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Abstract 
Genetically Modified (GM) technology has been widely adopted by the U.S. farmers within just a 

recent decade since the first generation GM varieties were commercially planted in 1996. Also, it has 
provided economists with various controversial issues: food safety, biotech industry concentration, 
labeling regulation, and environmental contamination. In dealing with them, it’s the analysis of farmers’ 
technology adoption behaviors that need to be studied fundamentally because it plays a role of the first 
step to evaluate the associated economic policies and suggest more efficient GM regulations.  

The high adoption rates of GM technology are believed to be driven by farmers’ expectations for 
more profitability than planting non-GM (conventional) seeds. In addition, according to the recent 
improving biotechnologies, the single trait GM seeds of herbicide-tolerant (HT) or insect-resistant (IR) 
are rapidly substituted by stacked gene varieties. Those trends of tremendous diffusion of GM crops and 
increasing access to the stacked seeds in such a short history comes with a question about which 
determinants have influenced farmers’ active adoption behaviors under uncertain profitability.  

Most of the previous GM adoption literatures have analyzed determinants affecting the diffusion of 
technology with regards to farmer characteristics such as farm size, education level, risk preference, and 
credit access. Another recent study pointed out GM crop characteristics represented as average yields, 
labors, or herbicide/pesticide usages. However, few studies paid attention to the role of externalities in 
technology adoption decisions; 1) learning process – a process of improving farmers’ ability to 
implement new technology and allowing them to make better decisions. They are composed of 
individual (learning-by-doing) and social learning (learning from others); 2) neighborhood effects – the 
tendencies that a farmer’s adoption is affected by his/her neighboring  farmers’ behaviors in a peer 
group. 

 These two concepts are worth while to be analyzed empirically in the sense that, in reality, 
individual technology adoption is affected not only by one’s own experiences but also by others’ 
behaviors through continuous social interactions. Also, the learning process requires introducing the 
dynamic framework into the analysis because farmers’ acquired information generates an ability to 
predict future profitability and leads to the situation that farmers are forward-looking. Therefore, this 
paper tries to develop a dynamic GM technology adoption model with externalities and explore the 
importance of learning and neighborhood effects under uncertain profitability.   

To the GM technology adoption studies, this paper makes the following contributions: first, 
externalities of learning and social interactions are directly specified in the empirical model; second, 
introducing dynamic framework expands the previous limited static level works due to lack of 
accumulated data in short history of GM technology; finally, the dynamic structural approach can 
suggest scenario evaluations in terms of various GM issues.  

mailto:dyoo2@wisc.edu


 

1. Introduction 
Genetically Modified (GM) technology provides economists with a variety of issues such as food 

safety, biotech industry concentration, trade conflicts with labeling regulation, environmental 
contamination because they keep making globally disputable subjects among researchers. However, 
prior to dealing with those issues, the fundamental studies about GM technology adoption have not 
been emphasized so much even though they are the first step to make and evaluate associated 
economic policies. Especially, the tremendous diffusion of GM technology by the US farmers within just 
a decade comes with a question about which determinants have influenced farmers’ aggressive 
adoption behavior. In addition, the short history of GM technology results in lack of data, and has 
limited researchers implement further studies; if ever, most of GM technology adoption papers stay at 
the level of static analysis without accounting for farmers’ virtual forward looking attributes.  

This paper analyzes farmers’ adoption behavior for GM technology under the dynamic framework 
which previous works have seldom used. As key determinants of recent rapid technology adoption, this 
paper focuses on farmers’ learning process by their own experience as well as learning from others. 
Neighborhood effects are also emphasized in terms of social interactions. Learning process and 
neighborhood effects are interpreted as externalities generated by adoptees, and are thought to affect 
their future decision making. From these viewpoints, this paper is meaningful in the sense that 
information and network externalities are specified through the dynamic structural  framework of 
biotechnology adoption. 

   

1.1.Technology Adoption: Learning Process and Neighborhood Effects 
The diffusion of new technologies in agricultural sector is believed to increase farm productivity and 

profitability innovatively. Agricultural technology adoption has been one of the most interesting topics 
in economics since Griliches (1957) shed light on the analysis of technological innovations with economic 
processes for the first time.  

One branch of studies concerning technology diffusion in agriculture is to explore determinants 
affecting agricultural technology adoption (Feder et al., 1985; Rogers, 1995; Batz et al., 1999). Rogers 
(1995) conceptualized these features as relative advantage, compatibility, complexity, trialability, and 
observability.1 Those attributes have been embodied through studies on specific characteristics such as 
farm structure and size (Just et al., 1980), risk and risk preferences (Mansfield, 1966; Feder et al., 1985; 
Hiebert, 1974; Feder and O’Mara, 1981; 1982), human capital2 (Barry et al., 1995; Batte and Johnson, 
1993), credit constraints (El-Osta and Morehart, 1999), location factors (Green et al., 1996; Thrikawala 
et al., 1999), and so forth.  

In addition to those basic farm characteristics, the importance of learning process and neighborhood 
effects have been raised as more sophisticated determinants to account for individual farm’s adoption 
behavior about new technologies. They are meaningful in the sense that, in reality, individual decision 
making is affected not only by one’s own but also by others’ behaviors through continuous 
interdependencies.  

                                                                 
1
 The examples of relative advantage are profitability, labor-time saving, cost reduction, and so on. Compatibil ity 

and complexity are understood as the similarity with previous technology and the degree of difficulty in experience 

and use, respectively. Trialability explains how easy experimentation is, and observabiil ity corresponds to the 

degree to which the results of technology are visible.  

2
 Human capital is represented as operator age, education level, and years of farming experience.  



As for learning, Jovanovic and Nyarko (1996) explore one agent’s technical choice model concerning 
the concept of learning-by-doing introduced by Arrow (1962). Further, Foster and Rosenzweig (1995) 
expand it by incorporating all other agents’ choices through the concept of learning from others.  

On the other hand, neighborhood effects, defined as social interactions affecting an agent’s 
behavior, have been mainly studied by sociologists (Jencks and Mayer, 1990; Brooks-Gunn et al., 1997; 
Ellen and Turner, 1997). Their recent moving to economics by the methodological progress in economic 
theory is yielding various researches from economic aspects (Manski, 2000). Especially, Allen (1982) and 
An and Kiefer (1995) apply neighborhood effects concept to technology adoption studies. 

1.2. Background of Genetically Modified (GM) Varieties 
Since the first generation GM varieties were commercially planted in 1996, the U.S. farmers’ 

adoption rate for bio-seeds has kept increasing dramatically (Figure 1). Such a rapid increment is driven 
by farmers’ expectation for higher yields and profitability with lower costs by saving labor and using less 
herbicide or pesticide (Fernandez-Corncejo and Caswell, 2006).  

Figure 1. Adoption of GM crops in the USA, 2000 – 2008 (% of acres) 

 
Sources: USDA/NASS Acreage Survey (USDA, 2000, 2002, 2004, 2006, 2008).  
Notes: All  crops indicate all  biotech varieties regardless of traits. Here, cotton is upland cotton.  

 
According to Figure 1, the use of GM cotton grew from 61% of planted all cotton acreage in 2000 to 

about 86% in 2008, and that of GM soybean also shows similar increase from 54% in 2000 to 92% in 
2008. Outstanding rapid increment is shown in the adoption of GM corn from 25% in 2000 to 80% in 
2008. Its increment amounts to 55%, whereas those of soybean and cotton during the same period are 
38% and 25%, respectively. As such, this paper selects GM corn as a research target in order to see 
which determinants have driven its most active adoption pattern comparing with other GM crops.  

The traits of widely planted GM varieties are herbicide-tolerant (HT) and insect-resistant (IR) traits.3 
In addition, recent improving biotechnologies enhance the use of stacked gene varieties containing both 
HT and IR traits in a seed. Focusing on GM corn, the growth trend of adopting GM varieties suggests 
interesting features by traits (Figure 2).   

Figure 2. Adoption of GM corn by traits in the USA, 2000 – 2008 (% of acres) 

                                                                 
3
 In USDA/NASS data, IR varieties indicate only those containing bacillus thuringiensis (Bt). 



 
Sources: USDA/NASS Acreage Survey (USDA, 2000, 2002, 2004, 2006, 2008).  

Notes: IR corn includes bacillus thuringiensis (Bt) in this data.  
 
While the rate of acreages planting overall GM corn regardless of traits (all biotech seed) keeps 

increasing, individual GM corn seeds show various evolution trends by their traits. The adoption rate of 
IR (Bt) corn peaked at 25% in 2004, but it kept decreasing ever since, arriving at an even lower level of 
about 16% in 2008 than 19% in 2000. As for HT corn, though its use shows a similarity to that of all 
biotech corn with steady growth, it fell down slightly from 23% in 2007 to 22% in 2008 by about 1%. In 
the years to come, it seems to be potentially downward like the case of IR corn. In contrast to single trait 
corn varieties, stacked gene corn variety shows a rapid growth tendency; its planted acreage rate was at 
only 1.67% in 2000. However, the adoption expands at an increasing rate after a slow start, and 
amounts to 44.22% in 2008. These statistical changes are explaining farmers’ GM trait adoption choices 
are switching to multiple stacked trait seeds from the single trait seeds in earlier times.  

Further, considering some market circumstances associated with GM corn supplements what this 
paper analyzes. First, it’s notable that the market structure of the GM seed industry is highly 
concentrated through frequent consolidations among biotech-seed companies (Ollinger and Fernandez-
Cornejo, 1995; Fernandez-Cornejo, 2003). This fact raises a question about linkage between industry 
concentration and technological change. For example, if a few biotech seed companies exercise market 
power, farmers may not adopt GM seeds so much due to higher cost. Second, GM technology is facing 
controversial issues concerning environment or food security, which can hinder farmers from adopting 
GM technology owing to export contraction in trade with EU or Asian countries enforcing GMOs labeling 
regulations (Dohlman et al., 2000). The environment or security topic about GMOs is not restricted only 
to trade cases, but is applied to the domestic transactions in the U.S; while the U.S. consumers’ attitudes 
for GMOs have been even more positive than EU or Asian consumers', the food safety issue is in trend of 
arousing the U.S. consumers’ concerns about GMOs. As an example, since Mendocino County in 
California banned GM products in March 2004 in the U.S. for the first time, bans are currently effective 
in Marin, Santa Crutz, and Trinity Counties, and are still spreading across other counties in California 
(Larson, 2008). This shows that spreading regulation for GMOs due to food safety may impede 
consumers’ purchases of GMOs and may restrain farmers’ adoption of GM technologies in the long run. 
Third, the recent interests in corn-ethanol biofuel are expected to accelerate corn farmers’ adoption of 
GM varieties due to expected higher yields.  

1.3. The Object and Motivation of Research 



Associated with the current circumstances of GM corn varieties previously described, the objective 
of this paper is to explore the U.S. corn farmers’ GM technology adoption behaviors in terms of learning 
process and neighborhood effects. For this research, the dynamic structural model is introduced with a 
panel data of the U.S. corn farmers.  

For several motivations, this GM technology adoption study is meaningful. First, a lot of technology 
adoption studies since Griliches (1957) have been performed on various kinds of fields, whereas GM 
technology is seldom focused on as much as other agricultural technologies. In addition, though a few 
previous empirical works about GM crops have analyzed determinants affecting the diffusion of 
technology with regards to farm size (Fernandez-Cornejo et al., 2001), risk preferences (Alexander et al., 
2003),  or GM product characteristics (Useche et al., 2005), few studies paid attention to the role of 
farmers' learning or neighborhood effects in the diffusion process.  

Second, using panel data in this paper suggests an incentive to deal with the information acquisition 
and intertemporal interactions among agents which used to be difficult in the static approach. To this 
time, relatively short history of GM technology lets relevant empirical works focus on cross -sectional 
studies due to lack of accumulated data. Though Fernandez-Cornejo et al. (2002) introduces a dynamic 
approach based on a logistic model with time-series data in examining diffusion, it is limited in dynamic 
process panel data could capture (Besley and Case, 1993). Third, there exists an apparent spatial 
heterogeneity in the US GM corn (Figure 3), which answers the question of why this paper focuses on 
analyzing adoption behaviors; the different growth trends of GM corn by states are related to Griliches’ 
(1957) demonstration that the diffusion of new technologies results from a series of developments 
taking place at different rates across geographical regions. Further, in terms of individuals’ strategic 
behaviors, it provides a rationale of introducing learning spillover and neighborhood effects in the sense 
that the spatial diffusion is associated with the spread of knowledge about the innovation ( Lindner and 
Pardey, 1979; Marra et al., 2003).   

 
Figure 3. Adoption of GM corn both by traits and states in the USA, 2000 – 2008 (% of acres) 

(a) IR-only Corn (b) HT-only Corn 

  
(c) Stacked Gene Corn (d) All Biotech Corn 



  
Sources: USDA/NASS Acreage Survey (USDA, 2000, 2002, 2004, 2006, 2008).  

Notes: IR only corn includes only bacillus thuringiensis (Bt) in this data.  
 

 

2. Literature Review 
2.1. Empirical Literatures on GM Technology Adoption 
Though the GM technology is an attractive issue as it has brought revolutionary changes in 

agricultural field in terms of production as well as cost sides, the empirical analyses for its adoption 
behaviors have been conducted relatively less than other kinds of agricultural technology. Such 
insufficient research activities result from lack of accumulated data in short history of commercial GM 
varieties.  

At this stage, empirical studies concerning GM technology have taken notice of determinants 
affecting GM crop adoption focusing on individual farm level characteristics. For one thing, Fernandez-
Cornezo et al. (2001) show that larger farm operations and more educated farmers increase the usage 
of HT soybeans through the tobit model, considering farm size and farmer’s education level as crucial 
determinants. However, using cross-section data is limited in capturing dynamic structure potentially 
existing in those determinants.  

For another thing, risk preferences are mainly analyzed under the common idea that  farmers are 
likely to exhibit risk aversion to income risk, which affects technology adoption. Alexander et al. (2003) 
reports risk preferences influence the decision to plant GM corn but not soybeans. Qaim and Janvry 
(2003) analyze Bt cotton adoption under a monopoly pricing regime by gathering farmers’ willingness to 
pay data. Recently, Liu (2008) argues more risk averse farmers adopt Bt cotton later. All those risk 
relevant works are based on the surveyed cross-sectional data asking WTP to respondents,4 which also 
neglect dynamic process aspects.  

As for a dynamic approach, Fernandez-Cornejo et al. (2002) explore determinants of the diffusion 
rates of GM corn, soybean, and cotton by developing a diffusion model, modified version of Griliches’ 
(1957) logistic function. However, they are closer to a time series approach rather than a panel data 
method. Also, the term of “dynamic” used originates from the setup of diffusion path parameters as 
time-varying ones, but is distinguished from the commonly used term of dynamic programming (DP).    

Most recently, Useche et al. (2005) analyze the adoption of GM crop at the upper Midwest in the 
U.S. Their work is very close to this study in that it selects GM corn as a research target, and investigates 
farmers’ adoption behavior in terms of specific GM corn traits such as HT, IR, and stacked genes. Also, 
Useche et al. expand the traditional logic of a random utility framework (Marschack, 1960; McFadden 

                                                                 
4
 Due to the absence of WTP in the dataset of this paper, risk preference is l ittle focused on.  



and Train, 2000) based on independence of irrelevant alternatives to the characteristics-based demand 
approach (Revelt and Train, 1998; Nevo, 2000; 2001) which allows substitution among alternatives. 
Methodologically, mixed multinomial logit model is applied for dealing with those logics. In spite of close 
association with this paper, Useche et al. have limits in focusing on a static analysis based on the cross-
sectional data without incorporating dynamics. Also, under the absence of dynamics, their work is not 
sufficient to account for farmers’ learning process which is specifically described in the following section.  

2.2. Literatures on Technology Adoption with Learning and Neighborhood Effects 
2.2.1. Literatures on Technology Adoption 
Agricultural technology adoption studies have been emphasized on the introduction. The researches 

about technology diffusion are studied mainly in developing countries because technological progress is 
recognized as a key to relive farmers’ poverties. Measuring the diffusion of new technologies from 
economic perspectives is available only if a certain period of time passes. Therefore, corresponding 
studies require the framework of dynamics. In addition, geographical difference is also considered 
because the spread of new agricultural technology varies according to agro-ecological states in each 
region (Griliches, 1957). That is to say, temporal and spatial heterogeneity make a basis for technology 
adoption studies.  

Recent technology adoption model is based on the choice  theory and related microeconomic 
theories. In addition, farmers’ behaviors surrounding technology adoption are interpreted through 
viewpoints of externalities. Besley and Case (1993) stress the importance of externalities in making 
empirical adoption models specifying them as network or neighborhood, market power, and learning 
externalities.5 Learning and neighborhood effects which this paper takes into account are understood 
under those externalities concepts. 

2.2.2. Literatures on Technology Adoption – Learning Process 
Learning is evaluated as a process of improving farmers’ ability to implement new technology and 

allowing them to make better decisions. Bardhan and Udry (1999) categorize learning process as the 
following two concepts: learning-by-doing and learning from others. As learning-by-doing deals with an 
individual’s own information acquisition in an isolated situation, it is thought to be simpler than the 
analysis including learning from others. Those concepts related to learning process are addressed by 
Lidner et al. (1979) in earlier times. Stoneman (1981) introduced a Bayesian theory in investigating a 
typical sigmoid diffusion curve. The Bayesian approach is effective in representing agents’ activities for 
information acquisition as the feature of learning process is exactly consistent with the Bayes’ sense; 
agents update information from subjective prior beliefs into posteriors.  

Learning from others improves learning-by-doing by incorporating interactions with other agents. In 
agriculture, learning-by-doing is realized by farmers’ own experiments such as testing new seeds, 
spraying new agrichemicals, or purchasing new combines. However, self experiments without referring 
to others’ experience may impede the diffusion of new technologies because a farming cycle is generally 
long term; as for most of yearly crops, farmers can judge a new technology only after a year goes by. So 
that, learning process can be accelerated by obtaining information from neighboring farmers (Bardhan 
and Udry, 1999). As learning from others contains other agents’ behaviors in one’s decision making, it 
accompanies studies concerning agents’ strategic behaviors. Yet, the interpretation about agents’ 
strategic behaviors suffers from its ambiguity; for example, when there are positive externalities from 

                                                                 
5
 Network externalities are understood as public goods; an agent’s adoption choice i s influenced by how many 

other agents adopt it because technology plays a role of public goods. Market power externalities provide the logic 

of first- and second- mover advantage under the existence of market power. Learning externalities is related to the 

concept of free riding; e. g., potential adopters wait until  they see whether others benefit from experiencing 

adopted technologies.  



information provided by many farmers in a newly introduced technology, potential adopters have an 
incentive to adopt it as early as possible. On the contrary, if farmers want to wait and observe how well 
new technologies work by other farmers, this kind of strategic delay forms a free-rider problem (Kapur, 
1995; McFadden and Train, 1996; Vives, 1997).  

In empirical dynamic models for learning process, farmers have been set up as not only forward-
looking but also strategic agents. Forward-looking features are specified through the Bayesian updating 
procedure concerning posterior distributions about beliefs. Also, externalities occurring at future period 
let models include the form of present-discounted value. Strategic feature results from agents’ 
interactions described previously (Baerenklau, 2005). As a result, economists have designed strategic 
dynamic model (Manski, 1993; Bolton and Hariis, 1999), and Besley and Case (1994) laid groundwork for 
that. They set up a Bellman equation of the profit maximization problem for Indian farmers choosing 
whether to adopt high-yielding seed varieties (HYVs) as a new technology. In this DP, a stochastic state 
equation is designed, where the law of motion comes from a farmer’s beliefs evolution following Bayes’ 
rule. For capturing strategic behaviors, all other farmers’ adoption choices are included in each farmer’s 
policy function.   

While most of technology adoption literatures rely on the Bayesian theorem for its tractability, it 
should not be fully supported if only researchers want to avoid the unrealistic information updating 
process. The reason why the Bayesian models are vulnerable is that accompanied assumptions are too 
strong to reflect reality in analysis; it starts from the presumption that agents know all associated 
variances, which is unlikely fashion. On the other hand, Epstein and Schneider (2007) provides the 
generalized version of Bayes’ rules by allowing agents to have confidence in profitability assessment, 
and by introducing the importance of risk and ambiguity in learning process. 6  

As another branch for dealing with learning spillover, the target-input model7 comes into wide use 
since Foster and Rosenzweig (1995) analyzed social learning relevant to adoption decision with same 
data of HYVs technology in India. Its idea is from the model setup that an agent’s profit decreases with 
the square of the distance between his actually used input level and the unknown optimal, called as 
‘target’, input level. Here, his information acquisition is explained as a process of deducing what the 
target input level must have been after the output is realized through learning by doing and learning 
from others.8 Though it has provided economists an advantage of simplifying adoption model with 
respect to social learning, it is vulnerable by its strong assumption: the ne w technology is always 
superior9, and is known with certainty when he decides his input decision.  In addition, the profitability 
from that technology keeps increasing as his knowledge accumulates (Bardhan and Udry, 1999). That is 
to say, if this assumption is applied to this paper, GM technology is supposed to be adopted with 
certainty, whereas the only uncertainty lies in a farmer’s input management; how well he makes use of 
GM seeds in order to reach the optimal input level as close as possible.   

However, in reality, a farmer’s adoption behavior for new technologies is a process with uncertainty 
by itself because the adoption decision may affect his profitability directly (Besely and Case, 1994; 
Baerenklau, 2005). Besley and Case begin with the assumption that profit is uncertain and exogenous, 
                                                                 
6
 However, the Bayesian updating is sti l l  adopted by this paper because of its tractability. Instead, the concept of 

learning under ambiguity is left out for the future work.  

7
 It’s developed by Prescott (1972) for the first time. Jovanovic and Nyako (1994) used the model in analyzing 

information acquisition and its effects on the productivity change.  

8
 Foster and Rosenzweig (1995) or Bardhan and Udry (1999) are recommended for more details.  

9
 This assumption prevents economists from accounting for disadoption of a technology.  



where it’s uncertain to farmers whether the adoption of new technology is good or not , so a new 
technology is not always adopted by them. For example, even though farmers adopt GM technology in 
earlier times, they may go back to planting non-GM varieties if they put environmental issues related to 
potential gene contamination in the long run before instant advantages from GM technology in the 
short run. As well, farmers trying to get higher profitability from organic crops may not necessarily adopt 
GM technology. Neither do those who plant non-GM crops for exporting to countries that GM labeling 
regulation is rigorous. As a result, Besley and Case’s approach, based on the assumption of uncertain 
profitability from adoption, is more appropriate for this paper than that of Foster and Rosenzweig in 
order to reflect more realistic situations concerning current commercial GM corn seeds.  

2.2.3. Literatures on Technology Adoption – Neighborhood Effects 
Neighborhood effects are interpreted as kinds of externalities that an agent’s behavior is affected by 

all other agents’ behaviors in a cohort defined as a neighborhood group. They look similar to social 
learning, especially the concept of learning from others. However, it’s di stinguished from social learning 
in the sense that an agent’s choice is affected not by others’ process but by contemporaneous others’ 
choices themselves.10  

While Besley and Case (1994) and Foster and Rosenzweig (1995) have enriched social learning 
studies, neighborhood effects are not yet explored so much as learning process though they are on a 
same path with regards to agents’ interactions. Instead, neighborhood effects have been studied by 
social scientists in other fields such as sociology, education, geography, and so forth. Jencks and Mayer 
(1990) and Durlauf (2004) provide a historical review for them.  

The recent application of economic theories to neighborhood effects are stimulating related 
economists (Manski, 2000; Brock and Durlauf, 2001a, 2001b, 2002). Yet, they still suffer from 
identification problem in econometric methodologies (Manski, 1993). As for technology adoption 
studies, Allen (1982) examines adoption behaviors under network externalities restrictive to local 
neighborhoods with statistical mechanics models. An and Kiefer (1995) explores which conditions derive 
more efficient technologies adopted and adoption timing. As for technology adoption in agriculture, 
Case (1992) analyzes a case of sickle adoption in rural Indonesia, presenting the absence of 
neighborhood effects bias estimation of parameters. Recently, as for Wisconsin dairy farmers’ 
management intensive rotational grazing (MIRG) technology adoption, Baerenklau (2005) incorporate s 
neighborhood effects into a strategic dynamic model with other two key determinants: risk preference 
and learning. It also suggests that ignoring neighborhood effects causes bias in estimation in spite of its 
less relevance than other factors.  

This paper adopts Baerenklau’s methodology in analyzing neighborhood effects.11 It sets up the 
neighborhood effect term as a function of the deviation from the average behavior by a farmer’s 
neighborhood group suggested by Brock and Durlauf (2001), and incorporates the Bellman equation in a 
multi-period but non-dynamic setting. Except for the incorporation of risk preference, Baerenklau’s 
work is similar to this paper in the sense that it analyzes technology adoption with respect to not only 
learning process but also neighborhood effects at the same time. As Baerenklau’s analysis results from 
small size data with 34 observations, this paper expects improved evidence concerning learning and 
neighborhood spillovers by using larger panel data set.   

3. Model 
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 For example, under social learning, one’s technology adoption is affected by others profitabil ity caused by 

adoption (indirectly). Yet, in neighborhood effects, one’s adoption is affected by others’ adoption itself (directly).    

11
 Also, Baerenklau (2005) supports Besley and Case (1994) rather than Foster and Rosenzweig (1995) due to the 

same reason described in Section 2.2.2.  



3.1. Theoretical Model – Dynamic Structural Model 
As described in the previous section, this study relies on Besley and Case (1994) in terms of farmers’ 

forward looking behavior and Bayesian learning process for technology adoption under the dynamic 
structure. In part, neighborhood effects are also considered by referri ng to Baerenklau (2005).  

Those two studies are distinctive in the choice of models concerning the tractability of estimation: 
the reduced-form versus the structural model. As for adoption behavior, Baerenklau depends on the 
reduced form model as it is tractable for estimation with relative ease. Though the suitability of 
estimation attracts researchers to use it, specifying an exact functional form of the decision rule from a 
dynamic optimization problem is not such an easy procedure; the reduced form esti mation is vulnerable 
as it tends to obscure the dynamic context of estimation, and to misinterpret coefficient estimates in a 
dynamic environment. In addition, as the estimated parameters change in any policy variation unlike the 
structural model, it’s not useful for evaluating policy associated with interesting environmental changes 
such as price promotion, changed market structure, or the introduction of new commercial technology 
(Provencher, 1997).  

On the other hand, as Besley and Case adopt the structural dynamic model of Pakes (1986) and Rust 
(1987), the structural model can be used as an alternative for the reduced-form model including the 
evaluation of policy. However, estimating the structural model accompanies high dimensional 
integrations in solving the dynamic optimization problem not only at all values of the state space but 
also on all possible alternative choices.12 As a result, to reduce the size of the choice set or the state 
space has been implemented in the dynamic structural estimation studies. Those efforts result in having 
focused on extremely simplified representations of dynamic process for the dichotomous decisions; e.g.,   
whether to adopt or not a new technology. But, as for GM technology in this paper, a farmer’s adoption 
decision is not simply restricted to the binary choice of GM vs. non-GM seeds. Despite its computational 
burden, it’s necessary to expand its logic to a multinomial discrete choice model for the more realistic 
analysis concerning GM traits: conventional (non-GM), HT, IR, and other kinds of stacked seeds.13  

At the same time, another choice variable characterizing the extent to which a selected technology 
is applied is also required to reflect agents’ learning process; it’s explained by the assumption that the 
information acquisition for a newly adopted technology is represented as how many fields a specific GM 
trait seed is sown to. Therefore, through this paper it’s meaningful to develop a further dynamic 
structural model for considering combined choices of which technology to adopt and how much to apply 
the selected one.14  

3.1.1. The Basic Setup - Dynamic Optimization Problem  
The theoretical explanation begins with setting up a typical dynamic choice problem. Under the 

uncertainty of new technologies, farmer i maximizes the present expected value of future payoff flows. 
As for choice variables in his optimization problem, in each period he makes adoption decisions in two 
ways; he decides which technology to adopt and how much to apply it.  A similar issue is dealt with in the 
exit-investment decision (Pakes, 1994) and the brand-quantity choice of inventory goods (Hendel and 
Nevo, 2006) problems, but their choice variables are assumed to be decided separately; optimal discrete 
choice is followed by the quantity choice. Assuming consumers’ utility is decided at the timing of brand 

                                                                 
12

 This computational burden is named as “curse of dimensionality” by Bellman (1957).  

13
 As for used terms, a specific GM trait is called as an alternative or choice a farmer chooses. Also, each trait 

(alternative) can be considered as one of new technologies through from this section on. Therefore, trait, choice, 

alternative, and technology are used interchangeably.    

14
 This approach is called as the mixed continuous discrete controls model by Pakes (1994).  



choice, Hendel and Nevo’s approach provides computational simplicity by considering brand choice as a 
static problem. However, it seems to be rather unlikely because it’s more reasonable that utility is also 
affected by how much they consume simultaneously; i.e., quantity choice (Erdem et al., 2003). 
Therefore, this paper assumes that farmers’ adoption and application choices are assumed to be 
decided at the same time. 

Suppose that there are 1L  possible alternatives which farmer i can choose for each finite time 
period t . Alternatives are assumed to be mutually exclusive, and indexed by 0 ,1, . . . ,l L , 

where 0l  denotes an outside alternative.15 Though farmers tend to adopt multiple technologies at a 
decision period, it’s assumed that they adopt one alternative in each period for simplicity. 16 Defining 

ilt
d as his adoption choice for alternative l at time t , his adoption decision for technology l is described 

as 1
ilt

d , otherwise 0
ilt

d  by assuming 1 i l t

l

d . In addition, it’s denoted as
i l t

x how much the 

adopted technology is used in his field. Specifically, it’s expressed as the acres which trait l seed is sown 

to given farmer i has
i

X fields. While the technology adoption behavior
ilt

d is a discrete variable,
i l t

x is 

understood as a continuous variable where  0 ,
ilt i

x X . Though it’s ideal
i l t

x belongs to a continuous 

set, it may be discretized arbitrary for empirical tractability; that is indexed by
ilt ilt

x  X , wherer
ilt

X is 

an arbitrary discrete set17. Uncertainty of any new technology is represented as the assumption that 
farmers are uncertain about profitability obtained from any adopted specific GM trait.  

Letting
it

I be the information set which farmer i receives at time t ,
it

I includes all state variables 

affecting current expected utilities and the distribution of the future expected utilities. A farmer’s 

current period expected utility from each technology is marked as  |
ilt it

E U I where  E indicates the 

expectation operator.18 To deal with the application amount of the adopted technology l , the expected 
utility is assumed to be additive, so that it’s proportional to the acres sown with the chosen GM trait 

seed. Given  |
ilt it

E U I indicates the expected utility per acre and farmer i sows trait l seeds to
i l t

x acres 

at time t , the total expected utility amounts to  |
ilt ilt it

x E U I . Through these setups, farmer i makes an 

optimal sequence of adoption and quantity decision 
1

{ , }
 ilt ilt l L

d x for 0 , .. . ,t T in order to maximize his 

discounted-present value of the expected utility of 
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 In this paper, the choice of 0l  indicates the use of non-GM (conventional) seed. From this section on, unless 

it’s denoted as 0l  , index l indicates 1, . . . ,l L . 

16
 This assumption doesn’t seem to be realistic as farmers tend to purchase various GM trait seeds including 

conventional seeds in each period, so that this paper can’t capture economies of scope by multiple adoptions. 

However, to avoid computational burden, this paper simplifies potential combinations into exclusive 1L  choices. 

17
 For example,

ilt ilt
x  X = {0%, 20% and less, …, 100% and less}. See Section 3.2.2. for further explanation.  

18
 Instead of the term “util ity”, “profit” may be more appropriate from the viewpoint of the production theory that 

farmers are producers. However, farmers are also considered as consumers in the sense that their adoption 

behaviors for any GM technology correspond to purchasing kinds of products (commercial GM seeds). Moderately, 

a farmer’s profit or payoff is in common use with his util ity. Its specific form is shown in Section 3.1.3.  
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where ( )
it it

V I is farmer i ’s value function at time t depending on his current information set
it

I .  

Defining ( )
ilt it

V I as the alternative l specific expected value function, (1) is expressed alternatively as  

{ , }

( ) m ax ( ) ({ , } )
i t

i l t i l t

it it e ilt it it ilt ilt
d x

V I E V I e d x
 

 
  

    (2) 

, where ({ , } )
it ilt ilt

e d x is a stochastic term known to farmers but unobserved by the researcher. This 

stochastic term is used for forming choice probabilities in Section 3.1.4.2., so that it’s assumed to be 
independently and identically distributed (i.i.d.) the type I extreme val ue distribution. Then the 

corresponding Bellman equation for each alternative specific value function ( )
ilt it

V I at 0 , ..., 1 t T is 

 
    

,

1 1
( ) m ax | ( ) | , 1,

i l t i l t

i l t i t i l t i l t i t i t i t i t i l t i l t
d x

V I x E U I E V I I d x
 

        (3) 

where  indicates the discount factor. At the last period T , the alternative-specific value function is 

simply
 

  
,

( ) m ax |
i lT i lT

i lT iT ilT ilT iT
d x

V I x E U I  as there are no more future values. In (3), the second 

expectation operator at the value function in the following period is taken over the distribution 

of
1it

I conditional on
it

I and the current choice combination  1,
ilt ilt

d x .  

Equation (3) shows the value farmer i attains from adopting technology l is decided by the current 
expected utility as well as by the discounted future value based on the future information set. His 
adoption choice updates the information set just as learning about technology profitability is provided 
by his experience. From the viewpoints of this information acquisition process, it makes senses that he 
can obtain a higher expected maximum utility as he acquires more information about profitability 

provided by newly adopted technologies. Therefore, ( )
it it

V I is thought to increase as more information 

is accumulated in the information set
it

I .  

3.1.2. Dynamic Optimization Problem with Externalities 
Next, it’s necessary to note that one of the research objectives is to analyze learning process and 

neighborhood effects as determinants for the adoption model. Those concepts are interpreted as 
information and network externalities which affect technology adoption decisions, respectively (Besley 
and Case, 1993). As such, the Bellman equation in (2) and (3) need to be developed by including 
additional terms which can account for those externalities; this paper would be meaningful in the sense 
that it’s an empirical work of internalizing externalities into the model directly.  

Learning Process 
Learning externalities are represented as a kind of public good which a farmer shares with his 

neighbors by learning-by-doing and learning from others over time. They are associated with a dynamic 

framework in terms of the state transition function between
it

I and
1it

I in (3), which is simply described 

by a conditional distribution function
1

( | )
t it it

F I I . Under the idea that farmer i ’s knowledge about the 

adopted technology for alternative l is considered as a public good, the conditional distribution function 
depends not only on his own decision but also on all other neighbors’ decisions, so that it is modified 
as19 

 1
( | , 1, ,{ 1, } )

  
 

t it it ilt ilt ilt ilt
F I I d x d x     (4) 

                                                                 
19 For simplicity, Equation (4) is assumed to follow a Markov process which the current states are influenced 

by just the previous period states not by their histories.  



where the subscript  i indicates all neighbors excluding farmer i in a peer group. The combinations 

of  1,
ilt ilt

d x and{ 1, }
 


ilt ilt

d x implies farmer i ’s and all other neighbors’ adoption decisions at time 

period t , respectively. Therefore (4) provides the process of evolution in terms of information 
acquisition through time, and the concepts of learning-by-doing and learning from others can be 

captured by components of  1,
ilt ilt

d x and{ 1, }
 


ilt ilt

d x , respectively. The functional specification 

for (4) is dealt with in Section 3.1.4.1.  
Neighborhood Effects 
Following Section 2.2.3., neighborhood effects are interpreted as kinds of network externalities that 

a farmer’s decision is affected by all other neighbors’ choices  in a peer group. Neighborhood effects and 
social learning (learning from others) look similar each other, but this paper distinguishes them in the 
sense that only learning process plays a role of the state equation in the DP. On the other hand, 
neighborhood effects are believed to affect one’s contemporaneous choice rather than his future 
behavior when they are modeled in the DP (Case, 1992). 

Let’s denote
it

N as a neighborhood group which farmer i belongs to at time t , and
i t

n be the total 

number of neighbors in that peer group. Following Brock and Durlauf (2001; 2002), neighborhood 
effects are assumed to show up through the deviation for a farmer’s choice from the mean choice level 
of his neighbors in that group.  

Then, learning process in (4) and neighborhood effects are introduced in the Bellman equation given 
in (2) and (3). The DP with externalities are expressed as   

{ , }

( ,{ , } ) m ax ( ,{ 1, } ) ({ , } )
i t

i l t i l t

it it it it e ilt it ilt ilt it ilt ilt
d x

V I d x E V I d x e d x
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where the alternative-specific expected value function is  
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1 1 (6) 

The newly added term in (6) is composed of a parameter to be e stimated , and the square of the 

deviation from the mean choice level by farmer i ’s neighbors.  1 is the mathematical indicator 

function operator. Then, for each neighbor j i in
it

N , the acres sown with GM trait l seeds, 

{ 1} 
j l t j l t

d x1 , are interpreted as the extent to which each neighboring farmer applies the adopted 

technology l at time t . The sigma term divided by the number of neighbors in the peer group describes 
the mean value of all other neighbors’ adoption levels for technology l . The measurement of depends 

on the situation a farmer is facing; if farmer i ’s adoption extent for alternative l is less than the average 
level of the neighborhood, it’s interpreted as the case he suffers from a utility loss by the late 
technology adoption when is negative. On the other hand, when is positive, it’s interpreted as his 

strategic behavior because he benefits from a utility gain by waiting and seeing neighbors’ profitability 

of adopting alternative l technology (Baerenklau, 2005).  

The newly added term in Equations (5) and (6),{ 1, }
ilt ilt

d x
 

 are accounting for influences by 

learning externalities, especially the context of learning from others. The expectation operator is taken 



over the distribution of ( )
t

F given in (4).20 The expansion of the value functions constructs the situation 

that farmer i ’s adoption decisions generate information that is a public good, which is modeled by 
letting the conditional distribution function depend on all other neighbors’ adoption decisions. That is, 
each farmer obtains information about technology profitability not only from his own experience but 
also from other neighbors’ sowing experiences.   

3.1.3. Farmer Expected Utility21 
This section specifies farmer i ’s expected utility function given in the modified dynamic optimization 

problem in (5) and (6). In consumer decision making studies, the multi-attribute utility theory (MAUT) is 
widely used because it provides useful tools for evaluating and comparing alternatives which consumers 
are facing in their choice problems (Lancaster, 1966). Provided the profitability obtained from any GM 
trait seed is understood as one of its attributes under MAUT, farmer i ’s utility is assumed to have the 
following expression: 

2
'

ilt p ilt Y E ilt Y E ilt ilt i il t
U w P w Y w rY e z u           (7) 

where
ilt

U is farmer i ’s per unit alternative-specific utility22 conditional on the adoption of technology l at 

time t , and
i l t

P is the price he pays for that technology.
E ilt

Y indicates the experienced (perceived)  

profitability levels from technology l where subscript “E” denotes “experienced” (the further explanation 

is described below).
i l t

e is the random shock associated with farmer i and technology l at time t . 

Regardless of which technology is adopted,
i

z represents a vector of all other farmer-specific attributes 

affecting utility, which is invariant over time. Whereas
i l

 is an unobservable farmer- and technology-

specific component which is also time-invariant. This component corresponds to unobservable 
heterogeneity which is observable to farmers but unobserved by the econometrician. Generally, a 

probability distribution function is given for
i l

 because it has randomness. Due to its importance in 

estimation, it will be described further in the below subsection.  The last term
t

u is a year-specific shock 

common to all farmers like weather states, and is assumed to follow an i.i.d. normal distribution 

of 2
(0 , )

u
N .    

As for parameters to be estimated,
p

w and
Y

w show farmer i ’s price response coefficient and 

profitability weight, respectively.  is a vector of parameters to account for farmer-specific factor
i

z . In 

addition, r is the farmer risk coefficient. Given a strictly positive
Y

w , 0r , 0r ,or 0r lets the utility 

function be convex, linear, and concave in
E ilt

Y , respectively. As far as the experienced profitability
E ilt

Y is 

uncertain, the previous logic also shows that the farmer is risk seeking, risk neutral, or risk averse with 

respect to 0r , 0r ,or 0r , respectively (Erdem and Keane, 1996).23  

In the given utility function, two components suggest interesting issues:
E ilt

Y and
i l t

P . The former is 

associated with learning process which constitutes the majority of this paper, and the latter is relevant 
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 In terms of Equation (4), the last term in (6) is expressed as 1 1
( ,{ , } ) ( | ,{ 1, } ,{ 1, } )

1 1 1it it
V I d x dF I I d x d x

it it t it it ilt ilt ilt ilt


   
  

    
 

21
 Due to similarity of problem setups, most of logics are based on Erdem and Keane (1996).  

22
 In empirical part, “per unit” indicates “per discretized acreage”, which depends on how

i l t
X is defined.   

23
 Though the given util ity functional form suggests a risk analysis, this paper assigns more weights on the analysis 

of learning and neighborhood effects.  



to the context of market concentration in the biotechnology seed industry. The logic is based on an idea 
that each farmer’s adoption behavior may be affected by biotech seed companie s’ market exercise 

power in the highly concentrated industry. It’s reasonable the increment of
i l t

P reflects that of market 

concentration in biotech seed industry (Shi et al., 2008). Then, estimated price weight
p

w is interpreted 

as a response to the change in market concentration partially.   

Whereas, in acquiring information,
E ilt

Y is associated with beliefs about new technologies and plays a 

role of measuring the varied profitability from technology adoption (Besley and Case, 1994). Due to 
farmers’ uncertainty about technology profitability, each farmer is imperfectly informed and uncertain 
about the mean profitability levels for each technology. As Besley and Case assume that using a new 

technology generates the intrinsic advantage, it’s assumed that  the adopted technology l yields the 

profitability which varies around its mean level but isn’t perfectly perceived. Letting
i l t

Y be the actual 

profitability from which farmer i adopts technology l at time t , the variation in profitability is expressed 
as 

 
ilt l ilt

Y Y       (8) 

where
l

Y is the mean profitability level for technology l , and
i l t

is the error term causing variability.
i l t

is 

assumed to be an i.i.d. random variable with zero mean and  a variance. In obtaining information of the 
profitability from technology adoption, farmers hardly get perfect information from their experience in 

realizing the actual profitability level
i l t

Y ; for example, if a farmer who planted GM crops suffers losses  

by a sudden weather shock like a flood in the harvesting period, his experienced (perceived) profitability 

level
i l t

E
Y is not the same as the actual level

i l t
Y received just before that incident. As such, it’s obvious 

that there exists inconsistency between the experienced (perceived) profitability level
i l t

E
Y and the 

actually received level
i l t

Y from the adopted technology for each farmer at any period, which is expressed 

as 

E ilt ilt ilt
Y Y         (9) 

where
ilt

 is an i.i.d. random disturbance with mean zero. Then, from (8) and (9), the information 

learned by adopting a technology can be rewritten as 

 
E ilt l ilt

Y Y v       (10) 

where
ilt ilt ilt

v    .24 Equation (10) shows that a farmer’s experience of profitability from the adopted 

technology l fluctuates around its mean profitability level.  
Unobservable Heterogeneity 
In addition to the uncertainty of technology profitability, there also exist unobservable variables to 

the econometrician, which are defined as unobservable heterogeneity. It’s well known that, if they are 
not modeled with panel data, the identification of parameters is infeasible because the endoge neity 
problem occurs between observable explanatory variables and error component (Wooldridge, 2002). In 
a static model, such endogeneity problems can be dealt with typical random or fixed effect approaches. 
However, the learning model in this paper requires alternative methodologies due to its dynamic 
framework. As for the dynamic discrete choice model with panel data, Honore and Kyriazidou (2000) 
and Chintagunta et al. (2001) provide useful tools identifying parameters with unobservable 
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 Though it’s not empirically tractable to separate
i l t

and
i l t

, the error term
i l t

v in (10) moderately provides the 

variability of farmer experiences with the profitability levels for each adopted technology. 



heterogeneity as well as lagged dependent variables. But, their works are focused on a binary choice 
problem, so that it’s necessary to expand them to the multivariate choice case adjusted for this paper. 
More importantly, their works are limited in the assumption of state independence even though this 
paper has to deal with the case of state correlation which exists in the context of perception error, and 
affects choice probabilities associated with the likelihood function for estimation. 

Specifically, concerning learning process and neighborhood effects in this study, unobservable 
heterogeneity to the econometrician includes farmers’ cognitive ability, education level, and the 
intensity of communications between neighbors. The ideal way for treating those components is to f ind 
corresponding instrument variables, but it’s not easy to find them empirically. Instead, this paper 

assumes that the farmer- and technology- specific invariant component
i l

 captures all associated 

unobservable variables, and is incorporated additively in the utility model as in Equation (7). In addition, 
it is assumed to be correlated with other components affecting a farmer’s utility , and the conditional 

probability distribution for
i l

 is given as 2
( | , , , ) ( | )

i l i l t E ilt E ilt i i l i t
f P Y Y z f I   where 

i t i t
I I and i.i.d. to 

other error terms
t

u and
i l t

e . The given probability measure will be used in constructing choice 

probabilities and likelihood function for parameter estimates. 

For simplicity, 
i l

 is assumed to be modeled only in the utility not in the state transition equation. In 

this sense,
i l

 is not a state variable  because its artificial value is realized at the be ginning and is 

invariant over time. While education level is satisfying this assumption, it seems to be a strong 
assumption for the case of farmers’ cognitive ability or the intensity of communication among neighbors 
as they may be different at each time period. Then, a more realistic assumption will be modeling 
unobservable components in the state transition equation. But, that equation is already composed of 
unobservable uncertainties about farmers’ profitability, so that there will be potential computati onal 
burdens if learning process is modeled with unobservable heterogeneity, together.25  

Turning back to (7), the expected utility associated with technology l conditional on the information 
set at time t is derived by taking expectation in Equation (7) as follows:26 

         
2 2

| | | |

' ( | )

i l t i t p lt Y E ilt it Y E ilt it Y E ilt E ilt it

i i l i l i t i l i l t

E U I w P w E Y I w r E Y I w rE Y E Y I

z f I d e  

     
 

   

 

(11) 

where
i l t

e is the disturbance component unknown to the researchers.27 As for the outside alternative 

of 0l such as non-GM trait (conventional) seed, its expected utility is simply suggested as 

 0 0 0 0 0 0i t i t i i t
E U U t e            (12)  

where
0

 and
0

 are intercept and a coefficient for time trend, respectively.
0i

 accounts for 

unobservable heterogeneity for non-adoption case. This setup for conventional seed is more realistic in 

                                                                 
25

  Therefore, this issue is left for the future work.    

26
 It’s necessary to understand why the expected util ity in (11) is used instead of util ity itself in (7); farmer i has 

uncertainty about the technology, and the derived util ity from its adoption is not known with certainty. Therefore, 

empirical analysis must be based not on util ity but on the expected util ity model. 

27
 The error term is remained just for notational clearance. As it’s the same error term in Equat ion (2) and (5), it 

can be ignored in Equation (11).  



the sense that farmers also learn about profitability from conventional seeds. It’s assumed that time 
trend reflects such increment in the expected utility. For simplicity, it can be normalized to zero like 
Besley and Case.  

3.1.4. Learning Process 
3.1.4.1. Bayesian Updating 

Based on the Bayes’ theorem,28 this section tries to specify the conditional distribution function 
suggested in Equation (4). Equation (10), the linkage between a farmer’s perceived profitability and the 
mean profitability level for each technology, plays a crucial role in constructing the relevant functional 
form. Assuming farmers are Bayesian updaters, learning process is interpreted as a trial that farmer i  

receives an experience (perceived) signal
E ilt

Y about the mean profitability level
l

Y with signal 

noise
i l t

v when he adopts technology l at time t , and updates his prior beliefs by using those information 

over time in the Bayesian fashion.  

Recalling Equation (10), let’s assume that the mean profitability level of technology l ,
l

Y is unknown 

to farmer i at time t , but that he has priors for it. For computational simplicity, his prior subjective 

beliefs on
l

Y and the signal noise
i l t

v are assumed to follow normal distributions at any time period t when 

technology l is considered to be adopted. Then, beliefs are expressed as the first two moments of  the 
normal distribution; the mean and variance. Specifically, both distributions are shown as 

2
~ ( , )

l t Y il t
Y N Y , 2

~ (0 , )
i l t v

v N      (13) 

where 2


Y ilt
is the variance as well as the extent of uncertainty about

l
Y at time t , whereas

t
Y indicates the 

average level about
l

Y at time period t . The average level can be expressed as  | 
l it t

E Y I Y under 

farmer i ’s information set at period t . Holding those prior beliefs, he updates his prior distribution into 
posterior distribution under the Bayes’ rule. If this updating process starts from the in itial period, (13) 

can be rewritten in terms of 0t  as 2

0 0
~ ( , )

l Y il
Y N Y , where

0
Y and 2

0


Y il
imply the initial mean value 

and the initial variance about
l

Y .  

At time period t , farmer i decides to adopt technology l among 1L alternatives. At the same time, 
he also considers the extent of adoption application; how many acres to apply the adopted GM trait 

seed. Then, his choice variables are a combination of
ilt

d and
i l t

x . In addition, by the structure of 

Equation (4), ( )
t

F  should incorporate other neighboring farmers’ choice combinations,
 ilt

d and
 ilt

x  in 

its functional form. By incorporating other farmers’ adoption decisions, not only a farmer’s own 
experience (learning-by-doing) but also social learning (learning from others) can be considered 
together.  

Empirically, when the Bayesian rule is applied to problems with the assumptions of normal 
distributions, the associated updating formula is somehow simplified through Kalman filtering (Besley 
and Case, 1994; Erdem and Keane, 1996; DeGroot, 1970).  

Let’s assume that there are
i t

n farmers in an arbitrary neighbor group
it

N which farmer i belongs to. 

Conditional on the adopted technology l by farmer i , he gets information about that technology over 
time by his own experience, and learns how profitable the technology is by observing other neighbors’ 
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 As mentioned previously in Section 2.2.2., the strong assumptions of knowing variances in the Bayesian manner 

may cause unrealistic interpretation about the analysis (Epstein and Schneider, 2007), but this paper follows 

conventional approaches most of adoption studies have util ized due to tractability, leaving alternative model 

setups of learning ambiguity as future works.  



farming. The basic idea for empirical procedure is that the learning process is represented as the 

variation in the selected type of GM trait and the planted acreage over years. Denoting
lt

X by the total 

acres which technology l is applied in the group
it

N at time t , the following expression holds: 

1 

   
i t

n

lt i l t j l t i l t

j i i

X x x x      (14) 

Then, by the logics described previously and Bayesian updating procedure, his learning process 

concerning the mean about
l

Y  is expressed as29 
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 (15) 

where { }1 is the indicator function operator, 2


Y ilt
is the variance of a farmer’s perception of the mean 

profitability level of technology l . Then, Equation (15) includes components accounting for both 
learning-by-doing and learning from others (social learning) by incorporating his own and others’ 

adoption extent
i l t

x and
 ilt

x . In other words, all neighbors’ experiences are used in updating a farmer’s 

information about the mean profitability of any technology by assuming that farmers’ information gain 
by experience is represented as the extent of technology application; acres sown with biotech seeds. For 
example, given all terms are positive and ceteris paribus, the more all farmers’ adoption experiences 

denoted as
lt

X are, the higher his next period average level about the mean profitability of the selected 

technology is; in this process, he obtains information from his own and all other neighbors’ sowing 

experiences. In addition, the deviation of
E ilt

Y from
1

[ | ]
E ilt it

E Y I in the last term also accounts for a 

farmer’s information acquisition process partially. If farmer i 's perceived profitability of technology l is 

higher than the mean profitability, that is
E ilt

Y >
1

[ | ]
E ilt it

E Y I , he will revise upward his estimate of the 

mean profitability for next period, but revise it downward otherwise. Equation (15) is expressed more 
explicitly in terms of Kalman gain coefficients as follows:  

 1 1
[ | ] [ | ] { 1} [ | ]

l it l it ilt ilt E ilt E ilt it
E Y I E Y I d Y E Y I
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    (17) 

, where
ilt

 is the technology l -specific Kalman gain coefficient which is a function of perceived 

variance 2

Y ilt
 and experience variability 2

v
 . Then, the coefficient

ilt
 measures the weight level 

farmer i assigns in updating his information about the mean profitability of technology. As 2

Y ilt
 is 

updated at each time, 
ilt

 is also updated.  
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 For further derivation of the equation, it’s recommended to refer to Besley a nd Case (1994) or Erdem and Keane 

(1996). 



In the sense that 2


Y ilt
, the variation about

l
Y , shows farmers’ extent of uncertainty about a specific 

technology l , it’s also meaningful to provide the updating rule for the variance. Following the Bayesian 

rules with normal distribution assumptions, the difference equation, conditional on technology l is 

adopted, between the current period variance 2


Y ilt
and the following period variance 2

1


Y ilt
about

l
Y is 

derived as follows:30 
2 2

2

1 2
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1 1

 








 


 
   
 

Y ilt v l t

Y il t

v

l t

Y il t

X

X

     (18) 

where
lt

X stands for the application quantity of adopted technology. 

In Equation (16), a farmer’s perception error is defined as  |  
ilt l ilt l

E Y I Y , and its variance is 

denoted by 2


Y ilt
(Erdem and Keane, 1996). Then, Equation (16) can be rewritten as the following 

transition equation with regards to the perception error: 

 1 1
{ 1}

ilt ilt ilt ilt ilt ilt
d v   

 
     1     (19) 

Finally, Equations (15) ~ (19) are used to construct the specified functional form of Equation (4)  
which plays a role of the state transition equation (the law of motion) in the dynamic optimization 

problem in (5) and (6). Assuming the Markov process, and focusing on the relation between
t

Y and
1t

Y , 

which are the mean levels in prior beliefs about the mean profitability of technology l ,
l

Y ,the conditional 

distribution function  1
( | , 1, ,{ 1, } )

  
 

t it it ilt ilt ilt ilt
F I I d x d x in (4) is specified by providing the 

distribution of
1t

Y conditional on
t

Y as follows31  

 1 1
| ~ , ( | )

 t t t t t
Y Y N Y V ar Y Y      (20) 

From the viewpoint of learning process, it’s necessary to separate two distinctive models to analyze 
how farmers’ information acquisition affects their technology adoption behaviors. The typical method is 
to distinguish the standard dynamic optimization problem in two ways according to whether the future 
value function term is included or not: if it includes those components, the model is called as the 
“forward-looking” model in the sense that farmers make adoption decisions with the consideration of 
potential future utility by learning process (Besley and Case, 1994; Erdem and Keane, 1996). On the 
other hand, if farmers want to maximize only their current utility from any technology adoption ignoring 
possible future utilities, the value functions from the next period on are eliminated in their optimization 
problem. This model is defined as “myopia” by Besley and Case, and “immediate utility maximization” 

by Erdem and Keane.32 Those two models are easily distinguished just by setting discount factor  is 
equal to zero in the related dynamic optimization models between (1) and (6).  

3.1.4.2. Choice Probabilities 
Constructing choice probabilities is crucial in the estimation strategy as they are used in generating 

likelihood functions. As there are a lot of unobservable  factors, it’s necessary to take integrals over all 
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 The derivation may be wrong as it has a different structure with what’s shown at p15 in Besley and Case (1994).  

31
 Following Besley and Case (1994) and DeGroot (1970),       
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t t lt l t Y ilt v Y ilt

is 

derived, which may be derived wrongly.  

32
 This paper calls it the “myopia” model as Besley and Case did.  



relevant randomness. A key randomness comes from unobservable (to the econometrician) 
heterogeneity in Section 3.1.3. and serial correlation of farmers’ perception error in Section 3.1.4.1.  

Again, assuming that the error terms
i l t

e and
0i t

e in Equations (5), (11) and (12) are assumed to be 

i.i.d. the type I extreme value distribution, the choice probability that farmer i adopts any GM 
technology and its planting acreage combination is constructed with regards to the multinomial logit 
model. As it’s explained in the previous section, it’s meaningful to distinguish the myopia from the 
forward-looking model for investigating learning effect.  

For notational simplicity, the choice probability for the myopia model is described first.  Given the 

information set
it

I , the probability that the combination of technology l and quantity x is adopted at 

time t is 

  

  
0 ,... , ;

ex p |
P r({ 1, } | ) ( ) ( )

e x p |

ik t ik

i l t i l t i t i l t i l i l t

i l t i l t i t

A

ik t ik t i t ik t ik ik t

k L x

x R U I x A N
d x I F A g d A d
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where  |
ilt it

R U I is the deterministic part in the expected utility in (15), and
i l

A represents the term 

including unobservable heterogeneity with a given probability ( )F A .33
 implies a random variable of 

the perception error in (19) with a given probability distribution ( )g  . Another component
ilt

N is 

added to the deterministic expected utility, which captures the neighborhood effects in farmers’ 

contemporaneous adoption choices. Specifically, 
ilt

N is the squared deviation terms between one’s 

and others’ technology – quantity combination choices in Equation (6). It can be interpreted as the 
measure of how different neighbors adopt the same technology with a farmer (Brock and Durlauf, 
2002).34 Treating Equation (21) is computationally problematic as both the perception error and 

unobservable heterogeneity term A is unobservable to the econometrician. As such, the choice 

probability should be set up as integrals over any distribution of possible  and A spaces. The estimation 

for this setup is possible by adopting simulation techniques to integrate out the  and A , such as Monte 
Carlo simulation (Keane and Wolpin, 1994).  

The overall logic is similarly applied to the forward-looking dynamic model. That is, the choice 

probability that technology l  adopted with the acreage (quantity) x at time t conditional on the 

information set
it

I and other farmers’ choices{ , }
ilt ilt

d x
 

is described as 
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A f I d    from Equation (11). 
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 The setup of this paper is sl ightly different from Brock and Durlauf (2002), where, instead of the deviation 

concept, they use the agent’s expectation of the percentage of agents in the neighborhood who make the same 

choice
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p , where  1 / { 1}
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From Equation (6), the corresponding choice probabilities are influenced not only by the current 

deterministic expected utility from adopting technology l with quantity x , but also by the future utilities 
under the effects of his own experience and what he learns from others. The only difference between 

(21) and (22) is the setup of the discount factor =0. The neighborhood effects term is also 
incorporated.  Then, another setup of =0 for neighborhood effects enables researchers to analyze the 

impact of neighborhood effects by comparing how different the one with the neighborhood effect terms 
is from the other without them. 

3.2. Empirical Implementation 
3.2.1. Data 
This paper uses a panel data about GM corn varieties between 2000 and 2007 in the U.S. national 

level. From supply sides, it’s a high quality data set because all GM trait information is included, and 
information at biotech seed company level is available with prices. However, it is not strongly enough 
for the technology adoption studies in some senses; first, it doesn’t include farm level attribute variables 
such as household income, education level, farm assets, or farm credits.  As those variables are thought 
to affect farmers’ GM seeds adoption behaviors, this paper may try to combine demographic 
information from other agricultural census, which may cause a potential inconsistency in estimation. In 
addition, the absence of input data like herbicide or insecticide use may restrict further analysis; all 
kinds of GM traits like HT or IR is associated with input uses.  

Table 1. Observations by Sequential Planting Years 

Period Sequential Years Number of Panel Observations 
2003 ~ 2007 5 years 103 

2004 ~ 2007 4 years 102 

2005 ~ 2007 3 years 245 
2006 ~ 2007 2 years 1,016 

 
Useche et al. (2005) solve the similar problem by adopting US Agricultural Census information.35 

Though this data has 168,862 observations, this paper faces a huge data loss in utilizing them because all 
the observations do not satisfy panel characteristics. Through 8 years between 2000 and 2007, only 175 
among 38,617 farmers show up in every year; its ratio is just 0.45%. Further, focuses on neighborhood 
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 This is one reason this paper relies on MAUT, which doesn’t emphasize on farm level attributes so much by its 

util ity function structure.   



effects may cause more data loss because the narrower the sample group is selected at County or State 
level from national level, the smaller the number of panel observation is.36  

Table 2. Distribution of Observations over Region and Sequential Years 

2003 ~ 2007 
2003 ~ 2007 

2004 ~ 2007 2005 ~ 2007 2006 ~ 2007 

State CRD Obs. State CRD Obs. State CRD Obs. State CRD Obs. 

Illinois 17020 3 Illinois 17010 4 California 6051 2 California 6051 3 

Illinois 17060 3 Illinois 17070 2 Illinois 17010 4 Colorado 8060 8 

  …     …     …     …   

Minnesota 27050 2 Michigan 26090 2 Iowa 19010 11 Illinois 17080 12 

Minnesota 27070 2 Minnesota 27040 2 Iowa 19020 3 Illinois 17090 7 

Minnesota 27080 4 Minnesota 27050 6 Iowa 19030 6 Indiana 18010 2 

Minnesota 27090 3 Minnesota 27070 2 Iowa 19040 3 Indiana 18020 12 

Nebraska 31030 2 Minnesota 27080 2 Iowa 19050 5 Indiana 18030 12 

Nebraska 31060 7 Minnesota 27090 4 Iowa 19060 2 Indiana 18040 2 

  …     …     …     …   

  …     …     ….     …   

South Dakota 46090 2 Ohio 39030 2 Kansas 20070 4 Iowa 19010 16 

Wisconsin 55060 2 South Dakota 46030 2 Kansas 20090 3 Iowa 19020 16 

Wisconsin 55070 3 Wisconsin 55060 2 Kentucky 21020 2 Iowa 19030 19 

  Total: 68   Total: 74   Total: 192   Total: 971 
 
In defining a neighborhood group, this paper assumes a crop reporting district (CRD) corresponds to 

a peer group; though a CRD covers a huge area geographically, it’s a reasonable assumption because a 
CRD is inherently arranged according to the same agronomic conditions. Investigating the panel data set 
preliminary, this section suggests a few samples satisfying research objects. Table 1 presents the 
number of panel observations by a few sequential planting years.  

In addition, a neighborhood group is further defined as a CRD which has at least 2 more 
observations. Then, corresponding regional distribution is shown up in Table 2.  

Finally, this paper simplifies various GM corn varieties into 5 alternatives by their GM traits: 
conventional, HT, IR, HTIR, and IRIR. This classification may vary flexibly according to sub topics of the 
research. For example, stacked GM seeds can be segmented into double, triple, quadruple stacked 
seeds.  

3.2.2. Empirical Specification 
Table 3. Classification of the Associated Variables 

Notation Definition Description 

Choice Variables   

ilt
d  Trait choice Binary choice variable: 0 or 1 

 l =0 Conventional Non-GM corn seeds 

 l =1 HT only Single trait GM corn seeds; Herbicide Tolerance 

 l =2 IR only Single trait GM corn seeds; Insect Resistance 

 l =3 HTIR Double stacked GM corn seeds; HT + IR 

 l =4 IRIR Double stacked GM corn seeds; IR + IR 
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i l t
x  Acres Acres to be planted with corn seeds 

 
 

i l t i l t
x  X  

 

ilt
X =    { 0%, 

 20% and less, 
 40% and less, 
 60% and less, 
 80% and less, 
 100% and less} 

 
 
Discretized planted acreage choices. 
 

State Variables    

it
I  Information Set All associated state variables or other kinds of 

components are included in the information set. 

i l t
P  Corn Seed Price Retail price or net price 

   

it
N  Neighborhood group Crop Reporting District (CRD) 

i t
n  Number of Neighbors CRD level 

 ilt
d  Trait choice of a neighbor Binary choice variable: 0 or 1 by neighbors 

 ilt
x  Acres of a neighbor Acres to be planted with corn seeds by neighbors 

The setup is the same as
i l t

x  

   

i
z  Farm specific Variables The vector of all variables related to farmers 

e.g.) Acre Range, Intended End Use, Purchase Source,  
Possible demographic data from other source 

ilt
D  Discount Price The amount of discounted price 

 
All the variables associated with the given dynamic optimization problem in Section 3.1.2 are 

described in Table 3. For time period t , the empirical work chooses 3 survey years from 2005 through 
2007 considering moderate number of panel observations. At each time t , there are totally 5 possible 

GM/non-GM technology adoption choices indexed by l for a corn farmer at one neighborhood group 

(CRD): 0l  indicates non-adoption by choosing conventional seed, and the other non-zero integers 
denote currently commercialized single (HT or IR) and  stacked (HTIR or IRIR) trait seeds, respectively 
(Table 3). Then, farmer i ’s choice variables are which GM trait to adopt and how many acres to plant 

purchased GM corn seeds. For empirical tractability of the DP, the planted acreage
i l t

x is recommended 

to be discretized instead of being treated as a continuous variable. Initially, it’s discretized as 6 indecies 

of 
i l t

x corresponding to 0%, 20% and less, 40% and less, …, 100% and less, respectively with regards to 

the ordered range of planted acre percentage for each trait seed.37     

Table 4. Parameters to be Estimated 

Notation Definition Description 
The Expected Utility   

p
w  The Price Weights  

Y
w  The Utility Weights Or the profitability weights 
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r  Risk Parameter  

  Other parameters Related to
i

z  

Neighborhood Effects   
  Neighborhood Effects  

Dynamic Optimization Model   

  Discount Factor At myopia,  = 0 
Learning Process   

l
Y  The Mean Technology Profitability l is GM traits 

2

0


Y il
 Initial Perceived Variance At initial value t  = 0 

2


v
 Experience Variance  

Others   

0
  Intercept  For 0l  

0
  Time Trend Response For 0l  

The parameters to be estimated in the dynamic structural model are shown in Table 4. This paper 
focuses on farmers’ learning process based on the Bayesian theorem, so that parameters related with 

the Bayesian updating are worth being noted carefully;
l

Y , 2

0


Y il
, 2


v
 for l =1,…,4.     

4. Model Estimation  
Though the dynamic structural model in Equations (5) and (6) are similar to Erdem and Keane 

(1996)’s brand choice model, estimating parameters shown in Table 4 will be such challenging works 
due to the following reasons: first, our model has two dimensional choices of one binary and the other 
continuous (in fact, descretized) variables. Hendel and Nevo (2006) and Erdem et al. (2003) deal with 
similar setups in storable or inventory goods, but their value functions have different structures from 
ours. Second, as state variables, this model incorporates other agents’ decision variables in order to 
capture social interactions of learning from others and neighborhood effects. This case corresponds to 
the Markov Perfect Equilibria (MPE) game between agents. Those two subjects are incorporated in our 
model at the same time, so that it’ll be challenging to develop appropriate estimation methodology. 
Third, first of all, modeling unobservable heterogeneity and serial correlation demands a lot of 
endeavors to solve the DP. Due to its computational burden, only the outline is described in this section.  

4.1. Solving the DP 
As a starting point, this section introduces Keane and Wolpin (1994)’s simulation and interpolation 

algorithm which is expected to propose an efficient way to estimate relevant parameters. As there are a 
lot of points in the state space, we try to evaluate the value function only at a finite grid of points 

randomly drawn over state space. First, let’s denote
t

K as a subset of
t

I . At the last period T, 

1. Calculate ( )
T T

E V I for all 
T

I K : 

   
,

,

( ) m ax ( ) ( ) ( ) lo g ex p ( ) ( )
T T lT lT T T l lT lT lT T T l

l x
l x

E V I x E U I N A e d G e d F A x E U I N A d F A 
 

       
 
  

where
T

N is neighborhood effects term, 
l

A is unobservable heterogeneity term, and 
T

x is the quantity 

choice variable. The potential problem is how to assume the probability distribution over A . Various 
trials will be implemented in this stage.  
2. Run the following regression: 

( )
T T

E V I = ( ) 
T

T
G I  



where ( )
T

G I is vector containing flexible transformation of the state variables: the mean profitability of 

each technology l ,
l

Y  and the perception error variance 2


Y ilt
.  Fortunately, A is assumed not to belong 

to the state space, so it’s eliminated from ( )
T

G I .38   

At T-1 period, 
1. Draw M random variables:  

1
{ , .. . }

m m

L
v v    

from 2
~ ( , )

v
v N o in (13). 

2. For each state
1


T
I K , compute the expected value of choosing technology l in 1T : 

 1 1

1
( ) | , 1 ( )

 
  

m

T T T lT T T

m

E V I I d E V I
M

 

where m

T
I is the state corresponding to the m th draw and

1
1




lT
d . 

If m

T
I  K use the exact solution,  

Otherwise use ( )
m T

T
G I  

3. For each 
1


T
I K calculate

1
( )

T
V I : 

 1 1 1 1 1 1 1

,

( ) lo g ex p (( )) ( ) | , 1 ( )
T T lT lT T l T T T jT

l x

E V I x E U I A E V I I d d F A
      

 
      

 
  

The same problem in stage T occurs, it’s necessary to find appropriate probability distribution over A .  
4. Run the following regression: 

1

1 1 1
( ) ( ) 



  
 

T

T T T
E V I G I  

Repeat step 1-4 for the remaining periods 2 , .. . , 0 t T  

To get estimates, the model needs to be solved using the Interpolation/Simulation algorithm for each 
parameter values. 

4.2. The Likelihood Function  
The choice probabilities are computed by simulating a sequence of states for each farmer. As a sketch, 
this subsection follows Chintagunta et al. (2001). 
Let’s recall Equation (22),  
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 (22) 

Fortunately, our research is based on 3T  period between 2005 and 2007. Chintagunta et al deals with 
the 3 observable periods problem. Let’s denote that the component in the brace of exponential function 
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as 
id t i l

V A , which is the sum of modified alternative specific value function and the unobservable term. 

( , )d l x denotes the combination of technology-quantity choice.
i l

A is a time-invariant unobservable 

heterogeneity with a given conditional probability ( | )
i

F A I . Chintagunta et al. suggest a general 

likelihood function for the probability choice based on the binary case with serially independence as 
follows 

   
0 0
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1 1
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where
0
( , )

i
p I A is the initial observations conditional on the information set and individual value 

function. It’s a generalized expression of the likelihood over 2 continuous periods. For simplicity, we 
consider only technology adoption choices because the combination of the adoption and quantity 
choice makes computation messy. Then, Introducing multinomial choices and serial correlation, the 
above likelihood function is rewritten as  
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Estimation strategy is based on finding parameters maximizing the above likel ihood function.39 Though 
we suppress quantity choices, it still looks complicated. In addition, the integral parts require 
appropriate arbitral distributions. Finally, initial condition problems must be considered. Considering 
initial periods, we can assign arbitrary values by taking expectations data between 2000 and 2004. 
Though they are not balanced panel data, it’s necessary for getting initial values.  

5. Discussion  
5.1. Preliminary Results 
If all the parameters are identified and estimated properly, the expected discussions are as follows: 

First, as for parameters for the utility, the price weights
p

w and the risk parameter r are expected to be 

negative. This will be consistent with the conventional economic interpretation. In other words, farmers’ 
utility (payoff) from adopting any GM technology will be decreased as bio-seed companies increase the 
seed price. Also, as it’s mentioned previously, from the viewpoint that biotech-seed industry is highly 
concentrated, price coefficient will explain farmers’ response to a few oligopolistic companies’ market 
power. The negative r will show the typical propensity that farmers may exhibit aversion to utility risk if 

there is uncertainty from any adoption of technology. Similarly, farmers’ profitability weight
Y

w is 

expected to be positive. 
The discussion of neighborhood effects is described in 3.1.2. Briefly, the positive would capture 

farmers’ strategic behaviors - a tendency to act conversely against his neighbors do. Because it’s 
modeled as a square term, a farmer’s utility gain will increase as the deviation from mean level of peer 
group increases. For example, as he doesn’t plant a specific GM trait corn adopted by other neighbors, 
he gets higher utility gains according to positive . Then, his strategic behavior is to wait until observe 
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what’s going on during the planting year. On the other hand, the negative is an expected utility (profit) 

loss. Then, farmers tend to follow others’ choices. Otherwise, he comes to suffer from much profit loss. 
As a result, the case of  < 0 shows an evidence of neighborhood effects that agents follow his peers. If 

this is investigated over each GM trait, the differences will provide interesting stories acrossr GM 
technologies. 

 Other structural parameters associated with learning process will be major parts of thi s paper. 

Under the dynamic structural estimation, the identified mean profitability levels of each GM trait ,
l

Y for 

l = 0, …, 5, will show how different farmers’ subjective beliefs are across technology. More interestingly, 
through the Bayesian updating procedure, the variance of the mean profitability level per each time 

period for each technology, 2

ilt
Y

  will provide how they vary over time; if it decreases as time goes on, it’s 

believed that there are learning effects as. The derived Kalman gain coefficients
ilt

 are also suggesting 

how farmers’ per period- and technology- weights vary in updating information. Lastly, for each GM 
trait, predicted diffusion path under simulated values concerning the mean profitability can be 
compared with observed diffusion path from data. It’s meaningful whether the sigmoid curve of GM 
technology adoption is explained by learning process. Then, the comparison between two paths can 
account for the roles of externalities, which is described further in the following subsection. 

   5.2. Evaluation of Externalities 
In analyzing determinants affecting farmers’ biotechnology adoption behaviors, the role s of 

externalities have been emphasized through this paper. This study pays attention to learning process 
and neighborhood effects in terms of social interaction in communities. The way of evaluating their 
impacts is to compare results from various arbitrary models. For example, from the initial settings in 
Equation (6), different types of models can be proposed by constraining specific parameters (Table 5). In 
addition, adoption levels such as choice probabilities or adoption ratio in acre  shares can be predicted 
according to each model.  

Table 5. Evaluation of Externalities 

 0   0   
0   (I) Forward-looking model with 

neighborhood effects 
(II) Myopia model with 
neighborhood effects 

0   (iii) Forward-looking model 
without neighborhood effects 

(iv) Myopia model without 
neighborhood effects 

: model without any externalities 
 

With 4 cases in Table 5, observed adoption levels from data can be compared one after another. Also, 
belief paths may be differently derived according to each model structure. If they show outstanding 
differences, it’ll address the impact of any externality.   

Also, the suggested different models are used in scenario simulations. Note that one advantage of 
the structural model is that policy experiments are performed freely by its construction. Then, from 
estimated parameters, some meaningful simulations can be implemented. As mentioned in Section 
3.1.3, simulations about price variation is illuminated because it can link price response to the market 

concentration in the biotech seed industry.  The amount of discount price
ilt

D (in Table3.) can be used 

for a kind of price promotion strategy of bio-seed companies. 

6. Contribution 
This study is expected to make the following contributions. First, though GM technology has been 

widely studied  by economists, lack of accumulated data in short history has impeded empirical analysis 
with dynamic framework, and made most of associated works stay at the static level analysis ; to the 



knowledge, few researches about GM technology have tried to introduce the DP. These restricted works 
cannot account for virtual farmers’ forward looking adoption behaviors which should be dealt with 
under the DP. With a unique and abundant panel dataset, this paper will suggest a dynamic approach in 
GMO related works.  

The focuses on the role of externalities represented as farmers’ learning process and neighborhood 
effects are worth wile to be analyzed because they account for the impacts of social interactions on 
technology adoption process. Most adoption studies have paid attention to farm and product 
characteristics, whereas few studies tried to analyze externalities, if ever, they were not about GM 
technology studies but about primitive technologies such as irrigation, plows, or relatively older 
technologies like HYVs. By exploring externalities in GM technology, it’s possible how different adoption 
behaviors for the innovative biotechnologies in the U.S. are from those for other conventional 
technologies in the developing countries.  

Methodologically, this paper is meaningful in trying to use the mixed discrete-continuous (though, 
it’s slightly modified) dynamic model while most of DP works have solved simple binary choice problems 
in adoption studies. Also, the consideration about unobservable heterogeneity has been often omitted 
in learning process models. This paper will try to suggest a model considering both unobservable 
heterogeneity and serial correlation at the same time. Finally, this paper can propose a few interesting 
policy issues in GM technologies, such as food safety, market concentration, or environmental policy by 
specifying structural estimation approach.  
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