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Abstract 

In this study, we develop a new approach to investigate spatial market integration. 

In particular, it is a Markov-Switching autoregressive (MSAR) model with 

time-varying state transition probabilities. Studying market integration is an effective 

way to test whether the law of one price holds across geographically separated 

markets, in other words, to test whether these markets perform efficiently or not. In 

this model, we assume that the parameters depend on a state variable which describes 

two unobservable states of markets – non-arbitrage and arbitrage – and is governed by 

a time-varying transition probability matrix. The main advantage of this model is that 

it allows transition probabilities to be time-varying. The probability of being in one 

state at time t depends on the previous state and the previous levels of market prices. 

An EM (Expectation-Maximization) algorithm is applied in the estimation of this 

model. For the empirical application, we examine market integration among four 

regional corn (Statesville, Candor, Cofield, Roaring River) and three regional soybean 

markets (Fayetteville, Cofield, and Creswell) in North Carolina. The prices of these 

markets are quoted daily from 3/1/2005 to 6/30/2010. Six pairwise spatial price 

relationships for the corn markets, and three pairwise spatial price relationships for 

the soybean markets are examined. Our results demonstrate that significant regime 

switching relationships characterize these markets. This has important implications 

for more conventional models of spatial price relationships and market integration. 

Our results are consistent with efficient arbitrage subject to transactions costs. 

 

 

1. Introduction 

Market integration has been widely discussed and evaluated by studying the 

mechanism of price transmissions among interrelated markets. Studies that investigate 

market integration focus either on spatially separated markets or on vertically related 

markets. Markets with related goods are said to be integrated if prices from these 

markets move proportionally or follow similar patterns in the long run. Examining the 

integration of markets has profound impacts for market participants and researchers. A 



typical example concerns the spatial speculators. They make their market decisions by 

comparing the prices of the same good among different markets. In particular, spatial 

speculators can make profits if the price difference between two markets is higher 

than the transactions costs of delivering the good from the market with a lower price 

to the market with a higher price. In this case, these markets are considered as not 

being integrated, and non-integration is the main reason for spatial speculation or 

arbitrage. On the other hand, studying market integration is an effective way to test 

whether the law of one price (LOP) holds across geographically separated markets, in 

other words, to test whether these markets perform efficiently or not.  

   Early research on market integration mainly focused on the static correlation 

between prices from spatially separated markets. Spatial arbitrage exists only when 

the price difference is large enough to cover the transactions costs. The profits from 

arbitrage, however, will gradually fall to zero since more and more traders are getting 

involved. When arbitrage becomes unprofitable, price linkages between the two 

markets will gradually switch to a different pattern, and co-movements of prices will 

not be as easy to observe. By this argument, static correlation is not a valid way to 

investigate market integration. In many studies, static correlation was proved to be 

insufficient and was extended in multiple directions. A group of regime switching 

models became widely accepted in recent studies due to plenty of advantages. For 

example, it can separate the analyses into different situations (e.g., arbitrage and 

non-arbitrage) and it also takes into account the unobservable transactions costs.  

To improve the performance of the regime switching models for testing for market 

integration, we propose a Markov-Switching error correction model with time-varying 

transition probabilities. The basic idea of this model is that, the model contains two 

regimes – arbitrage and non-arbitrage, and the switching between regimes is governed 

by a Markov chain. For example, the probability that the next period is in one regime 

depends on the current regime and current market prices. The main advantage of this 

model is its flexibility in the transition probabilities which are changing over time. 

Specifically, the transition probabilities at time t depend on the price levels at time t-1. 

Since the state (regime) variable is unobservable, an EM (Expectation-Maximization) 



algorithm is applied for the model estimation.  

   

2. Previous Research 

This section briefly presents innovations in the development of testing for market 

integration in agricultural economics and introduces some of the typical models in this 

area over the past half century. 

In the context of spatial market integration, the first general approach to investigate 

spatial competitive equilibrium is developed by Takayama and Judge (1964). They 

reformulated the problem as a quadratic programming problem based on the previous 

work of Enke (1951) and Samulson (1952). In the following two decades, this 

approach was extended to a variety of dimensions of empirical work, for example, to 

compute optimal spatial locations, to examine the spatial boundary between markets, 

and to test for spatial market efficiency.  

As the subsequent development of the Takayama and Judge’s point-location model, 

testing for market integration, or market efficiency, began to attract researchers’ 

attention since the 1980s. Early studies examined market integration by studying the 

correlation between prices from spatially separated markets. Ravallion (1986) 

proposed a stronger test procedure which he argued avoids inferential dangers from 

methods using static price correlation. Before that, static price correlations remained 

the most common measure of spatial market integration. This new method provides a 

dynamic relationship for market prices from different regions, considering both 

long-run integration and short-run integration. The subsequent research mainly 

focused on cointegration, error correction, and Granger causality frameworks (Fackler 

and Goodwin 2001).  

The first application of the regime switching model for testing market integration 

was introduced by Sexton, Kling, and Carmen (1991). They extended Spiller and 

Huang's (1986) method of testing for market integration, and tested for three different 

regimes they defined – efficient arbitrage, relative shortage (the price difference is 

less than transactions costs), and relative glut (the price difference is greater than 

transactions costs). Regime switching models then became popular in this area since it 



allows for different price transmission behaviors under different market conditions 

such as arbitrage and non-arbitrage. 

In the development of methodology for testing for market integration, very little 

work has considered transactions costs (or delivery costs). Although transactions costs 

play an important role in the analysis, these costs are difficult to observe or to 

correctly estimate using correlated variables. Therefore, most of the existing research 

only applied market price data to deal with market integration. The ignorance of 

transactions costs or treating them as constant, however, would cause some estimation 

bias such as to reject market integration even when no spatial arbitrage exists (Baulch, 

1997). To improve the reliability of the test, Baulch (1997) proposed a parity bounds 

model (PBM) which takes transactions costs and trade flows into account. The PBM 

including transactions costs or variables highly correlated with transactions costs was 

extended to a variety of directions, but it was still criticized by some researchers about 

its limitations. Moreover, the difficulty in collecting data of transactions costs or 

correctly predicting them remained a problem in this area and led to the ignorance of 

transactions costs in the subsequent research. Most researchers continued to test for 

market integration only with price data. 

The limitation of ignoring transactions costs and the nonstationary nature of price 

data led to the application of new empirical models with nonlinear techniques. A 

generally accepted method is the threshold error correction model which is first 

applied by Goodwin and Piggott (2001) to test for spatial market integration for corn 

and soybean markets in North Carolina. This model allows price transmission to be 

regime switching, and it is considered as a more appropriate way to deal with 

unobservable transactions costs which could be nonstationary. 

More recent research refers to the Markov-switching vector error correction 

(MSVEC) model proposed by Brummer, von Cramon-Taubadel, and Zorya (2008), 

which studies the vertical price transmission between wheat and wheat flour in 

Ukraine. The application of the MSVEC model is motivated by the unstable policy 

environments in Ukraine. The subsequent work refers to the application of the 

Markov-switching vector autoregressive model (Ihle, von Cramon-Taubadel, and 



Zorya, 2009) in agricultural economics. Both of these models are estimated under a 

constant transition probabilities framework.  

 

3. Methodology 

3.1. The Model 

This section provides a new method, a Markov-Switching autoregressive (MSAR) 

model with time-varying transition probabilities, to investigate spatial market 

integration. An MSAR model is a subclass of the threshold (vector) autoregressive 

models. A specification of the threshold autoregressive model commonly used by the 

most recent literature is given by  

௧ݕ∆ ൌ ௧ሻݏሺߙ ൅ ௧ିଵݕ௧ሻݏሺߚ ൅෍߶௝ሺݏ௧ሻ∆ݕ௧ି௝

௣ିଵ

௝ୀଵ

൅ ,	௧ߝ ሺ3.1ሻ 

,൫0ܦܫܰ~௧|Ψ௧ିଵߝ  ,	௧ሻ൯ݏሺߪ

where ݕ௧ ൌ ln൫݌௧
௔ ௧݌

௕⁄ ൯ ௧݌ ,
௔  and ݌௧

௕  are the cash prices for a homogenous 

commodity at location ܽ and ܾ at time ݐ, Ψ௧ିଵ is the information set at ݐ െ 1, 

 ௧ሻ are parameters which depend onݏሺߪ ௧ሻ, andݏ௧ሻ, … , ߶௣ିଵሺݏ௧ሻ, ߶ଵሺݏሺߚ ,௧ሻݏሺߙ

the state variable ݏ௧  ௧ሻ also represents the degree of “error-correction” thatݏሺߚ .

characterizes the departure from price parity. Assume that the per-unit revenue for 

spatial speculators transporting from location ܽ to ܾ is ሺ1 െ  ௔௕ isߢ ௕, where݌௔௕ሻߢ

the rate of transactions costs from location ܽ  to location ܾ , and 0 ൏ ௔௕ߢ ൏ 1. 

Therefore, the non-arbitrage conditions for location ܽ and ܾ are 

ሺ1 െ ௕݌௔௕ሻߢ ൑ ௔ and ሺ1݌ െ ௔݌௕௔ሻߢ ൑  ,௕݌

or they can be rewritten as 

ሺ1 െ ௔௕ሻߢ ൑ ௔݌ ⁄௕݌ ൑ 1 ሺ1 െ ⁄௕௔ሻߢ 	. 

After taking natural logarithms, the non-arbitrage condition is given by 

lnሺ1 െ ௔௕ሻߢ ൑ ݕ ൑ െ lnሺ1 െ  ሺ3.2ሻ			.	௕௔ሻߢ

From a number of studies, ݕ behaves quite differently from the non-arbitrage case 



to the arbitrage case, and this property can be captured by threshold (vector) 

autoregressive or threshold (vector) error correction models (e.g., Goodwin and 

Piggott, 2001). It is generally believed that ݕ follows something close to a unit root 

under the non-arbitrage condition, and this ensures a threshold error correction model 

to be appropriate to investigate market integration. In our study, we assume that the 

state variable ݏ௧  contains two unobservable states – non-arbitrage (ݏ௧ ൌ 1) and 

arbitrage (ݏ௧ ൌ 2), and it is governed by the time-varying transition probability matrix 

Π௧: 

Π௧ ൌ ൤
௧ିଵሻݕଵଵሺߨ ௧ିଵሻݕଶଵሺߨ
௧ିଵሻݕଵଶሺߨ ௧ିଵሻݕଶଶሺߨ

൨ 

where ߨ௜௝ is the probability of switching from state ݅ at time ݐ െ 1 to state ݆ at 

time ݐ giving the level of ݕ௧ିଵ. Or, ߨ௜௝ ൌ ܲሺܵ௧ ൌ ݆|ܵ௧ ൌ ݆, ∑ ௧ିଵሻ, andݕ ௜௝ߨ
ଶ
௝ୀଵ ൌ 1, 

for ݅ ൌ 1,2. 

  In this study we apply two types of probability functions for ߨ௜௜ሺݕ௧ିଵሻ. The first 

one is a logistic function symmetric around the mean of ݕ௧ (or ݕത):  

,௜௜ߛ|௧ିଵݕ௜௜ሺߨ ܿ௜௜ሻ ൌ
1

1 ൅ exp	ሼߛ௜௜ሺ|ݕ௧ିଵ െ ത|ሻݕ െ ܿ௜௜ሽ
	,			݅ ൌ 1,2			ሺ3.3ሻ	. 

We assume that ߛଵଵ ൐ 0 , and ߛଶଶ ൏ 0 . The maximum or minimum transition 

probability depends on both ߛ௜௜ and ܿ௜௜. 

  The second type of the probability function is a second order logistic function: 

,௧ିଵ|ܿ଴,௜௜ݕ௜௜൫ߨ ܿଵ,௜௜, ܿଶ,௜௜൯ ൌ
1

1 ൅ exp	൛ܿ଴,௜௜ݕ௧ିଵ
ଶ ൅ ܿଵ,௜௜ݕ௧ିଵ ൅ ܿଶ,௜௜ൟ

	 , ݅ ൌ 1,2		ሺ3.4ሻ	. 

Similarly, we assume that ܿ଴,ଵଵ ൐ 0, and ܿ଴,ଶଶ ൏ 0. For both ߨ௜௜’s, ߨ௜௝ ൌ 1 െ   .௜௜ߨ

  Figure 1 shows the plots of equation (3.3) and (3.4) with different values of 

parameters. These plots imply that, when the previous state is non-arbitrage, the 

probability of shifting to an arbitrage state at the current period would be relatively 

low at extreme values of ݕ௧ିଵ. In other words, the probability of staying in the same 

state, non-arbitrage, is relatively high when the value of ݕ௧ିଵ is close to the mean of 

 ௧ in the case of equation (3.3). Similarly, when the previous state is arbitrage and theݕ



previous level of price deviation (ݕ௧ିଵ) is extremely high, then the probability of 

being in the same state at time ݐ is relatively high, compared to the ݕ௧ିଵ’s that are 

close to ݕത in the case of equation (3.3). 

 

 

Figure 1. Examples of Equation (3.3) and Equation (3.4). 

 

3.2. Model Estimation: The EM Algorithm 

The estimation of the MSECM with time-varying transition probabilities can be done 

by applying the Expectation-Maximization (EM) algorithm. This algorithm was first 

developed by Hamilton (1990) to solve for Markov-Switching models with constant 

transition probabilities. Diebold, Lee, and Weinbach (1994) extended it to a 

time-varying transition probabilities framework. The main challenge for the 

estimation of this models is that, first, the state process ሼݏ௧ሽ is unobservable and 

depends on model parameters (ߙሺݏ௧ሻ, ߚሺݏ௧ሻ, ߶ଵሺݏ௧ሻ, … , ߶௣ିଵሺݏ௧ሻ, ߪሺݏ௧ሻ); second, 

the model parameters also depend on the state process  ts . The EM algorithm has 

been considered as an effective way to deal with this two-way dependence problem so 



far. 

  In the first step of the EM algorithm, the expectation step, we initiate some starting 

values for the model parameters. Then, probabilities of being in each regime 

conditional on data up to t-1 are filtered by a particular filter (e.g., Hamilton filter), in 

order to obtain the filtered probabilities conditional on the data up to t. After filtering, 

the smoothed probabilities are obtained based on the filtered probabilities. The second 

step of the EM algorithm, the maximization step, computes the maximum likelihood 

estimates of the parameters using the smoothed probabilities. These two steps are 

iterated until the convergence criterion is achieved. Section 3.2.1 and 3.2.2 provide 

the details of this algorithm for the estimation of this model. 

 

3.2.1. The complete-data log-likelihood function 

In equation (3.1), we assume that ߝ௧|Ψ௧ିଵ~ܰܦܫ൫0,  ௧ሻ൯, which can be rewritten asݏሺߪ

௧ݕ∆ െ ௧ሻݏሺߙ െ ௧ିଵݕ௧ሻݏሺߚ െ෍߶௝ሺݏ௧ሻ∆ݕ௧ି௝

௣ିଵ

௝ୀଵ

|Ψ௧ିଵ~ܰܦܫ൫0,  ௧ሻ൯ݏሺߪ

for ݐ ൒ ݌ ൅ 1. Therefore, the conditional density function for ݕ௧ (ݐ ൒ ݌ ൅ 1) is 

ቀݕ௧ቚݏ௧ ൌ ݅, ;௧ିଵݕ ,௜ߙ ,௜ߚ ߶ଵ,௜, ߶ଶ,௜, … , ߶௣ିଵ,௜, ௜ቁߪ

ൌ
1

ට2ߪߨ௜
ଶ
exp	ቐെ

௧ݕൣ െ ௜ߙ െ ሺ1 ൅ ௧ିଵݕ௜ሻߚ െ ∑ ߶௝,௜∆ݕ௧ି௝
௣ିଵ
௝ୀଵ ൧

ଶ

௜ߪ2
ଶ ቑ 

where ݅ ൌ 1,2 indicates State 1, non-arbitrage, and State 2, arbitrage. 

  Let ߙ ൌ ,ଵߙൣ ,ଵߚ ߶ଵ,ଵ, … , ߶௣ିଵ,ଵ, ,ଵߪ ,ଶߙ ,ଶߚ ߶ଵ,ଶ, … , ߶௣ିଵ,ଶ,  ଶ൧′, the parameters inߪ

equation (3.1), ߚ ൌ ሾߛଵଵ, ܿଵଵ, ,ଶଶߛ ܿଶଶሿ′  (or ߚ ൌ ൣܿ଴,ଵଵ, ܿଵ,ଵଵ, ܿଶ,ଵଵ, ܿ଴,ଶଶ, ܿଵ,ଶଶ, ܿଶ,ଶଶ൧′ 

in the case of second order logistic transition probability function), the parameters in 

equation (3.3). We also need a probability for the beginning state (ݏ௣ାଵ), so we define 

ߩ ൌ ܲ൫ܵ௣ାଵ ൌ 1൯. Therefore, the vector of all parameters in our model is 

ߠ ൌ ሾߙᇱ, ,ᇱߚ  ,ሿᇱߩ



a (2݌ ൅ 9)-dimention vector in the case of equation (3.3). 

  The complete-data likelihood function (from t=p+1 to T ) is given by 

݂ ቀ்ݕ, ;௣ݔቚ்ݏ ቁߠ ൌ ݂ ቀݕ௣ାଵ, ;௣ݔ௣ାଵቚݏ ቁߠ ෑ ݂ ቀݕ௧, ,௧ିଵݕ௧ቚݏ ,௧ିଵݏ ;௣ݔ ቁߠ

்

௧ୀ௣ାଶ

ൌ ݂ ቀݕ௣ାଵቚݏ௣ାଵ, ;௣ݔ ቁߠ ܲ൫ݏ௣ାଵ൯ ෑ ቄ݂ ቀݕ௧ቚݏ௧, ,௧ିଵݕ ,௧ିଵݏ ;௣ݔ ቁߠ

்

௧ୀ௣ାଶ

ൈ 

	ܲ ቀܵ௣ାଵ ൌ ௣ାଵݏ ቚݕ௧ିଵ, ,௧ିଵݏ ;௣ݔ  ,	ቁቅߠ

where ்ݕ ൌ ,்ݕൣ ,ଵି்ݕ … , ்ݏ ,௣ାଵ൧ݕ ൌ ,்ݏൣ ,ଵି்ݏ … ,   ௣ାଵ൧, andݏ

௣ݔ ൌ ,௣ݕൣ ,௣ିଵݕ … ,  ଵ൧. So, the log-likelihood function for the complete-data isݕ

				log ݂ ቀ்ݕ, ;௣ݔቚ்ݏ ቁߠ ൌ log ݂ ቀݕ௣ାଵቚݏ௣ାଵ, ;௣ݔ ቁߠ ൅ log ܲ൫ݏ௣ାଵ൯ 

൅ ෍ ቄlog݂ ቀݕ௧ቚݏ௧, ,௧ିଵݕ ,௧ିଵݏ ;௣ݔ ቁߠ ൅ log	ܲ ቀܵ௣ାଵ ൌ ௣ାଵݏ ቚݕ௧ିଵ, ,௧ିଵݏ ;௣ݔ ቁߠ 		ቅ

்

௧ୀ௣ାଶ

	. 

  For convenience, we will use the complete-data log-likelihood function with 

indicator functions in the estimation, which is given by 

log ݂ ቀ்ݕ, ;௣ݔቚ்ݏ ቁߠ ൌ ൫ܵ௣ାଵܫ ൌ 1൯ ቂlog ݂ ቀݕ௣ାଵቚܵ௣ାଵ ൌ 1, ;௣ݔ ቁߠ ൅ log  ቃߩ

   																					൅ܫ൫ܵ௣ାଵ ൌ 2൯ ቂlog ݂ ቀݕ௣ାଵቚܵ௣ାଵ ൌ 2, ;௣ݔ ቁߠ ൅ logሺ1 െ  ሻቃߩ

																												൅ ෍ ቄܫሺܵ௧ ൌ 1ሻ log ݂ ቀݕ௧ቚܵ௧ ൌ 1, ,௧ିଵݕ ;௣ݔ ቁߠ

்

௧ୀ௣ାଶ
 

																													൅ܫሺܵ௧ ൌ 2ሻ log ݂ ቀݕ௧ቚܵ௧ ൌ 2, ,௧ିଵݕ ;௣ݔ  ቁߠ

																											൅ܫሺܵ௧ ൌ 1, ܵ௧ିଵ ൌ 1ሻlog൫π௧,ଵଵ൯ ൅ ሺܵ௧ܫ ൌ 2, ܵ௧ିଵ ൌ 1ሻlog൫1 െ π௧,ଵଵ൯ 

൅ܫሺܵ௧ ൌ 1, ܵ௧ିଵ ൌ 2ሻlog൫1 െ π௧,ଶଶ൯ ൅ ሺܵ௧ܫ ൌ 2, ܵ௧ିଵ ൌ 2ሻlog൫π௧,ଶଶ൯ൟ 

(3.7), 

where π௧,ଵଵ, and π௧,ଶଶ are transition probabilities calculated from equation (3.3) or 

(3.4).  

 



3.2.2. The EM algorithm 

The complete-data log-likelihood function cannot be used for estimation because the 

state variable ݏ௧ is unobservable. Therefore, following Diebold, Lee, and Weinbach 

(1994), we propose an EM algorithm to maximize the incomplete-data log likelihood. 

The procedure of the EM algorithm is show in Figure 2, and it consists of four steps: 

  (1) Pick a vector of starting values, ߠሺ଴ሻ. 

  (2) Construct the expected log-likelihood function ܧ ቂlog ݂ ቀ்ݕ, ;௣ݔቚ்ݏ ߠ
ሺ଴ሻቁቃ by 

replacing the I ’s in equation (3.7) with the following smoothed probabilities:  

ܲ ቀܵ௧ ൌ 1ቚ்ݕ; ߠ
ሺ଴ሻቁ 

ܲ ቀܵ௧ ൌ 2ቚ்ݕ; ߠ
ሺ଴ሻቁ 

ܲ ቀܵ௧ ൌ 1, ܵ௧ିଵ ൌ 1ቚ்ݕ; ߠ
ሺ଴ሻቁ 

ܲ ቀܵ௧ ൌ 2, ܵ௧ିଵ ൌ 1ቚ்ݕ; ߠ
ሺ଴ሻቁ 

ܲ ቀܵ௧ ൌ 1, ܵ௧ିଵ ൌ 2ቚ்ݕ; ߠ
ሺ଴ሻቁ 

ܲ ቀܵ௧ ൌ 2, ܵ௧ିଵ ൌ 2ቚ்ݕ; ߠ
ሺ଴ሻቁ 

  (3) Set ߠሺଵሻ ൌ argmaxఏ ܧ ቂlog ݂ ቀ்ݕ, ;௣ݔቚ்ݏ ߠ
ሺ଴ሻቁቃ, (3.8). 

  (4) Iterate to convergence. 

 



 
Figure 2. The EM Algorithm  

         Source: Diebold, Lee, and Weinbach (1994) 

 

 

3.2.2.1 The Expectation Step 

As in Diebold, Lee, and Weinbach (1994), the expected log-likelihood function with 

smoothed probabilities is given by 

ܧ ቂlog ݂ ቀ்ݕ, ;௣ݔቚ்ݏ ߠ
ሺ௝ሻቁቃ ൌ ሺ௝ሻߩ ቂlog ݂ ቀݕ௣ାଵቚܵ௣ାଵ ൌ 1, ;௣ݔ ߠ

ሺ௝ሻቁ ൅ log  ሺ௝ሻቃߩ

   																					൅൫1 െ ሺ௝ሻ൯ߩ ቂlog ݂ ቀݕ௣ାଵቚܵ௣ାଵ ൌ 2, ;௣ݔ ߠ
ሺ௝ሻቁ ൅ log൫1 െ  ሺ௝ሻ൯ቃߩ

																												൅ ෍ ቄܲ ቀܵ௧ ൌ 1ቚ்ݕ; ߠ
ሺ௝ሻቁ log ݂ ቀݕ௧ቚܵ௧ ൌ 1, ,௧ିଵݕ ;௣ݔ ቁߠ

்

௧ୀ௣ାଶ
 

																												൅ܲ ቀܵ௧ ൌ 2ቚ்ݕ; ߠ
ሺ௝ሻቁ log ݂ ቀݕ௧ቚܵ௧ ൌ 2, ,௧ିଵݕ ;௣ݔ  ቁߠ

																												൅ܲ ቀܵ௧ ൌ 1, ܵ௧ିଵ ൌ 1ቚ்ݕ; ߠ
ሺ௝ሻቁ log൫π௧,ଵଵ൯ 



																												൅ܲ ቀܵ௧ ൌ 2, ܵ௧ିଵ ൌ 1ቚ்ݕ; ߠ
ሺ௝ሻቁ log൫1 െ π௧,ଵଵ൯ 

																												൅ܲ ቀܵ௧ ൌ 1, ܵ௧ିଵ ൌ 2ቚ்ݕ; ߠ
ሺ௝ሻቁ log൫1 െ π௧,ଶଶ൯ 

																												൅ܲ ቀܵ௧ ൌ 2, ܵ௧ିଵ ൌ 2ቚ்ݕ; ߠ
ሺ௝ሻቁ log൫π௧,ଶଶ൯ቅ	.				ሺ3.9ሻ 

The smoothed probabilities for the jth iteration is calculated from the following four 

steps:  

[This part is not complete!] 

Step 1. Calculate the (conditional) densities (a 2T   matrix) from equation (B.1.1), 

and the transition probabilities (a  1 4T    matrix) from equation (3.3.3) (or (3.3.4), 

here we only discuss the case of equation (3.3.3)):  

     
     

     
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 
 
     
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 
 
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Step 2. Calculate the filtered joint conditional probabilities of (a  1 4T    matrix) 

by iterating the following steps: 

Step 2.1 Calculate the joint conditional probabilities of  1, ,t t ty    given 1ty   (4 

numbers): 

For 2t  , the joint conditional distribution is  

          2 2 1 1 2 1 2 2 1 1 1, , ; , ; , ;j j jf y y f y y P y P         , 

For 3t  , 



           
2

2

1 1 1 1 1 1 2 1
1

, , ; , ; , ; , ;
t

j j j j
t t t t t t t t t t t t tf y y f y y P y P y   



       
 

        . 

The conditional density   1 1, ; j
t t tf y y    and the transition probabilities 

  1 1, ; j
t t tP y     are given by step 1. The filtered probabilities 

  1 2 1, ; j
t t tP y      are obtained from execution of step 2 for the previous t  (See 

Step 2.2 to 2.3). 

 

Step 2.2 Calculate the conditional likelihood of ty  (one number): 

     
1

2 2

1 1 1
1 1

; , , ;
t t

j j
t t t t t tf y y f y y 



  
   

     

Step 2.3 Calculate the filtered probabilities for time t  (four numbers): 

  
  

  
1
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, ;

;

j
t t t tj

t t t j
t t
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







 
   , 

where the numerator is from step 2.1 and the denominator is from step 2.2. Repeat 

step 2.2 to 2.3 for 3t  , and finally we can obtain the  1 4T    matrix of filtered 

joint probabilities. 

 

Step 3. Calculate the smoothed probabilities (a  1 6T    matrix) by the following 

steps: 

Step 3.1 For 2t  , calculate the joint probability of  1 1, , ,t t        given y , 

for  2, 3,...,t t T    : 

  1 1, , , ; j
t tP y         
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where   ; jf y    and   1 1, ; jP y       are given by step 1, 

  1;
jf y y    is given by step 2.2, and   1 2 1 1, , , ; j

t tP y           is obtained 

by the previous   in step 3.1. When 2t   , the third term in the numerator is 

given by the following expression: 

  1 1 1, , ; j
t t t tP y       

        
  

1 1 1 1

1

; , ; , ;

;

j j j
t t t t t t t t

j
t t

f y P y P y

f y y

  



   



    
 . 

For each  , we obtain a  1 4  vector of probabilities corresponding to the four 

possible combinations of  1,s s   . Thus, upon reaching T  , we have computed a 

  3 4T    matrix. The last row of this matrix is used to calculate the smoothed 

joint probability for time 2t  , which is given by 

     
1

2 2

1 1 1
1 1

, ; , , , ;
T T

j j
t t T T T t t TP y P y 



  
   

         

Step 3.2 Repeat step 3.1 for 3, 4,...,t T , and obtain a   1 4T    matrix of 

smoothed joint probabilities. 
 

Step 4 Calculate the smoothed marginal probabilities by summing over the smoothed 

joint probabilities. For example, 

        1 11 ; 1, 1 ; 1, 2 ;j j j
t T t t T t t TP y P y P y               . 

Finally, a  1 6T    matrix of smoothed probabilities is obtained. 

 

 

 

3.2.2.2 The Maximization Step 

Substitute the smoothed probabilities for iteration ݆ from the expectation step into 

equation (B.2.1), and estimate the parameters that maximize equation (B.2.2) as in 

equation (B.2.1). Iterate the expectation step and the maximization step until 



convergence. 

 

 

4. Results 

4.1 Data 

For the empirical application, we examine market integration among four regional 

corn (Statesville, Candor, Cofield, Roaring River) and three regional soybean markets 

(Fayetteville, Cofield, and Creswell) in North Carolina. The prices of these markets 

are quoted daily from 3/1/2005 to 6/30/2010. Six pairwise spatial price relationships 

for the corn markets, and three pairwise spatial price relationships for the soybean 

markets are examined. We discuss market integration among these nine pairs of 

markets by analyzing the estimates of parameters and the smoothed probabilities of 

the arbitrage and non-arbitrage regimes. Table 1 reports descriptive statistics for these 

nine ݕ௧’s. Figure 2 through Figure 4 shows the time series plots of these ݕ௧’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Summary Statistics for ݕ௧ 

 Soybean Markets 

 
Fayetteville

- Cofield

Fayetteville

- Creswell

   Cofield 

- Creswell

Notation       ܾଵଶ             ܾଵଷ                 ܾଶଷ
Observations 1567 1567 1567

Mean     0.02105 0.06440 0.04335

Standard Deviation   0.02863 0.05250 0.05753

Minimum     ‐0.08863 ‐0.07648 ‐0.13470

Maximum 0.16097 0.40809   0.40809

Skewness 0.18858 3.27351 3.19179

Kurtosis 0.48361     14.21455     14.02739

ADF Tau (single mean)     ‐5.39*** ‐4.27*** 3.56***

 

 Corn Markets (1) 

 
Statesville 

- Candor

Statesville

- Cofield

    Statesville

- Roaring River

Notation       ܿଵଶ             ܿଵଷ                 ܿଵସ
Observations 1567 1567 1567

Mean ‐0.06383 ‐0.00905 ‐0.06697

Standard Deviation 0.05911 0.06190 0.05947

Minimum ‐0.27831 ‐0.21474 ‐0.28682

Maximum 0.11421 0.65471 0.12382

Skewness ‐0.37480 0.52567 ‐0.48185

Kurtosis ‐0.01448 8.39005 0.17414

ADF Tau (single mean)     ‐4.51*** ‐5.71*** ‐4.86***

 

 Corn Markets (2) 

 
   Candor 

- Cofield

    Candor 

- Roaring River

     Cofield 

- Roaring River

Notation       ܿଶଷ             ܿଶସ                 ܿଷସ
Observations 1567 1567 1567

Mean 0.05478 ‐0.00314 ‐0.05792

Standard Deviation 0.04316 0.02669 0.04658

Minimum ‐0.20150 ‐0.15575 ‐0.54689

Maximum 0.56755 0.18540 0.19363

Skewness 0.93826 ‐0.52271 ‐0.54480

Kurtosis 15.55812 7.36462 9.14688

ADF Tau (single mean)     ‐7.16*** ‐11.26*** ‐7.43***

 



 

 

 

 

Figure 2. Time Series Plots of ݕ௧’s for the Soybean Markets 
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Figure 3. Time Series Plots of ݕ௧’s for the Corn Markets (1) 
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Figure 4. Time Series Plots of ݕ௧’s for the Corn Markets (2) 
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4.2 Results of the MSAR models 

  We first estimate the ordinary autoregressive (AR) model, and decide the lag length 

p in equation (3.1) by the BIC criterion. Then, we estimate the MSAR models by 

applying the EM algorithm. Table 2 through Table 4 shows the results of the MSAR 

models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. MSAR Model Results for Soybean Markets 

b13  b14  b34 

log likelihood  6549.2727  6309.0625  6359.2839 

alpha1  0.0000  ‐0.0002  0.0000 

(0.0000)  (0.0001)***  (0.0001) 

beta1  0.0023  0.0032  ‐0.0004 

(0.0011)**  (0.0009)***  (0.0013) 

phi11  ‐0.0116  ‐0.0004  ‐0.0053 

(0.0049)**  (0.0027)  (0.0041) 

phi21  ‐0.0103 

(0.0043)** 

phi31  0.0020 

(0.0041) 

phi41  ‐0.0004 

(0.0042) 

phi51  ‐0.0032 

(0.0037) 

sigma1  0.0009  0.0008  0.0013 

(0.0000)***  (0.0000)***  (0.0000)*** 

alpha2  0.0009  0.0033  0.0022 

(0.0008)  (0.0015)**  (0.0016) 

beta2  ‐0.0620  ‐0.0386  ‐0.0258 

(0.0229)***  (0.0134)***  (0.0129)** 

phi12  ‐0.1396  ‐0.3172  ‐0.3554 

(0.0594)**  (0.0507)***  (0.0623)*** 

phi22  ‐0.1744 

(0.0631)*** 

phi32  ‐0.0996 

(0.0670) 

phi42  ‐0.2059 

(0.0645)*** 

phi52  ‐0.2343 

(0.0731)*** 

sigma2  0.0150  0.0235  0.0246 

(0.0005)***  (0.0007)***  (0.0009)*** 

gamma11  15.9205  16.0951  21.9931 

(6.4324)**  (4.4084)***  (4.9409)*** 

c11  1.7344  1.9154  2.6727 

(0.1709)***  (0.1320)***  (0.1629)*** 

gamma22  19.9978  7.3759  11.1878 

(5.3466)***  (2.6117)***  (2.6249)*** 

c22  ‐0.6431  0.2310  ‐0.0865 

(0.1745)***  (0.1321)*  0.1563 



 

Table 3. MSAR Model Results for Corn Markets (1) 

c12  c13  c14 

log likelihood  5850.4465  5934.0314  5649.9339 

alpha1  0.0000  0.0000  0.0000 

(0.0001)  (0.0001)  (0.0001) 

beta1  0.0004  ‐0.0007  ‐0.0018 

(0.0013)  (0.0012)  (0.0008)** 

phi11  ‐0.0190  ‐0.0158  0.0008 

(0.0058)***  (0.0043)***  (0.0032) 

phi21  ‐0.0084  ‐0.0088  0.0001 

(0.0046)*  (0.0035)**  (0.0027) 

phi31  ‐0.0041  0.0028 

(0.0028)  (0.0025) 

sigma1  0.0026  0.0024  0.0014 

(0.0001)***  (0.0001)***  (0.0000)*** 

alpha2  ‐0.0062  ‐0.0005  ‐0.0051 

(0.0039)  (0.0041)  (0.0022)** 

beta2  ‐0.1001  ‐0.0934  ‐0.0610 

(0.0363)***  (0.0526)*  (0.0207)*** 

phi12  ‐0.6169  ‐0.8008  ‐0.5150 

(0.0822)***  (0.0906)***  (0.0568)*** 

phi22  ‐0.5886  ‐0.3097  ‐0.3459 

(0.1176)***  (0.2382)  (0.0714)*** 

phi32  0.1188  ‐0.1455 

(0.2916)  (0.0675)** 

sigma2  0.0393  0.0576  0.0306 

(0.0018)***  (0.0028)***  (0.0010)*** 

gamma11  7.0592  6.7574  0.8367 

(4.0652)*  (2.6003)***  (2.1915) 

c11  2.5254  2.5496  1.0625 

(0.2246)***  (0.1601)***  (0.1165)*** 

gamma22  12.8380  11.4877  16.3218 

(3.5345)***  (3.2591)***  (2.7996)*** 

c22  ‐1.3511  ‐1.2464  ‐1.5293 

(0.2725)***  (0.2592)***  (0.1992)*** 

 

 

 

 

 



Table 4. MSAR Model Results for Corn Markets (2) 

c23  c24  c34 

log likelihood  6911.0321  5394.5747  5069.2568 

alpha1  0.0001  ‐0.0001  ‐0.0002 

(0.0001)**  (0.0001)  (0.0001) 

beta1  ‐0.0030  ‐0.0042  ‐0.0026 

(0.0009)***  (0.0030)  (0.0021) 

phi11  0.0001  ‐0.0104  ‐0.0087 

(0.0022)  (0.0057)*  (0.0052)* 

phi21  0.0020  ‐0.0054  ‐0.0019 

(0.0018)  (0.0049)  (0.0044) 

phi31  ‐0.0009  0.0028  ‐0.0014 

(0.0015)  (0.0048)  (0.0037) 

phi41  0.0004 

(0.0044) 

phi51  0.0015 

(0.0040) 

sigma1  0.0011  0.0021  0.0028 

(0.0000)***  (0.0001)***  (0.0001)*** 

alpha2  0.0042  ‐0.0009  ‐0.0070 

(0.0042)  (0.0014)  (0.0030)** 

beta2  ‐0.0709  ‐0.2703  ‐0.1164 

(0.0495)  (0.0556)***  (0.0394)*** 

phi12  ‐0.7548  ‐0.2857  ‐0.6382 

(0.0878)***  (0.0721)***  (0.0683)*** 

phi22  ‐0.4200  ‐0.3272  ‐0.2205 

(0.1786)**  (0.0821)***  (0.1065)** 

phi32  ‐0.0549  0.0408  ‐0.0672 

(0.1789)  (0.0802)  (0.0963) 

phi42  ‐0.2073 

(0.0832)** 

phi52  ‐0.2422 

(0.0847)*** 

sigma2  0.0478  0.0290  0.0410 

(0.0022)***  (0.0010)***  (0.0015)*** 

gamma11  20.3459  8.6714  3.1753 

(3.8980)***  (5.4311)  (3.0255) 

c11  2.7705  1.3399  1.4233 

(0.1622)***  (0.1197)***  (0.1231)*** 

gamma22  11.3865  25.2587  20.1142 

(3.0523)***  (4.9962)***  (3.3827)*** 

c22  ‐0.8739  ‐1.2073  ‐1.4567 

(0.1980)***  (0.1565)***  (0.1826)*** 



 

5. Conclusion 

In this study, we develop a new approach to investigate spatial market integration, 

which is a Markov-Switching autoregressive (MSAR) model with time-varying state 

transition probabilities. Our results demonstrate that significant regime switching 

relationships characterize these markets. This has important implications for more 

conventional models of spatial price relationships and market integration. Our results 

are consistent with efficient arbitrage subject to transactions costs. 
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