|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Mpyers: Review of Time Series Econometrics and Commodity Price Analysis

Time Series Econometrics and Commodity
Price Analysis: A Review

Robert J. Myers*

1. Introduction

The econometric analysis of commodity prices has
a long and distinguished history highlighted by
structural investigations of supply and demand sy s-
tems; forecasting supplies and prices; evaluating
market efficiency and the effects of price policies,
etc., (see reviews by Tomek and Robinson 1977,
and Tomek and Myers 1993). Much of this re-
search relies on a standard set of econometric meth-
ods, as outlined in books such as Theil (1971) and
Johnston (1984). However, evolving develop-
ments in time series econometrics have cast doubt
over the use of standard econometric methods for
estimating commodity market models. The goals
in this paper are to review some developments
taking place in the time series literature and to
discuss their implications for modelling commod-
ity prices and markets.

The time series developments that will be discussed
include stochastic trends (unit roots); common sto-
chastic trends driving multiple time series (cointe-
gration); and time-varying volatility in the
innovations of time series (conditional hetero-
scedasticity). None of these developments are new
and all have been discussed in econometric text-
books such as Harvey (1990), Lutkepohl (1992),
Cuthbertson, Hall, and Taylor (1992), and Grif-
fiths, Hill and Judge (1993). While the develop-
ments themselves are well known, however, the
resulting implications for commodity price analy-
sis appear not to be widely appreciated. The pre-
sent paper is intended to help correct this situation
and provide a modern perspective on econometric
modelling of commodity markets using time series
data,

The paper is divided into three parts. First, the
characteristic time series properties of commodity
prices are examined within the context of the time
series literature. Second, some of the implications
which these propertics have for the econometric
analysis of commodity prices and markets are dis-
cussed. Third, the paper reports a simulation study
which highlights some of the econometric prob-
lems arising from the time series properties of
commodity prices.

2. Characteristic Time Series Prop-
erties of Commodity Prices

Prices of different commodities are influenced by
distinct forces and therefore will behave somewhat
differently. Nevertheless, there are several charac-
teristic time series properties which many com-
modity price series seem to share in common. In
this section of the paper, some of these charac-
teristic properties of commodity price data are out-
lined and discussed.

2.1 High Volatility

Prices of primary commodities are often highly
volatile, particularly compared to prices of manu-
factured consumer goods (Newbery and Stiglitz
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1981). This volatility can pose major problems to
industry participants and policymakers, particu-
larly in countries whose export earnings and GDP
depend heavily on sales of primary commodities.

One interesting question surrounding commodity
price movements involves the extent to which high
volatility is indicative of market inefficiency. It
has been argued that commodity prices are flexible
while wages and prices of manufactured goods are
fixed or rigid, at least in the short run {(Okun 1975;
Rausser 1985). Under this interpretation, com-
modity prices "overshoot" their long-run equilib-
rinm levels and high commodity price volatility
indicates economic inefficiency (Dombusch 1976;
Frankel 1986).

Another issue surrounding commodity price vola-
tility is management of the resulting price risks.
Market instruments, such as futures and options,
are available to some market participants but gov-
emment regulation, in the form of price stabilisa-
tion schemes, has also been common. It is now
widely understood that the efficiency of market
mechanisms for dealing with risk depends on the
completeness of the market structure (Hart 1975;
Newbery and Stiglitz 1981; Myers 1988). If mar-
kets are complete, and all relevant risks are there-
fore insurable on competitive markets, then the
market mechanism remains economically effi-
cient. However, if markets are incomplete then
some risks are uninsurable and there may be a role
for government in designing risk sharing mecha-
nisms which improve the distribution of risk
throughout the economy (Newbery and Stiglitz
1981; Innes and Rausser 1989).

2.2 Stochastic Trends

Another characteristic property of many commod-
ity price series, at least when sampled at high
frequencies (daily, weekly, or even monthly inter-
vals) is that they appear to contain stochastic trends
(Ardeni 1989; Baillic and Myers 1991; Goodwin
1992; Goodwin and Schroeder 1991). A stochastic
trend increases by some fixed amount on average
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but in any given period the trend deviates from the
average by some unpredictable random amount
(Stock and Watson 1988). Formally, this notion of
a stochastic trend can be modelled as a random
walk with drift:

1) rn-—nq1=Uw+&

where the drift parameter [ is the average change
in rp each period; and & is a serially uncorrelated
random shock. If a commodity price followed a
pure stochastic trend then i would represent the
price level and i - -1 would represent the price
change from period to period.

A commodity price pr may contain a stochastic
trend but also be subject to stationary deviations
around the stochastic trend. In this case, the price
can be written as the sum of a stochastic trend
component r; and a stationary component zi:

2 p=rn+z

where z; is a stationary stochastic process. Given
a set of data on commodity prices only, it may be
difficult to explicitly separate out the stochastic
trend component from the stationary component
(see Stock and Watson 1988). Nevertheless, rep-
resenting prices as the sum of a pure stochastic
trend component, and a component representing
stationary deviations around the trend, is a useful
way of conceptualizing the time-series properties
of many commodity prices. For example,
Beveridge and Nelson (1981) have shown that any
variable which can be modelled as an autoregres-
sive integrated moving average (ARIMA) process,
with order of integration one (i.e. requires first
differencing to induce stationarity), has a repre-
sentation as the sum of a stochastic trend compo-
nent and a stationary component.

Over the past decade, important advances have
been made in developing statistical tests for sto-
chastic trends. The original unit root tests devel-
oped by Dickey and Fuller (1979, 1981) are based
on regressions of the form:
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(Ga) p. = Op1 + &

Gb) p=p" +apt + et

BGo) p=0+ap1 + P+ &

fort=1,2,.., T. The Dickey-Fuller tests use standard
t and F statistics computed from these regressions
but the statistics follow a non-standard distribution.
Full details of the tests and appropriate critical
values are available in Fuller (1976, pp.366-382)
and Dickey and Fuller (1981).

A frequent problem in applications of Dickey-
Fuller tests is that the residuals from the regressions
(3) are autocorrelated, thus violating an important
assumption underlying construction of the tests.
The augmented Dickey-Fuller tests are designed to
correct this problem. In augmented Dickey-Fuller
tests the regression equations (3) are expanded by
including lagged differences of the dependent vari-
ables as additional explanatory variables. The test-
ing procedure then proceeds exactly as before, with
all of the relevant statistics having the same limit-
ing distributions.

Unfortunately, the augmented Dickey-Fuller tests
are not able to deal effectively with all of the
distributional problems typically found in applica-
tions. Suppose, for example, that the error term has
moving average as well as autoregressive terms.
Then inclusion of any finite number of lagged
differences will not eliminate autocorrelation in the
residuals. Furthermore, suppose that the variance
of the residuals changes over time. Then this het-
erogeneity in the distribution of the residuals will
lead to biased and inconsistent test results. To help
overcome these problems, Phillips (1987) and Per-
ron (1988) have developed an alternative set of
tests which are more robust to autocorrelation and
heterogeneity in the distribution of the residuals.
The tests are based on regressions like (3) and focus
on the same null and alternative hypotheses. How-
ever, the relevant test statistics are not just standard
t and F statistics. Full details of the formulae for

constructing these Phillips-Perron test statistics,
and information on the appropriate distributions to
use to test the hypotheses, are available in Perron
(1988).

A problem with both the Dickey-Fuller and Phil-
lips-Perron tests is that the stochastic trend is the
null hypothesis. This ensures that a stochastic
trend is accepted unless there is strong evidence
against it. It could be, however, that a stochastic
trend cannot be rejected simply because the dataare
not very informative about whether or not there is
a stochastic trend (i.e. standard unit root tests have
low power against the alternative that the series is
stationary but with a root that is close to unity). In
response, a new test has been developed by
Kwiatkowski, Phillips, Schmidt and Shin (1992)
which tests the null hypothesis of stationarity
against the alternative that the series has a stochas-
tic rend. The KPSS test can be a useful consis-
tency check for the more conventional Dickey-
Fuller and Phillips-Perron tests.

Many of these unit root tests have been applied to
commodity price data and results indicate that com-
modity price data sampled at high frequencies
show consistent evidence of stochastic trends (e.g.
Ardeni 1989; Baillic and Myers 1992; Goodwin
1992; Goodwin and Schroeder 1991). However,
the evidence is far less clear for low frequency
(annual) data. The explanation for this discrepancy
may lie in the smaller number of annual observa-
tions typically available and/or in the low power of
unit root tests. Deaton and Laroque (1992) outline
a theoretical model for storable commodities in
which the equilibrium price process shifts between
two regimes depending on whether speculative in-
ventories are positive or zero. The positive storage
regime features a stochastic trend but even infre-
quent shifts to the zero storage regime results in a
price process that is stationary in the long run.
They also argue that establishing the long-run prop-
erties of commodity price series using the number
of observations typically available in practice is
going to be extremely difficult.
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2.3 Comovements in Commodity Price
Series

Many commodity prices share a tendency to move
together over time, even when the commodities
themselves are largely unrelated in both production
and consumption (Pindyck and Rotemberg 1990).
There are three main reasons for such comove-
ments. Firsi, it could be that supply and demand
shocks to any one commodity spill over into other
related commodities causing a group of commodity
prices to move together. While this is a logical
explanation for commodities which are strongly
related to one another, either in production or con-
sumption (e.g. wheat and rice), it cannot explain
comovements between largely unrelated com-
modities (e.g. cattle and copper). Second, common
macroeconomic shocks to, say, the money supply
or interest rates could be affecting all commodity
prices similarly. Common macroeconomic shocks
undoubtedly explain some of the comovement
among commodity prices but research by Pindyck
and Rotemberg (1990) suggests that macroe-
conomic shocks can only explain a small fraction
of the actual comovement in commodity prices. A
third possibility is that market speculation and
overreaction causes spillovers between commodity
markets that cannot be accounted for by changing
microeconomic fundamentals or common macroe-
conomic shocks.

One way to formalise the idea of comovements
among commodity prices is to use the theory of
cointegrated stochastic processes. We have al-
ready seen that many commodity prices can be
represented as the sum of a stochastic trend and
stationary deviations around the trend. In these
circumstances two commodity prices are said to be
cointegrated if they share the same stochastic trend:

4a) pu=n+zn
(4b) P2 = 51‘1 + Z2n

where pit is commodity price i, ry is the common
stochastic trend; zi; is stationary component i; and
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8 is a scaling parameter. Substituting (4a) into (4b)
gives

(5) p2=0pu+m
where zi = z21 - 6z11.

The first component p2. = dp1: of (5) represents a
long-run equilibrium relationship between the two
prices resulting from their common stochastic
trend!. The two prices return to this linear relation-
ship in the long run, even though prices may deviate
from the relationship in the short run as z; varies.
It is important to realize that the long-run equilib-
rium relationship has no causal interpretation in the
usual sense. Thus, when there is a shock to the
long-run equilibrium it makes no sense to think of
holding one variable, say pi, fixed and computing
the path of the other, pa, back to the long-run
equilibrium. In practice, both p1t and p2 adjust to
the shock and all one can say is that eventually the
long-run equilibrium relationship will be re-estab-
lished. Thus, there is no unique "dependent vari-
able" in (5) and the choice of a "dependent variable”
is really just an arbitrary normalisation.

The parameter & which characterises the nature of
the long-run equilibrium relationship can be esti-
mated by applying ordinary least squares (OLS)
to (5). Perhaps surprisingly, OLS estimates the
parameters of this cointegrating regression consis-
tently, even when z is autocorrelated, hetero-
scedastic, and correlated with p1¢. In fact, the OLS
estimate converges to the true parameter value at a
faster rate than in the usual case of stationary re-
gressors because every other linear combination of
p1cand p2:, besides that represented by the long-run
equilibrium, has asymptotically infinite variance.
Nevertheless, OLS estimates of a cointegrating re-
gression generally follow a nonstandard distribu-
tion theory, even asymptotically, and so one must

! Because z is not necessarily assumed to have zero mean then
a constant term can be added to the long-run equilibrium rela-
tionship without any loss of generality.
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be very careful undertaking hypothesis tests,
Moreover, OLS is a biased estimator of the cointe-
grating regression in small samples, and this small
sample bias can be large. Details of estimation and
testing of cointegrating regressions can be found in
Engle and Granger (1987), Engle and Yoo (1987),
Harvey (1990), and Cuthbertson, Hall and Taylor
(1992).

A limitation of univariate OLS based tests for co-
integration is that there is no systematic way to
investigate all possible cointegrating vectors in a
multivariate system. To overcome this probiem,
Johansen (1988, 1991) and Johansen and Juselius
(1990) have developed maximum likelihood meth-
ods for testing and estimating cointegrating vectors
in a multivariate framework. Johansen uses mo-
ment and cross-moment matrices from auxiliary
regressions to test the null hypothesis that an (nx1)
vector of variables, say a vector of commodity
prices pr, has at most k cointegrating vectors, and
to estimate the resulting "error correction model”
with cointegration restrictions imposed. Full de-
tails of Johansen’s approach are available in the
references already cited.

Empirical tests for cointegration among commod-
ity prices have provided mixed results. Goodwin
and Schroeder (1991) find evidence of cointegra-
tion among regional US cattle prices and Goodwin
(1992), using Johansen’s multivariate testing
framework, supports the hypothesis of one cointe-
grating vector among five international wheat
prices. However, Ardeni (1989) investigates sev-
eral commodity prices, including wheat, at differ-
ent locations and concludes that the evidence for
cointegration is weak, even when considering
prices for the same commodity at different loca-
tions.

2.4 Time-Varying Volatility

Some of the earliest research on the distributions of
commodity prices assumed that price changes are
independent draws from an identical normal distri-
bution. It soon became apparent, however, that the
volatility of price changes varies over time as the

series moves between volatile periods, where large
price changes tend to be followed by other large
changes, and tranquil periods, where small price
changes tend to be followed by other small
changes. This temporal instability in the variance
of commodity price data has become a well-known
feature in empirical studies using high frequency
data (e.g. Baillie and Myers 1992; Yang and
Brorsen 1992).

It should be clear that time-varying volatility can
be consistent with the existence of a stochastic
trend in commodity prices. In fact, most of the
research on time-varying volatility has focused on
price changes, which implies that the stochastic
trend has been removed by first differencing.
Time-varying volatility in commodity prices leads
to autocorrelation pattemns in the conditional vari-
ance of price innovations, where the variance is
conditional on an information set available at the
time forecasts are being formed. Engle (1982) has
termed this conditional heteroscedasticity and de-
veloped the autoregressive conditional hetero-
scedasticity (ARCH) model to capture such effects.

Bollerslev (1986) generalised ARCH to the gener-
alised autoregressive conditional heteroscedastic-
ity (GARCH) model by including lagged condi-
tional variances as well as lagged squared innova-
tions in the equation explaining conditional
variance movements. A simple yet useful example
of a GARCH model is the GARCH (1,1) model of
price changes:

(62) p—p-1 =l + &
(6b) edCu-1 ~ D(O0, hy)
6c) hi=m+ ae® + Bhe—

In this example, price changes equal a constant L
plus a sernially uncorrelated error ;. The error e is
sampled from some arbitrary distribution D with
mean zero and variance hy, conditional on a set of
information .1; and the conditional variance hy
evolves based on last period’s conditional variance
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and the realised value of last period’s squared in-

novation e2;. Note that (6¢) allows for a wide
range of temporal patterns in the conditional vari-
ance of price innovations.

ARCH and GARCH models are highly nonlinear
and maximum likelihood is the usual estimation
approach (Harvey 1990). However, Engle (1982)
has developed a simple Lagrange multiplier test for
conditional heteroscedasticity which can be under-
taken using OLS procedures. Applications of this
testing and estimation framework to high fre-
quency commodity price data have led to consistent
rejections of the no ARCH effects hypothesis, sug-
gesting that conditional heteroscedasticity is a
common characteristic of commodity price data
sampled at high frequencies (e.g. Baillie and Myers
1991; Yang and Brorsen 1992).

2.5 Excess Kurtosis

Early research on the distribution of commodity
prices also assumed that price changes are normally
(or lognormally) distributed. Subsequent work has
shown that the tails of empirical price distributions
appear to be much fatter than the normal, indicating
excess kurtosis in commodity price changes (Gor-
don 1985; Deaton and Laroque 1992).

ARCH models lead to a partial solution of the
excess kurtosis problem. Even if the conditional
distribution of price changes is assumed normal in
the ARCH model then the unconditional distribu-
tion is not normal and, in fact, has fatter tails than
the normal (Engle 1982). Thus, ARCH and
GARCH models go part of the way towards ac-
counting for apparent non-normalities in the em-
pirical distribution of commodity prices.
Nevertheless, empirical research has shown that
even the ARCH and GARCH models fail to capture
all of the excess kurtosis in commodity prices, if
the assumption of a normal conditional distribution
for price innovations is maintained (Baillie and
Myers 1992; Yang and Brorsen 1992). One solu-
tion is to assume the conditional distribution of
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price innovations in the GARCH model follows a
t-distribution with degrees of freedom treated as a
parameter to be estimated. This provides the model
with the necessary flexibility to capture the excess
kurtosis inherent in commodity price data.

3. Implications for Econometric
Analysis of Commodity Markets

Statistical inference in econometric studies of com-
modity markets is usually conducted under the
assumption that all variables are stationary (no
stochastic trends), and often the additional assump-
tion of identically and independently distributed
errors (often normal as well) is also invoked. As
just discussed, however, these assumptions are in-
appropriate for many commodity price data. Com-
modity prices may have stochastic trends and may
share trends with other commodity market vari-
ables (i.e. be cointegrated). Commodity prices also
tend to experience time-varying volatility and fol-
low distributions that have excess kurtosis com-
pared to the normal. In this section, the
implications which some of these empirical attrib-
utes of commodity prices have for conventional
econometric analysis of commodity markets are
outlined and discussed.

3.1 High Volatility

High volatility of commodity prices is perhaps their
least problematic attribute from the perspective of
undertaking appropriate statistical inference. Cer-
tainly, highly volatile prices may be difficult to
explain using standard econometric models and
techniques, so that the R? in equations trying to
explain pricc movements may be relatively small.
This in itself, however, poses no particular statisti-
cal problems. The challenge presented by highly
volatile commodity prices lies in explaining why
the volatility occurs and deciding what, if anything,
needs to be done to alleviate any undesirable con-
sequences. Since this is not the focus of the current
paper a discussion of these issues is left for another
time.
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3.2 Stochastic Trends and Cointegration

Stochastic trends and cointegration can be much
more important for statistical inference. The issues
are addressed within the context of a simple text-
book model of commodity supply and demand:

(7a) yi = yupt + yizke + uie
) (70) ¥y = vp + ye2xt + u
(7c) ¥ =yf

where y§ is quantity supplied; y{ is quantity de-
manded; p: is the commodity price; ki is a supply
shifter (e.g. technical change); x; is a demand
shifter (e.g. income); and u1: and ux are random
supply and demand disturbances. For now, the
supply and demand disturbances are defined as
generally as possible: they may be autocorrelated
so as to generate market dynamics; they may be
heteroscedastic reflecting time-varying volatility;
and they may be stationary or have stochastic
trends depending on how the variables in the sys-
tem interact with one another. All variables are in
logarithms, so that the v;j coefficients can be inter-
preted as supply and demand elasticities. Further-
more, to simplify the presentation it is assumed that
any deterministic components (mean and/or deter-
ministic trends) have been removed prior to model
specification. The variables in this model could
easily be interpreted as vectors, and/or lagged
prices and quantities could be included in the
model, without changing the substance of the dis-
cussion which follows.

The supply and demand shift variables are assumed
to follow autoregressive processes:

(8a) ki = prki-1 + €1t

(8b) xi = p2xi-1 + e

where the random disturbances €1: and €% may be
correlated with each other but not with the struc-

tural disturbances uj: and uz. Again, these proc-
esses could be allowed to be more complicated
without changing the substance of the arguments
which follow. Note that the exogenous variables
may have a stochastic trend or be stationary, de-
pending on the value of pi. If p1=1 and k; and x; are
cointegrated then Equation (8b) is replaced by

(9) Xt = 8k1 + €
where § is the scaling parameter defining the long-
run equilibrium relationship between the supply

and demand shift variables.

The model is exactly identified and has reduced
form:

(10a) p = mixe + wizke + vy

(10b) yt = maxe + w2k + v2u

where the mjj are functions of the structural parame-
ters; and v1; and v2; are correlated functions of the
structural errors. Four different cases are now ex-
amined, each characterised by different assump-
tions about which variables are stationary and
which have stochastic trends.

Case 1: Stationary Regressors

The conventional approach to estimation when lpil
<1 and all variables are stationary is to apply OLS
to the reduced form and an instrumental variables
(IV) estimator, such as two-stage least squares
(2SLS), to the structural equations. The structural
equations can also be estimated via systems meth-
ods such as three-stage least squares or full infor-
mation maximum likelihood. However, these
systems methods have the disadvantage that any
misspecification in one equation can spill over and
cause problems in estimation of every equation. If
all of the variables are stationary then IV estimation
and inference usually takes place on the basis of
asymptotic results because, although the IV estima-
tor is consistent and asymptotically normal, its
small sample properties are generally unknown.
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Case 2: Two Distinct Stochastic Trends

Now suppose that the supply and demand shift
variables follow distinct random walks, p1 = p2 =
1, and therefore are not cointegrated. Then by the
reduced form, price and quantity generally have
stochastic trends as well because they are lincar
combinations of ky and x;. In this case, the supply
and demand equations (7a) and (7b) each represent
linear combinations of stochastically trending vari-
ables. There are two possibilities. The first is that
the linear combinations represented by the supply
and demand equations (i.e. the structural errors uir)
themselves have a stochastic trend. In this case
there is no long-run relationship between the vari-
ables and the supply and demand equations repre-
sent spurious regressions in the sense of Granger
and Newbold (1974). Results from IV (or OLS)
estimation of such equations are notoriously unre-
liable because estimated coefficients are not con-
sistent and the R? converges to a random number,
Clearly, estimation and inference in this case is
nonstandard and application of standard techniques
will lead to major problems.

The second possibility is that the structural distur-
bances uj are stationary and the supply and demand
equations therefore represent stationary linear
combinations of stochastically trending variables.
In other words, (yi, pi, ki) and (yt, pr, Xt) are two
cointegrating relationships and the relevant supply
and demand elasticities represent the long-run re-
lationship between the series (i.e. the cointegrating
vectors). Because the structural disturbances may
be autocorrelated then the system may be subject
to short-run dynamics and so the elasticities repre-
sented by the cointegrating vectors are best inter-
preted as long-run elasticities.

What are the implications of this scenario for esti-
mation and statistical inference? Fortunately, the
conventional I'V estimator applied to the supply and
demand equations remains consistent (Phillips and
Hansen 1990). However, the IV estimator is biased
in small samples and its asymptotic distribution is
generally not normal, as it would be with stationary
variables. Thus, normal distribution theory cannot
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be used in hypothesis testing, even when relying on
large sample results. This is an obvious problem
for conventional inference in these types of models.

Furthermore, it tums out that the IV estimator of
the cointegrated supply and demand equations is
not the only consistent estimator. In particular,
simple OLS is also consistent and converges rap-
idly to the true parameter values, despite the obvi-
ous simultaneity problem. The reason for this
"super consistency” is that all linear combinations
of, for example, the supply equation variables (y1,
Pt k), other than that given by the supply equation
itself, have asymptotically infinite variance. Be-
cause OLS minimises the residual variance it
moves quickly to the finite residual variance de-
fined by the supply equation parameters. Like the
IV estimator, the OLS estimator of cointegrated
supply and demand equations is biased in small
samples and its asymptotic distribution is generally
not normal. Thus, conventional inference cannot
proceed as usual for this estimator cither.

Two main approaches to overcoming problems
with standard OLS and IV estimation of cointegrat-
ing regressions have been developed. The first is
full information maximum likelihood (FIML).
Phillips (1991) and Johansen (1991) have shown
that FIML provides optimal inference, provided the
restrictions implied by cointegration are imposed
during estimation. Small sample bias is reduced
and the usual asymptotic hypothesis tests are gen-
erally applicable. Furthermore, Gonzalo (1989)
provides monte carlo evidence suggesting that
FIML estimation of cointegrated systems provides
superior estimates (lower small sample bias and
more accurate standard errors), even in small sam-
ples with errors that deviate from normality. The
second approach is to "fully modify" OLS and/or
IV estimators so as to reduce small sample bias and
allow conventional asymptotic inference (Phillips
and Hansen 1990). The "fully modified" estima-
tors have asymptotic mixed normal distributions
which allow general hypothesis tests using conven-
tional techniques. Furthermore, the "fully modi-
fied" OLS and IV estimators are asymptotically
equivalent to FIML (Phillips 1991).
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Because OLS and I'V are both consistent estimators
of cointegrating regressions, it is of interest o
determine which gives better results for cointe-
grated supply and demand systems in small sam-
ples. Monte carlo simulations have shown that the
performance of the two estimators in small samples
depends on the signal to noise ratio (Phillips and
Hanson 1990). If the variance of the innovations
in the stochastic trends which drive the long-run
behavior of the variables is high relative to the
variance of the short-term dynamics (the structural
disturbances in the supply and demand model) then
the signal to noise ratio is high, small sample bias
is low, and OLS and IV both provide good est-
mates of the cointegrating vector (although hy-
pothesis testing is nonstandard). If the variance of
the innovations in the stochastic trends is low rela-
tive to the variance of the short-term dynamics,
then the signal to noise ratio is low and IV estima-
tion generally provides a betler estimate of the
cointegrating vector than OLS. The reason is that
the simultaneity bias in OLS, which goes to zero
asymptotically, can be quite high in small samples
when the signal to noise ratio is low. 1V estimation
helps reduce this small sample simultaneity bias.
Nevertheless, standard errors computed in the con-
ventional way are again subject to bias and so
hypothesis testing is nonstandard, even asymptoti-
cally. Some monte carlo evidence supporting these
conclusions for the simple commodity market
model is presented below.

Case 3: One Stochastic Trend With
Stationary Supply Shifter

Now consider the case when the supply shift vari-
able k; is stationary but the demand shift variable
xt has a stochastic trend. By the reduced form, both
price and quantity depend on x; so these variables
both have stochastic trends as well. Nevertheless
the supply equation (7a) defines a linear combina-
tion of price and quantity y: - Y1 1pr which is station-
ary, and the cointegrating vector (1, -y11) defines
the price elasticity of supply.

Now suppose one wanted to estimate the supply
elasticity. One approach is to simply run an OLS

regression of quantity on price. Because all other
linear combinations of quantity and price (besides
the supply equation) have infinite variance, this
simple bivariate linear regression gives a consistent
estimate of the supply elasticity. The estimate also
converges quickly to the true parameter value,
though it remains biased in small samples and one
would not trust standard errors computed with the
usual formula when undertaking statistical infer-
ence. All of this occurs despite the fact that price
and quantity are determined simultaneously, and
that the regression is "misspecified” by exclusion
of the supply shift variable. The supply elasticity
could also be estimated by a multiple regression of
quantity on price and the supply shifter ki, or by
using conventional IV techniques. The relative
performance of these estimators in small samples
should depend on the signal to noise ratio as dis-
cussed above, although in all three cases conven-
tional standard errors are not to be trusted. The
preferred alternative, of course, is {0 use maximum
likelihood and impose cointegration restrictions
during estimation.

Case 4: One Stochastic Trend With
Cointegrated Supply and Demand Shifters

Finally, consider the possibility that the commodity
price has a stochastic trend but that the quantity
variable is stationary. This implies that the supply
and demand shift variables both have stochastic
trends but that the linear combination m21x: + m22k;
is stationary.2 In this case the reduced form quan-
tity equation (10b) has a stationary dependent vari-
able and a linear combination of the stochastically
trending regressors is stationary. In the structural
form, the dependent variable quantity in the supply
and demand equations is stationary but the explana-

Zh is, of course, possible that the supply and demand shift

variables are cointegrated but the cointegrating relationship ts
not represented by either reduced form equation, so that equi-
librium price and quantity both have swchastic trends. In this
case, however, the supply and demand equations are either
spurious regressions or cointegrating regressions and so estima-
tion and inference revens to Case 2 which has already been
discussed.
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tory variables have a stochastic trend. Thus y11p:
+ Y12kt and Y21 pr + V22X represent stationary linear
combinations (cointegrating relationships) and the
model can be transformed so that all of the coeffi-
cients of interest can be written as coefficients on
stationary variables. Sims, Stock and Watson
(1990) have shown that when a regression contains
explanatory variables with stochastic trends, but
the equation can be rearranged so that all of the
coefficients of interest can be written as the coeffi-
cient on a stationary variable, then conventional
estimation and distribution theory is applicable.

The Sims, Stock and Watson (1990) result implies
that when the supply and demand shifters are coin-
tegrated in a way that leaves quantity stationary
then conventional inference is applicable. Thus,
the IV estimator should perform betier than OLS in
this case because IV accounts for the simultaneity
between price and quantity in the conventional
estimation framework, while OLS does not. The
monte carlo evidence presented below supports
these conclusions.

3.3 Time-Varying Volatility and Excess
Kurtosis

Time-varying volatility in commodity prices has
the same general effect on statistical inference as
any other form of heteroscedasticity. In particular,
the standard OLS and IV estimators remain unbi-
ased and consistent. However, there is a loss of
efficiency and estimated standard errors may be
biased. Indeed, Engle (1982) points out that the
main problem with applying OLS to a model with
ARCH disturbances is the resulting loss in effi-
ciency. Excess kurtosis causes problems whenever
inference requires a particular distributional as-
sumption on the disturbance terms. Although the
normal is typically chosen, the actual distribution
of commodity prices appears (o have fatter tails
than the normal.

It is important to note, however, that ime-varying

volatility and excess kurtosis may not be as crucial
in OLS and IV estimation of cointegrating regres-
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sions. The reason is that the "super consistency" of
such estimators causes rapid convergence to the
true parameter values irrespective of these distribu-
tional problems. On the other hand, itis crucial that
hypothesis testing procedures be robust to hetero-
scedasticity and excess kurtosis. Furthermore, het-
eroscedasticity and excess kurtosis violate the
assumptions underlying Johansen’s multivariate
cointegration testing and estimation framework.

4. A Monte Carlo Simulation

A monte carlo experiment was undertaken to high-
light some of the effects from usingt OLS and IV
estimators of commodity market models under
various forms of cointegration. The data generat-
ing process used in the simulation is a simple
version of the commodity market model:

yi =Pt + ke + e
11
(112) et = 0.5a-1 + un (Supply)
(11b) yt = —pt + x¢ + u (Demand)

(11c) ki

piki-1 + Aen
(11d) x = p2xe—1 + Aex

Each of the disturbance terms vy and & are identi-
cally and independently distributed N(0,1) vari-
ables. The supply disturbance is autocorrelated to
introduce the effects of short-run dynamics into the
results. The parameters p; and p2 are set equal to
different values depending on which case is being
investigated. The same four cases discussed above
were simulated. For Case 1, where all variables are
stationary, then p1 =p2 =0. For Case 2, where there
are two distinct stochastic trends, then p; = p2 = 1.
For Case 3, where the supply shifter is stationary
but the demand shifter has a stochastic trend, then
pt = 0 but p2 = 1. Finally for Case 4, where the
supply and demand shift variables are cointegrated
then p1 =1 and (11d) is replaced by x; = - ke + Aga:.
Notice that this particular ¢ointegration relation-
ship ensures that quantity is stationary while price
has a stochastic trend.
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The parameter A determines the signal to noise
ratio. If A is large then the variance of the random
walks are large relative to the variance of supply
and demand disturbances (high signal to noise ra-
tio) while if A is small the reverse occurs. The
experiment was repeated for the two values, A= 1
and A = 10.

Each time the model was simulated, a series of
observations on four independent N(0,1) variables
was drawn using the random number generator
RNDN in GAUSS. These random numbers were
then applied to Equation (11) to generate a series
of observations on (y1, pt, ki, 1), using zero as a start
up value for xi, ki and er. The number of observa-
tions generated exceeds the desired sample size by
100 and then the first 100 observations of each
sample are discarded to ensure that startup values
do not have a major impact on the results. IV and
OLS estimators were then applied to the data set
and their performance compared. The whole proc-
ess was then repeated a total of 10,000 times and
summary results tabulated.

It is assumed that the aim of the exercise is to
estimate the price elasticity of supply. In most
cases two alternative estimators were applied. First
is the conventional IV (2SLS) estimator of the
supply equation, using k: and x; as instruments for
pr. Second is an OLS regression of y; on (p, ki).
For Case 3, where k: is stationary, a simple OLS
regression of yy on py is also applied. Because the
supply equation is a cointegrating regression, and
the supply shift variable k: is stationary, the simple
OLS regression should generate a consistent esti-
mate of the supply elasticity in this case. The
estimation was repeated for two sample sizes, 500
and 50. The large sample size is used to gain some
insight into the asymptotic properties of the estima-
tors while the small sample size is used to investi-
gate their small sample properties.

The large sample results are reporied in Table 1.
In the case of low signal to noise ratio (A= 1) 2SLS
clearly outperforms OLS when all variables are

stationary. 2SLS has a mean estimate very close to
the true supply elasticity of one, has lower root
mean square error (RMSE) than the OLS estimator,
and rejects the null hypothesis that the supply elas-
ticity equals one 4.91 per cent of the time, which is
quite close to the theoretical value of 5 per cent.
Because price and quantity are simultaneously de-
termined the OLS estimator is very biased and so
the null hypothesis that the supply elasticity is one
is rejected 100 per cent of the time under OLS.

The situation is quite different in Case 2 where
there are two distinct stochastic trends and the
supply equation is a cointegrating regression.
2SLS still performs best but OLS does much better.
The bias in the OLS estimator is reduced signifi-
cantly and would go to zero asymptotically, No-
tice, however, that both the OLS and 2SLS
estimators require nonstandard inference proce-
dures, even when sample sizes are large. The 2SLS
estimator rejects the null that the supply elasticity
is one 26 per cent of the time using a standard t-test,
when the actual number of rejections should be 5
per cent. For OLS this figure is 83 per cent. Simi-
lar results occur in Case 3 when there is only one
stochastic trend. In this case, however, the supply
shift variable is stationary and so excluding it from
the regression should not affect the consistency of
OLS. Indeed, a simple regression of quantity on
price gives a mean supply elasticity estimate of
0.91 which is quite close to the true value of one.
Nevertheless, the simple OLS regression has more
bias and higher mean square error than the multiple
regression including the supply shifter. Thus, it
appears that there is an advantage to including
additional relevant regressors, even when they are
stationary.

Incase 4, where the supply and demand shifters are
cointegrated and quantity is stationary then stand-
and inference procedures are applicable. This can
be seen by noting the retum of the bias in the OLS
estimator and the percent of rejections in the 2SLS
estimator returning to its theoretical value of 5 per
cent.
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Table 1: Large Sample Simulation Results for Supply Elasticity Estimation®

Mean Supply Root Mean Percent of
Elasticity Square Rejections at

Case and Estimator Estimate Error the 5% Level®
Low Signal to Noise Ratio (A=1)
Case 1: All Variables Stationary

2SLS 1.01 0.105 491

OLS - 0.20 0.799 100.00
Case 2: Two Distinct Stochastic Trends

2SLS 1.00 0.030 26.32

OLS 093 0.086 £3.30
Case 3: One Stochastic Trend With Stationary Supply Shifter

2SLS 1.00 0.026 26.46

OLS 0.95 0.068 75.43

Simple OLS 091 0.111 88.93
Case 4: One Stochastic Trend With Cointegrated Supply and Demand Shifters

2SLS 1.01 0.105 499

OLS 0.20 0.797 100.00
High Signal to Noise Ratio (A= 10)
Case 1: All Variables Stationary

2SLS 1.00 0.010 524

OLS 097 0.028 T72.64
Case 2: Two Distinct Stochastic Trends

2SLS 1.00 0.003 2541

OLS 1.00 0.003 27.25
Case 3: One Stochastic Trend With Stationary Supply Shifter

2SLS 1.00 0.003 26.28

OLS 1.00 0.003 27.17

Simple OLS 0.96 0.054 76.29
Case 4: One Stochastic Trend With Cointegrated Supply and Demand Shifters

2S8LS 1.00 0.010 5.38

OLS 097 0.028 72.61

X =k + 7\.821.

cance level in a two-sided test.

Results from estimating the supply elasticity with 500 observations and 10,000 repetitions of the experi-
ment. Case 1is py =p2=0;; Case2is p1=pz=1;Case 3 is p1 =0and pp=1; Case 4 isp1=1and

Percent rejections of Ho: A11 = 1.0 using the standard regression t-test and the conventional 5% signifi-

Large sample results when there is a high signal to
noise ratio are reported in the second part of Table
1. Results are very similar to the case of low signal
1o noise ratio except that there is almost no differ-
ence between 2SLS and OLS when the supply
elasticity is a cointegrating regression (Cases 2 and
3) and there is a smaller difference between simple
OLS (without the supply shifter) and multiple OLS
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(with the supply shifter) when the supply shift
variable is stationary (Case 3). Notice, however,
that standard inference procedures can still lead to
errors when the supply equation is a cointegrating
regression, and that this is true irrespective of
whether OLS or 2SLS is used (see the number of
rejections far exceeding the theoretical value of 5
per cent in Cases 2 and 3 of Table 1).
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Table 2: Small Sample Simulation Results for Supply Elasticity Estimation®

Mean Supply Root Mean Percent of
Elasticity Square Rejections at

Case and Estimator Estimate Error the 5% Level
Low Signal to Noise Ratio (A= 1)
Case 1: All Variables Stationary

2SLS 1.08 0.494 5.66

OLS 022 0.795 09.82
Case 2: Two Distinct Stochastic Trends

2SLS 1.04 0.295 20.24

OLS 0.63 0425 76.60
Case 3: One Stochastic Trend With Stationary Supply Shifter

2SLS 1.03 0.263 2144

OLS 0.69 0.375 70.52

Simple OLS 0.51 0.553 85.57
Case 4: One Stochastic Trend With Cointegrated Supply and Demand Shifters

2SLS 1.07 0.486 558

OLS 0.24 0.780 99.75
High Signal to Noise Ratio (L= 10)
Case 1: All Variables Stationary

2SLS 1.00 0.033 5.76

OLS 0.97 0.041 1191
Case 2: Two Distinct Stochastic Trends

2SLS 1.00 0.026 23.13

OLS 0.99 0.026 2251
Case 3: One Stochastic Trend With Stationary Supply Shifter

2SLS 1.00 0.023 24.37

OLS 1.00 0.024 23.64

Simple OLS 0.68 0379 73.03
Case 4: One Stochastic Trend With Cointegrated Supply and Demand Shifters

25LS 1.00 0.033 5.76

OLS 0.98 0.040 11.84

Xe=—k¢+ }\221.

cance level in a two-sided test.

Resuits from estimating the supply elasticity with 50 observations and 10,000 repetitions of the experi-
ment. Case lispr=p2=0;; Case2ispi=p2=1;Case3ispr=0andpr=1;Case4isp1 =1 and

Percent rejections of Ho: Aj; = 1.0 using the standard regression t-test and the conventional 5% signifi-

Results from the small sample simulations are re-
ported in Table 2. The pattern of these results is
very similar to the large sample results. The main
difference is that, in small samples, OLS estimation
of cointegrating regressions seems to perform even
worse relative to 2SLS than in the case of large
samples, particularly under low signal to noise
ratio. The reason for this is that the small sample

size exacerbates the simultaneity bias in the OLS
estimator. 2SLS helps reduce this bias by account-
ing for the simultaneous determination of price and
quantity. Once again, however, standard inference
procedures are not applicable with either OLS or
2SLS when estimating a cointegrating regression
(see the high rate of rejections in Cases 2 and 3).
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The main conclusion from these results is that
2SLS (or some other IV procedure) is generally
preferable to OLS estimation of cointegrating re-
gressions in commodity market models featuring
simultaneity. OLS may perform as well as 2SLS
when sample sizes are large and there is a high
signal to noise ratio. In general however, the small
sample simultaneity bias in the OLS estimator
causes its performance to deteriorate relative to
2SLS, which takes this simultaneity bias into ac-
count. Standard inference procedures are not ap-
plicable with either estimator, irrespective of
sample size, and a FIML or "fully modified" IV
approach is required for proper hypothesis testing.

5. Concluding Comments

Developments in time series econometrics have
proceeded at a remarkable pace over the past dec-
ade and the full implications for econometric analy-
sis of commodity markets are only just beginning
to be widely understood. Many commodity prices
appear to contain stochastic trends and be cointe-
grated with other commodity market variables.
Time-varying volatility and excess kurtosis also
characterise many commodity prices. These time
series characteristics have significant implications
for econometric analysis of commodity markets.

Most importantly, the presence of stochastic trends
raises a number of econometric pitfalls for the
unwary, particularly when it comes to inference
regarding supply and demand elasticity estimates.
Time-varying volatility and excess kurtosis in com-
modity prices also need to be properly accounted
for if estimation is to proceed with full efficiency.
Indeed, to avoid major errors in estimation, infer-
ence and interpretation, commodity market ana-
lysts must become increasingly aware of the time
series characteristics of their data, and of the result-
ing implications for the use of various econometric
methods and techniques.
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