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Carbon market policy design: Investigating the role

of payments aggregation

Cloé Garnache and Pierre Mérel

1 Introduction

Growing concerns about global climate change have led policy-makers to consider regu-

lating emissions of greenhouse gases (GHGs), for example, through international agree-

ments such as the Kyoto Protocol of the United Nations Framework Convention on

Climate Change. The United States faces increasing pressure to adopt a meaningful

climate policy (Stavins, 2008a,b). In the meantime, some states have already begun

designing their own climate policy to cap emissions such as the ten northeastern states

with the Regional Greenhouse Gas Initiative (RGGI) and California with Assembly Bill

32.

There is a general consensus among economists that market-based policy instru-

ments are more efficient than command-and-control tools for limiting pollution when

firms’ abatement costs are heterogenous (Montgomery, 1972); and the more heteroge-

neous their costs, the greater the efficiency gains (Newell and Stavins, 2003). Tradable-

permit systems are gaining momentum among policy-makers. They are less contro-

versial than a tax on emissions and have a history of success for abating pollution

cost-effectively such as under the SO2 allowance trading system (Stavins, 1998).

It is not yet clear whether policy-makers will design cap-and-trade systems that al-

low credit offsets for GHG emission reduction in non-capped sectors such as agriculture
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and forestry. Newell and Stavins (2000) suggest that this decision will partly be based

on cost-effectiveness criterion. Research shows that these sectors could contribute sig-

nificantly to the climate change mitigation effort, through carbon sequestration and

reduction in nitrous oxide (N2O) and methane (CH4) emissions, two gases with very

potent global warming power (GWP), e.g., Lal et al. (1998); Paustian et al. (2006);

Smith et al. (2008); Snyder et al. (2009).1 Economic studies find that U.S. agriculture

and forests could cost-effectively reduce GHG emissions relative to capped energy-based

sectors, e.g., Parks and Hardie (1995); Stavins (1999); McCarl and Schneider (2001);

Pautsch et al. (2001); Lubowski et al. (2006); Antle et al. (2007).

Traditional approaches for predicting behavioral changes in agriculture and forestry

rely on mathematical programming, e.g., De Cara and Jayet (2000); McCarl and Schnei-

der (2001); Durandeau et al. (2010), econometrics, e.g., Stavins (1999); Pautsch et al.

(2001), or a hybrid approach where the parameters of the simulation model are econo-

metrically estimated, e.g., Antle and Capalbo (2001). This paper uses positive math-

ematical programming (PMP), a method formalized by Howitt (1995). We calibrate

the model’s implied supply elasticities to exogenous elasticity estimates. Furthermore,

we ensure that the model’s yield responses to input use and tillage technology are

consistent with agronomic responses derived from ecosystem process-based models.

Most studies have focused on mitigating emissions from a single GHG, for example,

CO2 through enhanced carbon sequestration (Pautsch et al., 2001; Antle et al., 2003;

Lubowski et al., 2006) or N2O (Mérel et al., 2011b; Rosas et al., 2011). Yet, changes

in agricultural practices typically affect multiple GHGs. For example, there is evidence

that tillage practices affect both carbon sequestration and N2O emissions (Six et al.,

2004) and, reciprocally, nitrogen fertilizer management can affect both N2O emissions

and carbon sequestration (Snyder et al., 2009). Six et al. (2004) find that reduced

tillage may lead, over a 20-year period, to net increase or decrease in GWP, depending
1International Panel on Climate Change (IPCC) (2001) estimates unit masses of CH4 and N2O

have 23 and 296 times the GWP of a unit of CO2, respectively, over a 100-year time-frame.
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on whether the enhanced carbon sequestration or increase in N2O emissions effect

predominates. Therefore, it appears critical to account for the GWP of the three GHGs

combined to estimate the potential cost-effectiveness of GHG offsets from agricultural

sources.2 Some studies have looked at N2O emissions from agricultural land and CH4

emissions from livestock, e.g., De Cara et al. (2005); Neufeldt et al. (2006); Durandeau

et al. (2010), but few have accounted for the three GHGs simultaneously, e.g., De Cara

and Jayet (2000); Schneider et al. (2007). Furthermore, some of these studies do not take

into account the effects of some practices on multiple GHGs, as highlighted in Snyder

et al. (2009), and rely on the linear IPCC coefficients to infer emissions from input use,

contrary to suggestions by Bouwman et al. (2002); Durandeau et al. (2010); Rosas et al.

(2011), e.g., De Cara and Jayet (2000); De Cara et al. (2005).3 Ecosystem process-based

models can prove very useful tools to understand and quantify the complex and non-

linear relationships between agricultural practices and GHG emissions (Neufeldt et al.,

2006; Durandeau et al., 2010). Numerous studies have relied on ecosystem process-

based models such as EPIC, e.g., McCarl and Schneider (2001); Pautsch et al. (2001),

Century, e.g., Antle et al. (2003), DNDC, e.g., Neufeldt et al. (2006), and STICS and

CERES, e.g., Durandeau et al. (2010). However, previous studies do not carefully couple

the economic and biophysical models, with the exceptions of Durandeau et al. (2010);

Mérel et al. (2011b). As a result, the economic yield responses to input use likely differ

from the agronomic responses. Durandeau et al. (2010); Mérel et al. (2011b) propose

two distinctive methods to incorporate the agronomic information from the biophysical

model into the economic model so that, at the margin, the economic and agronomic

yield responses are consistent. In this study, we examine the GWP of the three main

GHGs, expressed in metric tonne (Mg) of CO2-equivalent (CO2e). We rely on the
2For example, Antle and Ogle (2011) find that accounting for the effect of no-till practices on both

carbon sequestration and N2O emissions in the central U.S. substantially shifts the GHG offset supply
curve relative to studies that only consider carbon sequestration such as Antle et al. (2007).

3The IPCC Tier 1 method does not take into account the effects of soil characteristics, climate,
crop management and land use on N2O emissions and ignores the complexity of the microbiological
processes responsible for N2O emissions (Durandeau et al., 2010).
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biogeochemical process-based model Daycent to estimate GHG emissions for a series

of agricultural practices (Parton et al., 1996).4 We extend on the work by Mérel et al.

(2011b) to ensure consistency of the economic and agronomic yield responses, at the

margin, to input use (N fertilizer and water) and tillage technology.

Previous studies typically consider a single alternative practice for GHG emission

reduction. For example, Pautsch et al. (2001); Antle and Ogle (2011) look at reduced

tillage, and Mérel et al. (2011b); Rosas et al. (2011) look at reduced nitrogen fertilizer

application. Yet, allowing farmers to choose from a set of practices, including combining

multiple alternative practices, can lower the supply costs of GHG offset (Schneider et al.,

2007). In this paper, we examine two agricultural practices simultaneously: nitrogen

fertilizer management and tillage intensity. Farmers choose the crops, tillage intensity

and nitrogen application rate that maximize their expected net profit. Considering

these two practices jointly is relevant for two reasons. First, in practice there is no rea-

son why farmers would change one practice without adjusting the other, since altering

the marginal productivity of one input likely affects the productivity of the other. Sec-

ond, scientific evidence suggests that adjusting both tillage and nitrogen management

simultaneously may positively affect carbon sequestration and N2O emission reduction

(Six et al., 2004; Smith et al., 2008; Snyder et al., 2009).

There is a debate among economists and policy analysts about what contract design—

with payment per unit of output (in Mg of CO2e abated) or per practice—is the most

cost-effective (and politically feasible). The most cost-effective contract is the one for

which the sum of the total payment required to achieve a given abatement target and

the administrative costs is the lowest. Under contracts per unit of output, farmers abate

GHG emissions until their marginal cost is equal to the price of a Mg of CO2e. Because

of spatial heterogeneity in economic and environmental conditions, farmers’ marginal
4Daycent is the daily time step-version of the well-known Century model (Parton et al., 1987). It

was developed to simulate ecosystem carbon and nutrient dynamics and trace gas fluxes. It includes
sub-models for nitrification and denitrification (Parton et al., 1996) and CH4 oxidation (Del Grosso
et al., 2000).



5

abatement costs typically differ. Farmers receive a fixed price per Mg of CO2e abated

and choose the agricultural practices with the lowest marginal cost. Under contracts

per practice, farmers receive a fixed price per hectare regardless of the actual GHG

offset. Contracts per unit of output are the most efficient since they enroll lands with

the lowest costs per unit of output rather than lands with the lowest costs per hectare,

thus, minimizing total payment for the same GHG emission reduction target (Pautsch

et al., 2001; Antle et al., 2003; Lubowski et al., 2006).

Yet, contracts per unit of output may incur substantially greater administrative

costs than simpler contracts based on observed input use. In the case of contracts for

carbon sequestration, the carbon sequestered in the soil or in trees must be measured at

the beginning (baseline) and at the end of the contract to establish net sequestration.

Stavins (1999); Lubowski et al. (2006) claim that on forested lands contracts per practice

have lower administrative costs and are easier to monitor, and Parks and Hardie (1995)

suggest that contracts per practice may be more cost-effective than contracts per unit of

output. Antle et al. (2003) propose a sampling design for measuring carbon sequestered

on agricultural lands that may reduce administrative costs, provided the measurement

error deemed acceptable is large enough. For example, with a 10% measurement error,

they find that in Montana the measurement costs incurred under the contract per unit

of output do not offset its costs savings. However, the measurement costs associated

with this sampling design increase with spatial heterogeneity. This may result in the

measurement error, such that the contract per unit of output is at least as efficient as

the contract per practice, being unacceptably large in regions more heterogeneous than

Montana.

In addition, contracts per unit of output have only been proposed for carbon se-

questration, for which measurement simply consists in quantifying the net change in

carbon stock at two points in time—at the beginning and end of the contract. However,

measuring emissions of the two other GHGs (N2O and CH4) necessitates monitoring
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the yearly fluxes of gases. Because N2O and CH4 emissions may take many years to

stabilize after a change in agricultural practices, Six et al. (2004) emphasize the need for

monitoring cumulative emissions over the length of the contract. Therefore, measuring

N2O and CH4 offset requires continuous measurements starting one year before the

beginning of the contract (to establish the baseline) and until the end of the contract.

Measuring the emissions of all three GHGs is likely to be difficult to implement and the

costs very large (Antle and Ogle, 2011). Uncertainty about measurement feasibility and

prohibitive costs are clear arguments in favor of contracts per practice over contracts

per unit of output. In the rest of the paper we restrict our analysis to contracts per

practice.

An important component for the design of cost-effective GHG offset programs is the

level of payment aggregation. Payments are tied to the GHG offset generated over a

specific spatial entity from implementing a given set of practices. The spatial unit may

be the field, the county, the state, the nation or some other geographical unit. Programs

designed at the field-level are the most efficient but are likely politically infeasible and

with prohibitive administrative costs. The more aggregated the payment level is, the

simpler the program is to implement and the lower the administrative costs, but the

larger the total payment to reach a given GHG offset target may be (Pautsch et al.,

2001).5 This suggests that cost-effective programs may feature some level of spatial

aggregation. Based on previous studies, it is not clear how much the level of payment

aggregation may affect the supply curve of GHG offset. In the case of no-till in the

central U.S., Antle et al. (2007) find similar GHG offset supply curves for programs

designed at the county-level and at the level of the central U.S. Yet, Pautsch et al.

(2001) find that, for the case of conservation tillage in the state of Iowa, the supply curve

shifts upward substantially (by as much as a factor four) when aggregating payments
5In addition, Feng and Kling (2005) find that in the presence of co-benefits, such as erosion and water

contamination prevention, the social efficiency of GHG offset programs may increase with payment
aggregation, provided GHG offset potential and co-benefits are positively correlated.
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from the farm to the state-level. Therefore, large-scale studies are needed to quantify

how aggregation may affect the efficiency of market mechanisms for GHG emission

mitigation.

In this paper, we investigate the role of payment aggregation on the cost-effectiveness

of a GHG offset program for California agriculture. We estimate the GHG offset supply

curves for different levels of payment aggregation. We look at the role of spatial ag-

gregation from the regional to state-level, including intermediate aggregation levels. In

addition, we examine the role of aggregation over crops from individual crops, groups

of crops, to a single composite crop for California. California is arguably one of the

most complex agricultural states given the variety of its environmental conditions and

attendant agricultural mix. This makes it a relevant case study to examine how much

environmental and economic heterogeneity matters for aggregation. Intuitively, aggre-

gation will have less severe effects on cost-effectiveness in somewhat more homogeneous

states—with fewer major crop systems.6 Thus, the results derived for California can

provide an upper bound on the extent that aggregation may affect cost-effectiveness of

GHG offset programs.

We develop a bio-economic model of California agricultural production to predict

the effects of a cap-and-trade system on agriculture and the environment. The model

is calibrated using observed economic information on outputs, inputs use, regional con-

straints and exogenous supply elasticities (Mérel et al., 2011a). Crop-specific production

functions are calibrated to exogenous agronomic information on yield responses to nitro-

gen, irrigation and tillage, through the use of crop-specific shadow prices for fertilizer,

water and tillage intensity, expanding on the methodology developed in (Mérel et al.,

2011b). As a result, the crop production functions are consistent, at the margin, with

the yield responses to intensive margin and technology adjustments estimated using the

agronomic model Daycent.
6Furthermore, extending this study to the rest of the U.S., in particular to more homogenous states,

will be straightforward.
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2 Model calibration

Our model maximizes regional agricultural profits subject to resource constraints such

as land and water. Profits are specified with a generalized constant-elasticitiy-of-

substitution (CES) production functions with cost functions linear in inputs as proposed

in Mérel et al. (2011a). There are I cropping activities. The economic optimization

model for a given region is defined as follows:

max

qi�0,xij�0,Ti�0

P
i

p
i

q
i

� (c
i1 + �

i1 + c
iT

(T
i

) + �
iT

T
i

) x
i1 � (c

i2 + �
i2) xi2 � (c

i3 + �
i3) xi3

subject to8
><

>:

P
I

i=1 xij

 v
j

j = 1, 2

q
i

= µ
i

�
i

(T
i

)

⇣P3
j=1 �ij

x⇢i
ij

⌘ �i
⇢i 8i = 1, . . . , I

(1)

where the choice variables x
ij

represent the amount of input j and T
i

the tillage intensity

used in the production of crop i. We construct the tillage variable T
i

2 [0, 1] by mapping

existing tillage technologies into an index of soil disturbance such that T
i

= 0 describes

no-till systems and T
i

= 1 conventional tillage systems. See data section. �
i

(T
i

) is a

function of tillage that shifts the production function. p
i

is the price of crop i, c
ij

is

the price of input j in activity i and c
iT

(T
i

) denotes the per acre cost of tillage, which

is a differentiable function of tillage intensity with dciT
dTi

= c0
iT

> 0. The parameters v
j

represent the regional resource constraints where v1 and v2 denote the land and water

constraints, respectively. q
i

is the output of crop i associated with the generalized CES

production function with tillage intensity T
i

and input employments x
ij

. µ
i

, �
ij

and

�
i

are the parameters of the CES function and satisfy µ
i

> 0, �
ij

> 0,
P

j

�
ij

= 1

and �
i

2 (0, 1). The parameter ⇢
i

is such that ⇢
i

=

�i�1
�i

where �
i

is the elasticity of

substitution between any two inputs.

We explicitly model the land (j = 1), water (j = 2) and nitrogen fertilizer (j = 3)

inputs and the tillage technology. The tillage cost c
iT

represents the per hectare cost
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of labor, machinery, fuel, etc, utilized for tillage activities. We assume all other inputs

(such as pesticides, non-tillage machinery, custom operations, etc) are employed in

fixed proportions with land, and we include their respective cost in the price of land,

c
i1. Similarly, we assume that all fertilizer elements (N, P, K and others) are employed

in fixed proportions, so that the price of nitrogen fertilizer c
i3 includes the non-nitrogen

fertilizer cost.

The calibration parameters �
i1, �i2, �i3 and �

iT

are added to the land, water, fer-

tilizer and tillage cost terms, respectively, to allow replicate the observed allocation of

land, water and fertilizer use and tillage technology.

The calibration information at the reference allocation is denoted (q̄
i

, ¯T
i

, x̄
ij

, ⌘̄
i

, ¯�1, ¯�2, ȳiT , ȳiW , ȳ
iN

)

where ¯�1 and ¯�2 denote the shadow price of the constrained resources, land and water,

respectively, obtained from the first stage of PMP (Howitt, 1995). The parameter ⌘̄
i

denotes the exogenous supply elasticity of crop i. The parameters ȳ
iT

, ȳ
iW

and ȳ
iN

represent the agronomic information, in the form of elasticities of yield with respect to

tillage intensity, water and nitrogen application, respectively. See section Calibration

to agronomic yield responses. The calibration problem consists of selecting the set of

parameters (µ
i

, �
ij

, �
i

,�
i1,�i2,�i3,�iT

) so that the optimization model (1) replicates the

observed input-output allocation (q̄
i

, ¯T
i

, x̄
ij

), the shadow price of land ¯�1 and water

¯�2 and the supply responses ⌘̄
i

; and the yield responses calculated at the reference

allocation coincide with (ȳ
iT

, ȳ
iW

, ȳ
iN

). Based on the region, the land and/or water

constraints are binding, i.e., ¯�1 and/or ¯�2 are greater than zero.

2.1 Data sources

We use the 2005 data from the California StateWide Agricultural Production (SWAP)

model developed by R. Howitt (Jenkins et al., 2001).7 The SWAP model consists of

27 regions in the Central Valley, California’s agricultural heartland. These regions cor-
7See swap.ucdavis.edu.

http://swap.ucdavis.edu
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respond to water districts and allow to capture meaningful regional water constraints.

Our study includes seven major field crops covering about 3.18 million acres in 2005,

representing 70% of the non-perennial agricultural acreages in the Central Valley.8 The

acreage distribution among modeled crops is shown in table 1. Crop acreages and water

prices for 2005 come from the California Department of Water Resources. Crop prices

and yields for 2005 come from the Agricultural Commissioner Reports. Water appli-

cation rates come from the California Department of Water Resources when available

and from the University of California Cost and return studies for the remaining crops.

Fertilizer prices and application rates and other production costs come from the Cost

and return studies.

Own-price supply elasticities for corn, cotton, safflower, sunflower and wheat come

from the SWAP model, while the supply elasticities for alfalfa, rice and processing

tomato are updated based on the recent study by Russo et al. (2008).

The Cost and return studies provide information on observed regional management

practices. Overall, these practices can be characterized as conventional with medium

soil disturbance. Based on expert opinions we modify these practices to derive the cost

of tillage for systems ranging from no-till, conservation tillage to conventional tillage

with high soil disturbance.

2.2 Derivation of yield response elasticities

One important contribution of this research is to incorporate the agronomic information

from the biophysical process-based model into the economic model such the economic

yield responses to input use and tillage technology are consistent, at the margin, with

the agronomic responses. This is critical since carbon sequestration and N2O emissions

are sensitive to tillage technology and intensive margin adjustments, in particular, ni-

trogen fertilizer and water application rates (Smith et al., 2008; Snyder et al., 2009).
8We do not include perennial tree crops because these crops require large establishment costs (and

Daycent is not calibrated for tree crops).
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Table 1: Acreage distribution across the Central Valley

Acreage share (%)
Crop Central Valley Sacramento Valley San Joaquin Valley
Alfalfa 21.98 24.22 18.97
Corn 21.02 22.29 21.24
Cotton 20.86 0.82 27.77
Grain 11.46 20.56 8.94
Other field crops 13.64 9.01 15.49
Processing tomato 9.50 17.48 7.28
Safflower 1.54 5.61 0.31
Total 100.00 100.00 100.00

Mérel et al. (2011b) propose a methodology to replicate to agronomic yield responses

to nitrogen and water inputs. We build on their work and allow for incorporation of

agronomic information on tillage technology.

We use the Daycent model, calibrated for crops under California conditions (De Gryze

et al., 2009, 2010), to generate yield responses to tillage technology and nitrogen fer-

tilizer and water inputs. The Central Valley is divided into cells of 15km⇥15km. The

Daycent model is run for each cell using the average soil and climate conditions pre-

vailing on that cell. We then aggregate Daycent’s results to the scale of the economic

model.

The regional yield response curves are generated as follows. First, we generate the

yield response to nitrogen application, holding the tillage intensity and water appli-

cation rate at their observed levels based on the Cost and return studies. Following

Godard et al. (2008); Mérel et al. (2011b), we fit an exponential yield response curve

through the obtained simulation data:

y
i

(a
iN

) = y
aiN=0 + ↵

iN

(1� exp(��
iN

a
iN

))

where a
iN

is the nitrogen application rate and y
aiN=0, ↵

iN

and �
iN

are parameters.

y
aiN=0 represents the minimum yield as nitrogen application goes to zero. If the nitrogen
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application rate a
iN

that replicates the observed regional yield is not too far from the

observed nitrogen application rate based on the Cost and return studies, we retain

that value for the reference nitrogen application.9 For the crops and regions for which

this is not true, we verify that the yield that would be replicated by the observed

nitrogen application rate reported in the Cost and return study is not too far from

the observed yield and we retain that value for the reference yield and the reference

nitrogen application rate remains the observed rate.

Second, we generate the yield response to water application, holding the tillage

intensity at its observed level and reference nitrogen application. We estimate a sigmoid

yield response curve to the water application rate as in Mérel et al. (2011b):

y
i

(a
iW

) =

↵
iW

1 + exp

⇣
�aiW�ai0

�iW

⌘ (2)

where a
iW

is the water application rate and a
i0, ↵

iW

and �
iW

are parameters. We

verify that the water application rate a
iW

that replicates the reference yield is similar

the observed irrigation rate, and retain that value for the reference water application.10

Last, we generate the yield response to tillage technology, holding nitrogen and

water application at their reference levels. We specify the relationship between yield

and tillage intensity with an exponential function such that

y
i

(T
i

) = y
Ti=0 + ↵

iT

(1� exp(��
iT

T
i

)) (3)

where T
i

is tillage intensity and y
Ti=0, ↵iT

and �
iT

are parameters. y
Ti=0 represents the

yield for a no-till system. When the tillage technology T
i

that replicates the reference

yield is similar to the observed tillage intensity, we retain that value for the reference

tillage intensity. 11 For the crops and regions for which this is not true, we verify that
9"Not too far" means, here, within 30% of the observed value.

10"Similar" means, here, within 10% of the observed value.
11"Not too far" means, here, within 30% of the observed value.
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the yield that would be replicated by the observed tillage intensity reported in the Cost

and return study is not too far from the observed yield and we retain that value for the

reference yield and the reference tillage intensity remains at the observed level.

Therefore, for each crop and region we have reference water and nitrogen application

rates, ā
iW

and ā
iN

, respectively, a reference tillage intensity ¯T
i

, and a reference yield

ȳ
i

. By construction, our reference yield is consistent with “reference” tillage intensity

and water and nitrogen application rates, in the sense that this yield lies on each yield

response curve.

The fitted yield response curves to tillage y
i

(T
i

, ā
iW

, ā
iN

), water application rate

y
i

(

¯T
i

, a
iW

, ā
iN

) and nitrogen application rate y
i

(

¯T
i

, ā
iW

, a
iN

) are used to calculate the

elasticity of regional yield with respect to tillage technology and input use.

Using the estimated yield response to nitrogen, the elasticity of yield with respect

to nitrogen application at the reference allocation is

ȳ
iN

=

dy
i

da
iN

ā
iN

ȳ
i

=

↵
iN

�
iN

exp(��
iN

ā
iN

)ā
iN

ȳ
i

.

Similarly, the elasticitiy of yield with respect to water application at the reference

allocation is

ȳ
iW

=

dy
i

da
iW

ā
iW

ȳ
i

=

ā
iW

e
� āiW�ai0

�iW

�
iW

⇣
1 + e

� āiW�ai0
�iW

⌘
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and the elasticitiy of yield with respect to tillage intensity at the reference allocation is

ȳ
iT

=

dy
i

dT
i

¯T
i

ȳ
i

=

↵
iT

�
iT

exp(��
iT

¯T
i

)

¯T
i

ȳ
i

.

Table (2) shows the average agronomic yield response elasticities for the Sacramento

and San Joaquin valleys weighted by crop acreages.12

Table 2: Agronomic yield response elasticities

Sacramento Valley San Joaquin Valley
Crop ȳ

iW

ȳ
iN

ȳ
iT

ȳ
iW

ȳ
iN

ȳ
iT

Alfalfa 0.20 - - 0.24 - -
Corn 0.26 0.12 0.07 0.27 0.13 0.07
Cotton 0.46 0.03 0.00 0.49 0.01 0.00
Grain 0.13 0.03 0.00 0.31 0.00 0.00
Other field crops 0.45 0.00 0.00 0.50 0.00 0.00
Processing tomato 0.25 0.02 0.05 0.36 0.02 0.05
Safflower 0.24 0.11 - 0.26 0.24 -

12The agronomic yield response elasticities for the 27 regions are available upon request. As a
legume, alfalfa does not have a significant yield response to nitrogen application. Therefore, we set
�alfalfa3 = 0. Alfalfa is typically grown as a perennial crop for two or three years. The DAYCENT
results have not been validated for simulating tillage for safflower. Therefore, we do not model tillage
for alfalfa and safflower.
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2.3 Calibration of the model parameters

2.3.1 Calibration of supply elasticities

The first-order conditions associated with model (1) and evaluated at the observed

allocation are:

8
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where �
i

(T
i

) is the agronomic yield response to tillage technology defined in (3). c̄
iT

and �̄
i

denote the functions c
iT

(

¯T
i

) and �
i

(

¯T
i

) evaluated at the observed tillage intensity

¯T
i

, and c̄0
iT

and �̄0
i

denote their derivative with respect to the tillage intensity, evaluated

at ¯T
i

, respectively.

The economic model is calibrated to the agronomic yield response curves such that

it replicates the agronomic elasticities with respect to tillage technology, and water and

nitrogen inputs at the reference allocation. We set the elasticities derived using the

generalized CES economic production function equal to agronomic elasticities derived

in section 2.2: 8
>>>><

>>>>:
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where the reference water and fertilizer employments satisfy x̄
i2 = ā

iW

x̄
i1 and x̄

i3 =
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ā
iN

x̄
i1. Taking account of (4), we can express (5) as
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The derivation of the calibration conditions for an acceptable solution � to exist

and the calibration elasticity systems are provided in the appendix.

2.3.2 Calibration of the shadow costs

Once the return-to-scale parameter � are recovered we can estimate the cost adjustment

terms �
ij

for crop i and input j. We solve the system:
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As long as ȳ
iW

+ ȳ
iN

< �
i

, system (7) determines acceptable values for the parameters

�
ij

for j = 1, . . . , 3.

2.3.3 Calibration of the CES parameters

Once the cost adjustment parameters �
ij

have been derived, it is straightforward to

recover the technology parameters µ
i

and �
ij

, using (4) and the equalities
P

j

�
ij

= 1

and q̄
i

= µ
i

�̄
i

⇣P
j

�
ij

x̄⇢

ij

⌘ �i
⇢ . This last step concludes the calibration phase.
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3 Policy scenarios and abatement curves for Califor-

nia agriculture

We are currently running the DAYCENT model to simulate the GHG emissions as-

sociated with various combinations of nitrogen application rate, irrigation and tillage

intensity. Then, we will examine a series of policy scenarios with compensation for the

three major GHGs and estimate the GHG emission abatement curves for California

agriculture. In particular, we will evaluate how the level of aggregation affects the

cost-effectiveness of GHG offset programs.
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