* -0.364* 0.045_ 0.163* 0.280* 0.505_ -0.845* 0.279* 

GCP -1.466* 0.463_ 0.081_ 0.43* 0.215_ 5.319* -0.441_ 0.221* 

Wheat                   

D
ir

ec
t 

POP 0.001_ -0.002_ 5E-04_ -0.002_ 0.001_ -2E-04_ 0.001_ -0.003_ 

IRRIG 0.133_ 0.171_ -0.070_ 0.523_ -0.586_ -0.442_ -0.426_ -0.074_ 

FERT 0.141* -0.080* 0.109* -0.480* 0.042_ -0.023_ 0.034_ -0.013_ 

ACCESS 0.439* -0.154* 0.711* 0.063_ -0.009_ -0.049_ 0.321* -0.038_ 

INSTI 0.383* -0.046_ 0.394* -0.128_ 0.159_ -0.608* 0.974* -0.139* 

GCP 0.069* -0.073_ 0.198* -0.070_ 0.858* 0.097_ -0.986* 0.009_ 

In
d

ir
ec

t 

POP 0.108* -0.032_ 0.01* -0.017* -0.004_ -0.006_ -0.031* -0.013_ 

IRRIG -4.827_ 1.195_ 0.793_ 1.507_ -2.437_ -2.175_ 1.021_ -0.348_ 

FERT 0.689* -1.233* 0.496* 1.737* 0.116_ -0.311* 0.298* -0.332_ 

ACCESS 5.582* -2.209* -0.376_ 0.088_ 0.416_ -0.261_ 0.320 _ -0.580_ 

INSTI -0.311_ 0.536* -0.051_ 0.395_ -0.319_ -2.392* -0.851* 0.195_ 

GCP 0.273_ -1.430* -0.083_ -0.289_ 1.260* 1.657* 0.620_ 0.134_ 

Rice                   

D
ir

ec
t 

POP -0.004_ -0.001_ -0.004_ 4E-04_ -0.002_ 0.001_ -0.010_ -0.001_ 

IRRIG 1.369_ 0.231_ 0.101_ 0.120_ -1.433* -1.352* -0.081_ -1.618* 

FERT 0.285* 0.090_ -0.151* 0.179* 0.169_ -0.079_ -0.138_ 0.231* 

ACCESS -0.755_ 0.096_ 1.469* 0.051_ 0.023_ 0.692* 0.114_ -0.153* 

INSTI 0.471* -0.194_ 0.496* 0.157* 1.225* -1.341* 2.455* -0.292* 

GCP 0.740* 0.290_ 0.357* 0.308* 0.158_ 0.163_ -0.090_ 0.931* 

In
d

ir
ec

t 

POP -0.017_ -0.017_ -0.016_ -0.003_ -0.001_ 7E-05_ -0.034_   0.006_ 

IRRIG 1.993_ -1.480_ -0.724_ 0.363_ -2.712_ -3.900_ -1.782_   0.490_ 

FERT 0.518_ -0.390_ -0.286_ -0.346_ 0.612_ -0.295_ 0.469_   0.845* 

ACCESS -3.502_ -0.011_ 0.427_ -0.108_ 0.346_ 0.134_ -0.590_   0.115_   

INSTI -1.090_   -0.563_ -0.056_ 0.010_ -0.099_ -3.722* 0.409_   -0.295_   

GCP 1.290_ 0.443_ 0.443_ 0.736_ 0.948_ 2.505* 1.445_   -0.384_   

 

 

  

                                                           
*
 Statistically significant at 5% level of significance 
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Table 10. Estimates of direct and indirect impacts of selected variables on efficiency scores: Irrigated Areas 
9
 

Regions 
N & C 

America 
L America EU & Russia SS Africa 

M East & N 

Africa 
S Asia C & E Asia 

S E Asia & 

Oceania 

Maize                   

D
ir

ec
t 

POP -0.002_ -0.003_ -0.002* 0.002_ 0.002_ -2E-04_ -0.002* -0.001* 

IRRIG 0.017_   -0.001_ -0.042* -0.045_ -0.021_ 0.005_ -0.085* -0.035* 

FERT 0.101* -0.055_ 0.026_ 0.021_ 0.062_ 0.041* 0.100* 0.123* 

ACCESS 0.079_ -0.247_ 0.068_ 0.155_ 0.591_ 1.450* -0.066_ -0.240* 

INSTI 0.588* -0.055_ -0.025_ -0.293_ 0.149_ -0.056_ 0.115* -0.008_ 

GCP 0.347* 0.700* 0.416* 0.686_ 1.142* -0.130_ 0.091   0.383* 

In
d

ir
ec

t 

POP 0.004_ 0.003_ -0.005_ 0.001_ 0.028* -0.004_ -0.017* -0.001_ 

IRRIG 0.216* 0.353_ 0.028_ 0.239_ -0.033_ 0.027_ 0.072_ 0.070* 

FERT -0.261_ -0.422_ 0.093_ 0.390_ 0.051_ -0.378* 0.045_ -0.022_ 

ACCESS 4.945* 0.887_ 3.581* -0.297_ -0.098_ -2.840* -2.001_ 0.084_ 

INSTI 0.401_ 0.275_ 0.218_ 0.755* 1.039* -2.851* 0.185_ -0.002_ 

GCP -0.282_ 1.269_ 0.556* -0.337_ -1.128_ 2.757* -0.178_ 0.513_ 

Wheat                   

D
ir

ec
t 

POP -1E-04_   0.001_ -4E-04_   -0.006_ 0.002_ -8-E05_ -4E-04_   -0.001_ 

IRRIG 0.058* -0.073_ -0.061* 0.372_ -0.009_ 0.045* -0.005_ 0.002_ 

FERT 0.050_   0.021_ 0.133* 1.058* 0.110* 0.109* 0.081* -0.018_ 

ACCESS -0.310_   -0.705* -0.955_   -0.153_ 0.275_ 1.391* 0.106_ -0.055_ 

INSTI 0.246* 0.078_ 0.305* -0.192_ 0.199* -0.090_ 0.045_ -0.252* 

GCP -0.053_   -0.008_ 0.267* -0.005_ 0.293* 0.186_ 0.161_ 0.056_ 

In
d

ir
ec

t 

POP 0.007_   -0.001_ -0.003_ 0.002_ 0.012_ -0.001_ -0.003_ -0.025* 

IRRIG 0.337* 0.093_ -0.181* 0.773_ 0.057_ 0.192* 0.264* 0.015_ 

FERT -0.481* -0.132_ 0.483* 1.481_ 0.272* -0.346_ 0.088_ 0.167_ 

ACCESS -0.755_ -1.176_ -7.978* -3.018_ 1.927_  -1.476_ 1.455_ -1.935_ 

INSTI -0.186_ 0.640* -0.363* 0.913_ -0.738* -1.916* -0.502_ -0.593_ 

GCP 0.213_ -0.624_ 0.007_ -2.474* 1.870* 1.226_ 1.436_ 2.272* 

Rice                   

D
ir

ec
t 

POP 0.004_ -0.002_ -0.002_ 0.004_ 0.002_ 0.001* -2E-04_   -0.001_ 

IRRIG 0.062_ 0.047_ -0.042_ -0.344_ -0.029_ 0.051* -0.004_   -0.003_ 

FERT -0.059_ -0.182_ 0.008_ -0.746_ 0.100_   0.003_ 0.013_   0.073* 

ACCESS -0.762_ -0.064_ 0.481_ -0.208_ 1.273_ 1.977* 0.359_   -0.056_ 

INSTI 0.287* -0.038_ 0.543* -1.079_ 0.070_ -0.565* 0.403* -0.052_ 

GCP 0.488* 0.119_ 0.535* 0.707_ 0.642_ 0.097_ 0.204_   0.858* 

In
d

ir
ec

t 

POP -0.005_ 0.002_ 0.003_ -0.011_ 0.014_ 0.002_ -0.002_   0.004_ 

IRRIG 0.092_ 0.134_ -0.003_ 0.478_ -0.124_ 0.042_ -0.335* 0.007_ 

FERT 0.344_ -1.229_ -0.108_ 1.794* 0.388_ -0.220_ 0.369* 0.153_ 

ACCESS -3.186_ 3.260* 1.779_ 0.386_ 5.117_ -3.200_ 0.072_ 1.098* 

INSTI -1.219* 0.318_ 0.071_ 1.494_ 0.889_ -1.049_ 0.216_ -0.798* 

GCP 1.215* -0.158_ -0.123_ 0.042_ -0.627_ 1.731_ -0.339_ 1.022_ 

 

 

                                                           
*
 Statistically significant at 5% level of significance 


