
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Rice, Irrigation and Downside Risk:  

A Quantile Analysis of Risk Exposure and Mitigation on Korean Farms 

 

by 

Kwansoo Kim 

Jean-Paul Chavas 

Bradford Barham 

Jeremy Foltz1 

 

Abstract: This article develops a new quantile approach utilizing partial moments 
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options associated with a highly controlled but stochastic production system − 

irrigated rice production in Korea. The econometric approach exploits a rich panel 

dataset to develop consistent and robust econometric estimates of the partial 
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Rice, Irrigation and Downside Risk:  

A Quantile Analysis of Risk Exposure and Mitigation on Korean Farms 

 

1. Introduction 

The role of risk and its effects on economic welfare are major themes in an 

era of uncertainty about global economic and environmental change (e.g., IMF; 

Stern; UK). Increasing attention is being paid to downside risk exposure or risk 

associated with unfavorable events, such as climate change and financial shocks 

(Weitzman; World Economic Forum). Starting with safety first models (e.g., 

Roy), and in subsequent studies of behavioral aversion to exposure to losses (e.g., 

Kahneman and Tversky), disappointments (e.g., Gul; Routledge and Zin) or 

below target returns (e.g., Fishburn), researchers have considered the role of 

asymmetry in risk exposure and how to characterize and potentially manage 

downside risk aversion (e.g., Bawa; Menezes et al.; Antle, 1987; Modica and 

Scarsini; Ang et al.; Crainich and Eeckhoudt; Keenan and Snow, 2002, 2009). In 

the analysis of climate change, Weitzman argues that the cost of risk associated 

with catastrophic events can be quite large. In particular, his ‘fat tails’ hypothesis 

underscores the need for methodological advances and empirical inquiries that 

estimate downside risk exposure and its economic cost.  

This paper makes four contributions to the analysis of risk and downside 

risk. First, it presents and implements a decomposition of the cost of risk (as 

measured by the Arrow-Pratt risk premium) into additive components across 

quantiles of the distribution. Defining downside risk as the risk located in the 

lower quantile, this provides a basis to evaluate the relative importance of 

exposure to downside risk. Second, the paper proposes to use partial moments to 

evaluate risk exposure in each quantile. Partial moments provide a convenient 

basis to evaluate asymmetry in the payoff distribution.1 We show how estimates 

of partial moments can be used to evaluate the cost of exposure to downside risk. 
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Third, the paper adapts panel data econometric methods to estimate partial 

moments, thus providing a basis to evaluate empirically the exposure and cost of 

downside risk, along with the management options available to mitigate risk 

exposure. Finally, the usefulness of the methodology is illustrated in an 

application to agriculture, using panel data from Korean irrigated rice farms. To 

the extent that most of the production risk in Korean agriculture comes from 

unpredictable weather effects (e.g., temperature, typhoons), this analysis 

documents the importance of downside risk and fat tails (e.g., as argued by 

Weitzman) as they relate to climatic shocks and the options for risk management.   

The specific application to irrigated rice production is valuable because 

climatic conditions are the primary source of production risk in agriculture and 

other natural resource-based goods and services. As such, analyzing both the 

exposure to risk and levels of downside risk in agriculture is a key component in 

assessing the welfare effects of climatic changes (e.g., OECD; Hardaker et al.). 

As noted by Schlenker et al., while irrigation reduces exposure to rainfall risk in 

agriculture, it does not eliminate overall production risk. Indeed, irrigated rice in 

Asia remains subject to temperature fluctuations and to potential flooding 

associated with typhoons. Nonetheless, the longstanding presence of extensive 

irrigation infrastructure in Asia means a significant reduction in the threat of 

drought in irrigated rice cultivation (Barker and Herdt; Roumasset et al.), and this 

leads us to posit that irrigated rice farms in Korea may be close to a "best case 

scenario" for the investigation of climatic risk in agriculture.  To the extent then 

that we identify the presence of fat tails in the distribution of production risk as 

well as the relative importance of exposure to downside risk in irrigated rice 

production, then we would expect those results to be even stronger in other 

agricultural contexts.  

In the empirical analysis, we find strong evidence of ‘fat tails, we analyze 

the factors that shape risk exposure, and we estimate that about 90% of the cost of 



 

 

3 

risk comes from risk exposure in the first quartile of the distribution. Overall, the 

article provides evidence that strongly underscores Weitzman’s concern with the 

potential cost of downside risk exposure, especially in situations of fat tails. We 

also show that management factors can partially mitigate risk exposure outcomes.  

The methodological core of the article develops a quantile-based analysis 

of risk outcomes, where the lower quantile corresponds to downside risk, i.e. 

unfavorable risk located in the lower tail of the distribution. In section 2, we show 

how partial moments (partial mean, variance and skewness) in each quantile can 

be used to assess exposure to risk and downside risk. Section 3 establishes two 

important results. First, relying on the Arrow-Pratt risk premium as a measure of 

the cost of risk, the risk premium can be decomposed into components associated 

with each quantile. Second, we establish linkages between the quantile-

decomposition of the risk premium and partial moments, which generalizes 

previous literature on local risk premiums (Arrow, Pratt, Modica and Scarsin, 

Crainich and Eeckhoudt, and Keenan and Snow (2002, 2009)). This also shows 

how partial variance and skewness associated with relevant quantiles can identify 

the extent and sources of asymmetry in the lower tail of the distribution. Together 

with risk preferences, these measures provide a basis to evaluate the cost and 

economics of exposure to downside risk, as well as the potential for risk 

mitigation through management choices. 

The empirical analysis using a panel data set from over 3,000 Korean rice 

farms covering the period 2003-2008 is presented in section 4. The risk exposure 

analysis is based on our specification of a multi-output, multi-input production 

function using robust panel econometric methods, controlling for endogeneity and 

for unobservable household factors.2 We document the presence of fat tails in the 

distribution of production risk and then present quantile-based estimates of partial 

variance and skewness to evaluate exposure to risk and downside risk. These 
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estimates allow us to evaluate the managerial options for risk mitigation through 

variations in input use, farmer demographics, and crop rotations.  

Section 5 evaluates the implications of our econometric analysis for the 

cost for risk and downside risk. Our main finding is to show that most of the cost 

of risk comes from exposure to downside risk (defined as risk located in the lower 

quartile of the distribution). This points to the importance our approach and the 

refined empirical assessments of downside risk in the evaluation of climate 

change effects on agro-ecosystems. Finally, section 6 concludes. 

 

2. Assessing Exposure to Risk and Downside Risk 

This section develops a quantile-based decomposition of risk exposure 

that uses the first three partial moments of a stochastic payoff structure to identify 

the importance of downside risk. Assume a decision maker facing an uncertain 

payoff π ∈ R. The uncertainty about π is represented by the distribution function 

F(c) = Prob(π ≤ c). We are interested in evaluating the exposure to risk in general, 

and to downside risk in particular. For that purpose, let K > 1 be some finite 

integer and consider a sequence {bk: k = 1, …, K} satisfying -∞ ≡ b0 < b1 < b2 < 

… < bK-1 < bK = ∞. The bk’s are chosen such that F(bk) > F(bk-1), k = 1, …., K. 

Letting Sk ≡ (bk-1, bk], [F(bk) - F(bk-1)] is the probability of being in the k-th 

quantile: π ∈ Sk, k = 1, …., K. Below, we associate downside risk with 

unfavorable risk located in the lower quantile: π ∈ S1. In general, knowing the 

distribution function F(⋅) across all quantiles provides all the relevant information 

to evaluate exposure to risk (including downside risk). This distribution function 

can be evaluated either directly or through the estimation of its moments.3  

There is an extensive literature that has used moments to evaluate risk 

exposure (e.g., Markowitz; Fishburn; Bawa; Jorion; Rockefellar and Uryasev; 

Antle, 2010). Our analysis below focuses on measures relying on partial 
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moments. Throughout the paper, we assume that at least the first three moments 

of π exist. Denote the mean of π by 

M1 = E(π) = 
k

K

k=1 π S∈∑ ∫ π dF(π),  (1a) 

where E is the expectation operator based on the distribution function F(⋅). The j-

th central moment of π is 

Mj = E[(π - M1)j] = 
k

K

k=1 π S∈∑ ∫ (π - M1)j dF(π),  (1b) 

j = 2, 3, ... Given Sk ≡ (bk-1, bk], denote the partial mean of π in the interval Sk by  

mk1 ≡  
kπ S

k k-1

1
F(b ) - F(b ) ∈∫ π dF(π),  (2a) 

k = 1, …, K. And the j-th partial central moment of π in the interval Sk is 

mkj = 
kπ S

k k-1

1
F(b ) - F(b ) ∈∫ (π - mk1)j dF(π),  (2b) 

k = 1, …, K and j = 2, 3, … The payoff in the interval Sk can be written as   

π = mk1 + ek, π ∈ Sk,  (3) 

where ek ≡ [π - mk1] is a random variable distributed with partial mean zero (when 

π ∈ Sk), k = 1, …, K. Below, we consider the following specification for ek in (3)  

ek ≡ [mk2 – (mk3/Dk)2/3]1/2 vk2 + [mk3/Dk]1/3 vk3,  (4)  

where vk2 and vk3 are independently distributed random variables satisfying E[vk2] 

= E[vk3] = 0, E[(vk2)2] = E[(vk3)2] = 1, E[(vk2)3] = 0, and E[(vk3)3] ≡ Dk > 0, k = 1, 

…, K. These assumptions mean that vk2 and vk3 in (4) are normalized random 

variables (i.e., they are each distributed with mean zero and variance =1). In 

addition, vk2 has zero skewness, E[(vk2)3] = 0, while vk3 has positive skewness, 

E[(vk3)3] ≡ Dk > 0, where Dk is chosen to be large enough to satisfy [mk2 – 

(mk3/Dk)2/3] > 0. Note that equation (4) implies that E(ek) = 0, E[(ek)2] = mk2, and 

E[(ek)3] = mk3, k = 1, …, K. Thus, mk1, mk2 and mk3 are the partial central 
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moments of π ∈ Sk. It follows from (3)-(4) that, for given distributions of vk2 and 

vk3, the first three moments mk1, mk2 and mk3 are sufficient statistics for the 

distribution of π ∈ Sk, k = 1, …, K.  

When mk3 = 0 and K = 1, note that equation (4) reduces to the standard 

two-moment specification commonly found in the literature (e.g., Meyer, 1987). 

Thus, equation (4) extends this approach in two directions: a) it allows for 

changes in both variance and asymmetry/skewness of the distribution; and b) 

when K > 1, it provides a quantile-based representation of the distribution 

function. The latter direction is particularly useful when one is interested in 

examining the risk exposure in a specific quantile as in our analysis of downside 

risk (corresponding to the lower quantile).  

From (1a)-(1b) and (2a)-(2b), we have  

Mj = 
K

k=1∑ [F(bk) – F(bk-1)] ⋅ mkj,  (5) 

showing that the overall j-th central moment Mj is the weighted sum of the partial 

j-th central moments mkj across all K intervals, with k k-1[F(b ) - F(b )] as weight for 

the k-th interval, j = 1, 2, 3, … From equation (3) and (5), it follows that {mkj: k = 

1, …, K; j = 1, 2, 3, …} along with { k k-1[F(b ) - F(b )]: k = 1, …, K} are sufficient 

statistics for the distribution of π. This provides the basis for the moment-based 

analysis presented in this paper. Of special interest is the information on downside 

risk exposure associated with the first interval S1. The decomposition includes the 

first three partial central moments (the partial mean m11, the partial variance m12, 

and the partial skewness m13), and the probability of being in the first quantile, 

1 0[F(b ) - F(b )]. These are the key quantile-based estimates needed to assess 

downside risk in the lower tail of the distribution of π.  

 

3. A Quantile-Based Evaluation of the Cost of Risk 
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The valuation of risk depends both on risk exposure and risk preferences. 

To analyze the cost of risk, we consider the case of a decision maker behaving in 

a way consistent with the expected utility model, 4 with risk preferences 

represented by the utility function U:  ℜ → ℜ. Throughout the paper, we assume 

that U(⋅) is strictly increasing. Following Arrow and Pratt, the cost of risk is 

measured by the risk premium defined as the sure amount R that satisfies  

E[U(π)] = U(M1 – R),  

or 

k

K

k=1 π S∈∑ ∫  U(π) dF(π) = U(M1 – R).  (6) 

Equation (6) considers the valuation of a change in risk from π to the 

overall mean M1. We want to decompose the risk premium R into parts associated 

with risk exposure and risk aversion in different intervals Sk, k = 1, …, K. Our 

first result is stated next.  

Proposition 1 The cost of risk can be decomposed into additive components 

across quantiles as follows:  

R = 
K

k=1∑ ΔRk,  (7a) 

where ΔRk is the incremental risk premium associated with risk in the k-th 

interval. The incremental risk premia ΔRk satisfy  

E[U(π)] = U(M1 – ΔR1) [F(b1) – F(b0)] + 
k

K

j=2 π S∈∑ ∫ U(π – ΔR1) 

dF(π),  (7b) 

when k = 1, and 

E[U(π)] = 
k

j=1∑ U(M1 – ΔRk - 
k-1

i=1∑ ΔRi) [F(bj) – F(bj-1)]  

+ 
k

K

j=k+1 π S∈∑ ∫ U(π – ΔRk – 
k-1

i=1∑ ΔRi) dF(π),  (7c) 

when k = 2, …, K.  
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Equation (7b) defines ΔR1 as the decision maker's sure willingness to pay 

to eliminate the risk in the first quantile, moving it to the mean payoff M1. And 

equation (7c) defines ΔRk sequentially as the incremental willingness to pay to 

eliminate the risk of the k-th quantile, moving it the mean payoff M1 while risk 

has already been eliminated in lower quantiles, k = 2, …, K. When k = K, 

comparing (7c) with (6) implies that R = 
K

k=1∑ ΔRk, as given in (7a).  

Equation (7a) provides a useful decomposition of the risk premium R into 

additive parts across the K intervals Sk, k = 1, …, K. This decomposition 

identifies the role of risk exposure in each of the K quantiles. Of special interest is 

the contribution of ΔR1 to the cost of risk R. Indeed, given R > 0, [ΔR1/R] 

measures the proportion of the risk premium due to exposure to downside risk.  

Next, we explore how to evaluate the cost associated with terms ΔRk's in 

(7). This requires information on both risk exposure and risk preferences. As 

noted, we focus our attention on a moment-based assessment of risk exposure. 

Thus, we need to establish linkages between partial moments of the payoff 

distribution and the risk premium. The following proposition 2 presents those 

linkages (The proof is presented in Appendix A).  

Proposition 2: Assuming that U(π) is three times continuously differentiable, the 

risk premium R can be approximated using a Taylor-series expansion as  

R = 
K

k=1∑ ΔRk,  (8a) 

where 

ΔRk ≈ – (1/2) k1
K

i i-1 i1i=1

U"(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ 

mk2  
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– (1/2) 1

1

U"(M )
U'(M )

 ⋅ [
k

2
k1 1π S

(m - M )  dF(π)
∈∫ ]  

– (1/6) k1
K

i i-1 i1i=1

U"'(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ mk3  

– (1/6) 1

1

U"'(M )
U'(M )

 ⋅ [
k

3
k1 1π S

(m - M )  dF(π)
∈∫ ],    (8b) 

with U'(π) = ∂U/∂π, U"(π) = ∂2U/∂π2, and U"'(π) = ∂3U/∂π3.  

Like proposition 1, proposition 2 decomposes the risk premium R into 

additive parts across the K intervals Sk, k = 1, …, K. Equation (8b) provides an 

approximate measure of the risk premium in terms of variance and skewness 

terms associated with each quantile of the distribution. This identifies the relative 

contributions of each quantile to the risk premium. As such, this is a 

generalization of previous literature on local measurements of the risk premium 

(Arrow; Pratt, Modica and Scarsin; Crainich and Eeckhoudt; Keenan and Snow 

(2002, 2009)).  

For the k-th quantile, equation (8b) includes two variance components and 

two skewness components. The first variance component is: – (1/2) 

k1
K

i i-1 i1i=1

U"(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ mk2, which is proportional to 

the partial variance mk2, and weighted by the probability of being the k-th 

interval, [F(bk) – F(bk-1)]. This variance component is also weighted by the term 

k1
K

i i-1 i1i=1

U"(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 , reflecting risk preferences with respect to 

variance. Under risk aversion (where U''(π) < 0; see Arrow and Pratt), this gives 

the intuitive result that an increase in variance in the k-th quantile tends to 

increase the cost of risk. 
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The second variance component in (8b) is: – (1/2) 1

1

U"(M )
U'(M )

 ⋅ [

k

2
k1 1π S

(m - M )  dF(π)
∈∫ ], which is proportional to the square deviation of the k-th 

partial mean from the overall mean [mk1 − Μ1]2. Under risk aversion (where U''(π) 

< 0), it means that an increase in the distance between the partial mean in the k-th 

interval, mk1, and the overall mean, M1, tends to increase the cost of risk. 

The first skewness component in (8b) is: – (1/6) 

k1
K

i i-1 i1i=1

U"'(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ mk3, which is proportional to 

the partial skewness mk3, and weighted by the probability of being the k-th 

interval, [F(bk) – F(bk-1)]. This skewness component is also weighted by the term 

k1
K

i i-1 i1i=1

U"'(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 , reflecting risk preferences with respect to 

skewness. Under downside risk aversion (where U'''(π) > 0; see Menezes et al.), 

this gives the intuitive result that an increase in skewness in the k-th interval tends 

to reduce exposure to downside risk and decrease the cost of risk.  

Finally, for the k-th quantile, the second skewness component in (8b) is: – 

(1/6) 1

1

U"'(M )
U'(M )

 ⋅ [ (mk1- M1)
3  dF(π)

π∈Sk
∫ ], which is proportional to the cubed 

deviation of the k-th partial mean from the overall mean, [mk1 − Μ1]3. This 

skewness component is weighted by the term 1

1

U"'(M )
U'(M )

, reflecting risk preferences 

with respect to skewness (Menezes et al.). Under downside risk aversion (where 

U'''(π) > 0), it means that an increase in the cubed deviation of mk1  from the mean 

M1 tends to reduce exposure to downside risk and decrease the cost of risk.  
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The following sections develop an empirical approach to estimate the 

quantile-based partial moments and probabilities that allow us to construct 

estimates of risk exposure and risk costs, with a focus on the role of downside risk 

associated with the lower quantile of the payoff distribution.   

 

4. An Empirical Application to Risk Exposure on Korean Farms  

Our empirical analysis examines production risk on rice farms in Korea. It 

is based on a panel dataset of Korean rice farms (Kim et al., 2012). It relies on a 

survey conducted annually from rice farm households over the period of 2003-

2007, which provides information on annual farm inputs and outputs. The Korean 

National Statistical Office collected these data from a sample of 3,140 farm 

households surveyed annually from 314 enumeration districts. Summary statistics 

of the data are reported in Kim et al. (2012).   

In a Korean rice production system, major outputs are rice, vegetable, 

soybean, barley and miscellaneous crops, and potato. Rice is the dominant crop, 

typically being grown on irrigated paddy land. Non-irrigated land is called 

"upland" and is suitable for other crops. Reflecting this, the output measures are: 

rice (prod_rice), vegetables (prod_vegi), soybean (prod_soybean), potato 

(prod_potato), and barley and other crops (prod_barleymisc). Inputs include land, 

divided into paddy land (land_paddy) and upland (land_upland), labor measured 

in hours, capital, fertilizer, pesticides, and seeds.5 The distinction between paddy 

land and upland is important: it will provide useful insights on the role of 

irrigation in risk management. Socio-demographic measures (e.g., age and the 

level of education: edu1 for elementary school and edu4 for college or above) are 

also included to control for farm specific heterogeneity in human capital 

endowments that can matter to management outcomes including risk mitigation. 

Crop rotations within and across years are a third type of management option that 
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is incorporated via the multi-output, multi-input, panel data analysis developed 

below. 

 

4.1. Econometric Model of Risk Exposure 

To empirically evaluate the presence of fat tails, the extent of downside 

risk exposure, and the cost of risk using a quantile approach, we need to estimate 

the partial central moments (mk1, mk2 and mk3) of π ∈ Sk and the probability of 

being in each quantile ([F(bk) – F(bk-1)]). In our analysis, the payoff π denotes 

farm income: π = p z, where z = (y, x), y denotes rice production, x is the vector 

of farm inputs and other outputs produced, p = (py, px) is the vector of prices for z, 

py is the price of rice and px is the vector of prices for x, elements of px being 

defined as positive for outputs and negative for inputs. Under production 

uncertainty, the production technology is represented by the production function y 

= f(x, ε), where ε is a random variable reflecting production risk (e.g., 

unpredictable weather effects). After normalizing prices so that py = 1, farm 

income is then given by π = f(x, ε) + px x. It follows that the production function 

f(x, ε) provides all the relevant information for analyzing risk exposure on Korean 

farms. In particular, the variance and skewness of π are the same as the 

corresponding variance and skewness of f(x, ε). On that basis, we proceed using 

our Korean data to specify and estimate the moments of f(x, ε).  

Let E[f(x, ε)] = [f1(x, β1) + α] be expected production, where E is the 

expectation operator based on the information available to the farmer, α captures 

the effects of factors known to the farmer but not to the econometrician, and β1 is 

a vector of parameters. It follows that rice production y can be specified as  

y = f1(x, β1) + α + e,  (9) 

where e ≡ y - E[f(x, ε)]. When the unobservable effect α is farm-specific, then (9) 

corresponds to the standard specification used in panel data analysis (e.g., 
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Wooldridge). Then, α can be treated as a "fixed effect" parameter, and e is an 

error term that captures the uncertainty faced by farmers and satisfies E(e) = 0.  

Using appropriate panel data econometrics (further discussed below), we 

can obtain consistent estimate (β1
c, αc) of (β1, α) in (9). This can generate 

consistent estimates of the residuals: ec = y - f1(x, β1
c) + αc. Based on the sample 

information, ec can then be used to evaluate the distribution of e, conditional on x. 

Following Antle (1983), this can generate consistent estimates of the moments of 

e, conditional on x (see Antle, 1983, 1987; Antle and Goodger). Since e captures 

the uncertainty in farmer's payoff (and after controlling for the effects of 

unobservables given by α in (15)), this provides a basis to estimate all relevant 

moments of farmer's payoff. This is the approach we follow below, first to 

evaluate the distribution for the presence of fat tails and then to examine the 

particular role played by downside risk in overall risk exposure and the costs of 

risk 

Our econometric analysis proceeds working with 4 quantiles of the payoff 

distribution: K = 4, the four quantiles being quartiles. Let ek be the part of e 

associated in the k-th quantile, with corresponding consistent estimate ek
c, k = 1, 

…, 4. Denote by fk2(x, βk2) the variance of ek conditional on x, where βk2 are 

parameters. Consider the following model specification for the k-th quantile:  

(ek
c – mk1

c)2 = fk2(x, βk2) + uk2, k = 1, 2, 3, 4,   (10) 

where mk1
c is a consistent estimate of the partial mean for ek  and uk2 is an error 

term distributed with mean zero. Then, following Antle (1983), consistent 

estimates βk2
c of the parameters βk2 can be obtained from (10). It follows that 

fk2(xk2, βk2
c) is also a consistent estimator of mk2, the partial variance of ek in the 

k-th quantile.  
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Similar arguments apply to the estimation of partial skewness. Denote by 

fk3(x, βk3) the skewness of ek conditional on x, where βk3 are parameters. Consider 

the following model specification for the k-th quantile:  

(ek
c – mk1

c)3 = fk3(x, βk3) + uk3, k = 1, 2, 3, 4,   (11) 

where uk3 is an error term distributed with mean zero. Again, consistent estimate 

βk3
c of the parameters βk3 can be obtained from (11). It follows that fk2(xk2, βk2

c) is 

also a consistent estimator of mk3, the partial skewness of ek in the k-th quantile. 

This provides a basis to obtain empirical estimates of risk exposure associated 

with each quantile, as measured by the corresponding partial variance and 

skewness just discussed.  

Next, we need to estimate the probability of being in each quantile, [F(bk) 

– F(bk-1)]. This is done using a multinomial logit model applied across all 4 

quantiles. Together with the estimates of partial moments {(mk2, mk3: k = 1, …, 

4}, this provides all the information required to evaluate risk exposure reported in 

equation (8).   

Several econometric challenges arise in estimating equations (9)-(11). 

First, the multi-output multi-input production function f1(x, β1) needs to be 

flexible enough to capture the effects of multiple outputs on the productivity of 

rice, the dominant crop. For this, we introduce five major outputs (rice, vegetable, 

soybean, barley and miscellaneous, and potato), and specify the mean function as 

a quadratic form allowing for non-linear relationships between rice production 

and other output productions. In a way consistent with previous studies (e.g., 

Antle and Goodger 1986; Groom et al. 2008), this provides a fairly flexible 

representation of the underlying technology. The following explanatory variables 

x are used in the specification of the mean function (9). Conventional inputs 

(paddy land and upland, labor, seed, fertilizer, pesticide, capital) are included in 

log form to allow for potential non-linear input effects. An index variable (intra) 
capturing the degree of intra-year double cropping helps to account for the effects 
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of rotation on rice production.6  We include a series of interaction terms of the 

non-rice output variables and land types and use to capture the heterogeneous 

marginal effects of other crops and inter-year rotations on rice. Three examples 

are suggestive of the full set. One is paddy_prod_vegi, which interacts paddy land 

and vegetable production; second is upland_prod_vegi, which interacts upland 

and vegetable production; and third is intra prod_vegi, which interacts intra-year 

crop rotation and vegetable production. We also include a time trend (t) 

accounting for the impacts of technological progress on rice production during 

sample periods, and the age (age) of the household manager accounting for 

demographic differences that might reflect heterogeneous managerial ability. 

Regional dummy variables account for potential agro-climatic heterogeneity 

across production regions. Lastly, the following diversification index variables are 
included in an effort to capture the effects of possible diversification strategies in 
a rice production system: (i) a lag value of Herfindahl index (lag_hi), (ii) a lag 
value of interaction variable between the size of upland and the proportion of 
soybean production (lag_upland_soybean_share), and (iii) a lag value of 
interaction variable between the size of upland and the proportion of potato 
production (lag_upland_potato_share).  

We want to stress the importance of the specification of the mean function 

in (9). Indeed, its error term e in (9) is being used to estimate the parameters of 

the higher moments given in (10) and (11), and its distribution is used initially to 

evaluate whether excess kurtosis is present, or whether instead we have a normal 

distribution (without fat tails). The second partial moment functions (10) are 

specified as exponential functions to ensure non-negative variance. And the third 

partial moments (11) are specified as linear to reduce multicollinearity problems.  

The second major econometric challenge is addressing potential bias in 

estimating equations (9)-(11). Potential endogeneity issues associated with 

farmer’s production choices could arise if rice farmers use information that is not 
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available to the econometrician. Then, this information would affect both their 

input-output choices x and also appear in the error terms in (9)-(11), possibly 

generating endogeneity bias and inconsistent parameter estimates associated with 

unobserved heterogeneity when using standard econometric approaches (e.g. 

least-squares estimation method). Panel data econometrics can deal with both 

issues (Wooldridge). Below, we utilize a Hausman-Taylor estimator (Hausman 

and Taylor, 1981) of the mean and higher moment equations in (9)-(11). This 

instrumental variable estimation method deals with omitted variable issues and 

endogeneity issues in the context of panel data and controls for the unobserved 

fixed effects α in (9). It generates consistent estimates of the parameters by using 

the mean of endogenous variables that are not correlated with individual specific 

effects and time-invariant regressors as instruments. The panel data structure and 

appropriate estimation techniques allow us to recover consistent estimates of the 

error term e in (9) while controlling for unobserved heterogeneity across farm 

households. This is a crucial step in the estimation of higher partial moment 

functions in (10)-(11).  

Third, the error term e in (9) will likely exhibit heteroscedasticity. This 

arises when the variance of e is not constant across observations. Also, as showed 

by Antle (1983, 2010), the error terms in the variance and skewness equations 

(10)-(11) are also likely to exhibit heteroscedasticity. To deal with 

heteroscedasticity problems, either a heteroscedastic-consistent estimator or a 

weighted least squares estimation can be utilized. Below, we report 

heteroscedastic-consistent standard errors of parameter estimates in higher partial 

moment functions. This gives a consistent estimate of the variance-covariance 

matrix which is essential to support hypothesis testing.   

 

4.2. Econometric Estimation  
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We begin by estimating equation (9) using the techniques described above. 

Because we are primarily interested in the residual of the estimation, we do not 

dwell on the standard economic parameters, which Kim et al. report in detail. The 
estimation results of the mean rice production function are reported in Table B1 in 
appendix B. In terms of the panel data estimation strategy, we find no strong 

evidence against the consistency of the Hausman-Taylor estimator (the test 

statistic = 4.817). This outcome implies that potential endogeneity issues in 

Korean rice production system were resolved adequately by the use of the 

Hausman-Taylor approach. Table B1 also shows that most of the estimated 

coefficients are statistically significant and capture the factors shaping Korean 

rice production outcomes in an appropriate manner including the importance of 

output mix and core inputs, such as paddy land, labor, and capital to rice 

productivity (see Kim et al. 2012 for more on the first moment estimations). As 
discussed above, the mean estimates give the residuals needed for the quantile-
based analysis of risk exposure. 

The empirical results discussion starts with an analysis of the kurtosis and 

skewness properties of the rice yield distribution to test for normality of the error 

term ec. The normalized skewness of ec is 1.09 and the normalized kurtosis is 

86.09. Using the Bera-Jarque test, we find that the skewness is statistically 

different from zero, with a p-value of 0.0001. And ec is found to exhibit excess 

kurtosis, with a p-value of 0.0001. This indicates that the distribution of ec is 

asymmetric: it is skewed to the right. And it has "fat tails", or at least tails that are 

significantly "fatter" than the normal distribution (which has a normalized 

kurtosis equal to 3). We also investigate partial moments of the error term ec. We 

find partial variance of both lower and upper tails of the distribution 

(corresponding to the 1st and 4th quantiles) are much larger than that of the 2nd and 

3rd quantiles: they are 1757.9 for the 1st quantile, 28.7 for the 2nd quantile, 30.1 for 

the 3rd quantile, and 2256.8 for the 4th quantile. For a partial skewness, we find 
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negative partial skewness for the lower tail (= -5.68) and positive partial skewness 

for the upper tail (= 6.06). These results are consistent with the existence of fat 

tails in the distribution of production risk on Korean rice farms. This leads us to 

conjecture that fat tails are likely to be prevalent in agriculture and other activities 

subject to the vagaries of climatic or ecosystem variation. What are the 

implications of these fat tails? Below, we examine in more details the relative role 

of downside risk located in the lower tail of the distribution. In particular, our 

analysis will explore the cost of downside risk in rice production and the potential 

for managing that risk through irrigation, input, and rotation choices.   

The rest of this section presents the estimation of our empirical model on 

downside risk exposure. It starts with a discussion of the estimates of the partial 

moment equations (9)-(11) for each quantile, followed by the multinomial logit 

model that estimates the probability of being in each quantile, [F(bk) – F(bk-1)]. 

We put special attention on the factors that shape partial moment outcomes in the 

quantiles, because they provide information on factors shaping risk exposure and 

management. Then we present hypothesis tests that compare the factors shaping 

risk exposure and management across the quantiles. These comparisons 

demonstrate both the importance of downside risk and the potential to mitigate 

that exposure through certain management choices. In the next section, these 

estimates are combined with relatively conservative assumptions about risk 

preferences to estimate the significance of the ‘costs’ associated with downside 

risk exposure. 

The estimation results of the partial variance functions are presented in 

Table 1. As in Antle (2010), we test for the presence of asymmetry in production 

risk, and as in the financial disappointment aversion literature (Butler et al. 2005, 

Routledge and Zin, 2010) we highlight the potentially significant role that 

downside risk exposure can play in the management options facing economic 

agents. Unlike either of these other approaches, we generate estimates of risk 



 

 

19 

exposure that identify the extent of the exposure in different quantiles of the risk 

distribution.  After discussing individual coefficient relationships in the quantile 

regressions, we do hypothesis testing of the potential asymmetry of these 

coefficients across quantiles of the distribution. 

Overall, we find more significant relationships between explanatory 

variables and partial variance outcomes for the 1st and 4th quantiles as compared 

to the 2nd and the 3rd quantiles. This broad finding indicates that characterizing 

partial variance associated with the lower and upper tails of the distribution of 

variance (corresponding to the 1st and 4th quantiles, respectively) is relatively 

easier than it is in the middle quantiles. It also suggests that asymmetry in 

production risk is concentrated in those outer tails.  

As in Antle (2010), we find that labor input has significant positive effects 

on the lower tail of the 2nd moment distribution. In our case, they vary positively 

with age when evaluated at the sample mean. This result suggests that younger 

farmers might have better management abilities when it comes to managing 

downside risk. In contrast, we find the opposite effects of labor on the 4th quantile 

of the 2nd moment, i.e., labor input has significant negative effects on the higher 

tail of the 2nd moment, which vary negatively with age when evaluated at the 

sample mean of age. This implies again that younger farmers might also be better 

able to secure the upside risk possibilities. 

The coefficients associated with paddy land, capital, and double cropping 

(evaluated at the sample mean of paddy land) are negatively related with the 

lower tail of 2nd moment distribution. This implies that paddy land and capital 

help to manage downside risk as captured by reducing the variance experienced in 

the lowest quantile of the 2nd moment distribution. We also find that the cost of 

seed and interaction variable between upland and the lag of soybean share have 

statistically significant and positive effects on the lower tail of the 2nd moment 

distribution. These results suggest that new varieties, which are usually more 
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expensive than traditional ones, tend to increase downside risk. This finding 

might capture risk-bearing ability of traditional varieties compared to new 

varieties that might be capable of producing better yield at a cost of risk increase. 

That result would be consistent with many technology adoption studies of high-

yielding varieties (Feder et al.). On the other hand, the coefficient of the cost of 

fertilizer was found to be positively related with the upper tail of the 2nd moment 

distribution. This suggests that fertilizer input appears to be an upside-risk-

increasing input, in that it helps to increase the upside production potential.  

Table 3 presents the estimation results of the partial skewness equation. 

The general lack of significance in coefficient estimates throughout all quantiles 

suggests the difficulty associated with panel estimation of the 3rd moment 

functions. Nonetheless, we find relatively more significant relationships between 

explanatory variables and skewness measures in the 2nd and 3rd quantiles. The 

coefficient of lag of Herfindahl index variable is positive and significant, 

implying that concentration in output mix tends to increase the partial skewness 

corresponding to the 2nd and 3rd quantiles, thus contributing to the shift of 

distribution to the right. However, the capital variable works the other way. The 

negative and significant coefficients of capital in the 2nd and 3rd quantiles suggest 

that capital contributes to a shift of the distribution to the left.  Without many 

significant relationships, these skewness estimates do not tell us much more about 

the potential for managing risk exposure. 

Multinomial logit estimation results for the probability of being in each 

quantile are presented in two tables: the estimates are presented in Table B2 in 

Appendix B, and the marginal effects are reported in Table 3. The number of 

statistically significant coefficient estimates are small compared to those of 2nd 

moment functions, which again suggests that managing the probability of being in 

a risk quantile is much harder than managing the amount of risk exposure 

associated with partial 2nd moments. Given the inherently stochastic nature of risk 
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outcomes, it is not surprising that predicting where producers fall in the 

distribution without explicit incorporation of weather-related variables proves 

challenging. Nonetheless, two useful observations emerge from discussing the 

marginal effect estimates. One is that two measures of intensification strategies, 

total paddy land (which entails much more input investment per land unit than 

non-paddy land) and intra (the measure of intra-annual rotations), are positive and 

statistically significant predictors for being found in the first and fourth quantiles, 

or the downside and upside intervals of the risk distribution. That makes sense 

given that intensification strategies can both increase returns and risks. The other 

useful observation is that fertilizer use is a positive and statistically significant 

predictor for being in the lower-middle quantile and negative and statistically 

significant predictor for being in the other quantiles. Thus, fertilizer can be 

viewed as largely a risk-reducing insurance strategy in rice production, in terms of 

putting producers in different risk quantiles.  

We turn next to evaluating potential asymmetry in the effects of other 

output production and inputs on the 2nd and 3rd partial moments of rice production. 

Testing the hypothesis of symmetric input effects involves using the separate 

estimation of equations (10) and (11) for each quantile to produce t-tests of the 

equality of specific parameter estimates of quantile-based 2nd central moment 

functions in (10) and quantile-based 3rd central moment functions in ((11). These 

tests (shown in Table 4) allow us to comment on the significance of different 

factors in shaping risk exposure and identifying possible mitigation strategies. 

Table 4 reports these hypothesis test results for the most important input variables 

(land, labor, capital, fertilizer, pesticide, and seed) for each pair of quantiles of the 

2nd and 3rd central moments of rice production.  

Test results suggest that the null hypotheses of symmetry in the important 

management variables (e.g. paddy land, labor, capital, fertilizer, pesticide, and 

seed) for most pairs of quantiles are rejected for the 2nd central moment function 
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(with the exception for the pair of the 2nd and 3rd quartiles). Notably, asymmetry 

effects of paddy land and labor input variables are highlighted in the 2nd partial 

moments of rice production. This result implies that these inputs differ across the 

quantiles in terms of how they shape risk exposure and management effects in the 

2nd central moment of the distribution. In particular, these hypothesis test results 

reveal strong asymmetric management effects in the pair of the 1st and 4th 

quantiles, which highlights the potential heterogeneous management effects in 

dealing with downside versus upside risk exposure. For the 3rd central moment of 

rice production, we find a lack of significance in the asymmetry of input effects 

across the quantiles compared to the 2nd central moment test results. This again 

suggests the difficulty of identifying input effects in characterizing risk exposure 

and potential management tools when it comes to the 3rd central moment of rice 

production.   

Overall, these econometric results show that our quantile approach for 

evaluating risk exposure is relevant econometrically. Below we investigate 

whether the quantile approach is also meaningful in terms of assessing the costs 

of risk exposure. For this purpose, we develop a quantile-based risk valuation 

measure under an expected utility example to measure the costs of risk in each 

quantile. Under some scenarios of non-expected utility, especially those that 

assume strong disappointment or downside risk aversion, we would expect even 

stronger results than we find using a relatively conservative set of assumptions on 

risk preferences.   

 

5. Evaluating the Cost of Risk 

In this section, the cost of risk is decomposed using the quantile 

methodology presented in section 3. Primary focus is given to the cost of 

downside risk. Using an expected utility framework, we consider the case where 

risk preferences are given by the constant relative risk aversion (CRRA) utility 
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function U(π) = [π(1-b)]/(1 – b), where π > 0 and b > 0 is the relative risk aversion 

coefficient.7 It satisfies risk aversion (with U''(π) < 0) and downside risk aversion 

(with U'''(π) > 0) (see Arrow, Pratt and Menezes et al.). It follows that, under 

CRRA preferences, equation (8) gives R = 
K

k=1∑ ΔRk, where  

ΔRk ≈ 0.5 ⋅ [F(bk) – F(bk-1)] ⋅ {
-b-1

k1
K -b

i i-1 i1i=1

b (m )
{[F(b ) - F(b )] (m ) }⋅∑

 ⋅ mk2  

+ [b (M1)-1]  ⋅ [mk1 − Μ1]2} 

+ (1/6) ⋅ [F(bk) – F(bk-1)] ⋅ {–
-b-2

k1
K -b

i i-1 i1i=1

b (1+b) (m )
{[F(b ) - F(b )] (m ) }⋅∑

 ⋅ mk3  

 – [b (1+b) (M1)-2]  ⋅ [mk1 − Μ1]3},   (12) 

k = 1, 2, 3, 4. Equation (12) provides a decomposition of the (approximate) cost 

of risk associated with the k-th interval Sk under CRRA preferences. It provides 

an explicit tool for the empirical assessment of the cost of risk measured through 

the partial mean, partial variance, and partial skewness, and the probabilities of 

being in each quantile and how it varies with the input choices x1, xk2, xk3, k = 1, 

2, 3,4.  

Table 5 provides a summary measure of the decomposition results. Using 

equation (12) and the econometric results from section 4, we decompose the costs 

of risk by each quantile for two rice farm types, labeled here as type A and type 

B. On the one hand, type A (identified by evaluating management variables at 

their sample means) represents a typical rice farm. On the other, type B is 

consistent with a more specialized rice farm (identified by evaluating 

management variables at the 75 percentile of the share of rice income). Thus, type 

B farm relies more on rice in its production system than does a type A farm. We 

consider these two types of rice farms to investigate the potential effects of 

irrigation technologies on the management of downside risk in agricultural 
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production. In addition, sensitivity analysis of the decomposition results is done 

by evaluating the costs of risk at different levels of constant relative risk aversion. 

We choose scenarios where constant relative risk aversion ranges from moderate 

(1/b= 2) to modest (1/b = 1). Lastly, we further decompose the costs of risk in 

each quantile into variance and skewness components. This is done by separating 

2nd and 3rd moment effects in the valuation of risk summarized in equation (12).  

Our decomposition results show that the costs of risk associated with the 

lower tail of the distribution (downside risk) are quite large; they account for 

more than 90% of total risk premium when both 2nd and 3rd moments are taken 

into consideration. Along with the ‘fat tail’ of the overall risk distribution, this 

estimate stresses the economic significance of downside risk exposure. 

Combined, these make irrigated rice outcomes consistent with the dismal theory 

(Weitzman, 2009) that focuses on the potentially high the costs of a tail-fattening 

event (e.g., climate change). Moreover, the costs of risk associated with the upper 

tail of the distribution (upside risk) seem relatively small compared to downside 

risk, accounting for about 10% of total risk premium with both variance and 

skewness components. It is not surprising to find that the costs of risk at the 2nd 

and 3rd quantiles are negligible in all of the scenarios.  

Our results also suggest that 2nd moment information alone is not enough 

to investigate what happens at the lower and upper tail of distribution. About 

70%~80% of risk premium in the lowest quantile is generated by skewness 

components, implying the importance of 3rd moment information in the valuation 

of risk premium in the lower tail of distribution. Skewness effects are also shown 

to be important for the valuation of risk in the upper quantile. The decomposition 

results also reveal that the risk premium in the lowest quantile for the more 

specialized farm in rice production (type B) is lower than that of a typical rice 

farm (type A). This stresses the critical role of irrigation technology in rice 

production for risk management. When a production system is involved with 



 

 

25 

more rice production, the costs of risk are found to be smaller. This finding is 

consistent with Schlenker, Hanneman, and Fischer (2005) in highlighting the 

importance of irrigation systems as a risk management tool in the lower tail of the 

distribution.  Meanwhile, skewness effects in the 4th quantile for both type A and 

type B are found to be negative. This suggests that the presence of positive 

skewness contributes to the increase of overall welfare of rice farm households. 

However, the magnitude of this decrease in the costs of risk associated with the 

upper tail of distribution in terms of skewness components is small compared to 

the costs of risk in the lower tail of distribution.  

Overall, our results highlight the value of the quantile approach in risk 

assessment. They provide estimates of the costs of risk in each quantile, identify 

management strategies relevant to each quantile, and thus show that our quantile 

approach to risk assessment is relevant and meaningful economically.  

 

6. Concluding Remarks 

Weitzman's seminal article on 'Catastrophic Climate Change' stresses the 

potentially important roles that "fat tails" can play in the assessment of risk and 

uncertainty associated with low probability, large-downside risk events. This 

article develops a new quantile approach utilizing first, second, and third partial 

moments to evaluate risk exposure and illustrate risk valuation, and then applies it 

to examine the potential importance of 'fat tails', downside risk, and risk 

mitigation options associated with a highly controlled but stochastic production 

system − irrigated rice production in Korea. This case provides a conservative 

choice in the spectrum of agricultural production systems worldwide for an 

empirical effort to identify ‘fat tails’ and the exposure, value, and management 

prospects for downside-risk.  

The econometric approach exploits a rich panel dataset to develop 

consistent and robust econometric estimates of the partial moments needed to 
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implement the quantile-based decomposition of risk outcomes. We found that the 

risk distribution associated with Korean rice production system has fat tails, with 

most of the risk exposure occurring on the downside, and involving substantial 

potential for risk management associated with farmer choices. Specifically, the 

decomposition results demonstrate that the costs of risk associated with the lower 

tail of distribution (downside risk) are quite large, accounting for more than 90% 

of total risk premium, providing an empirical validation of Weitzman’s dismal 

theory. Together these findings suggest two critical economic implications 

deserving of further analysis. First, downside risk outcomes in agriculture are 

likely to matter a lot to farmers and potentially consumers (especially in more 

catastrophic situations). Second, at least in the case of irrigated rice, a highly 

controlled production system, the risks are subject to some mitigation through 

management choices on the farm, but the probability of landing in the lowest 

quartile is at best only partially subject to management. 

The implications of this article could be deepened by applying the quantile 

approach to other agricultural and natural resource systems to identify the extent 

of downside risk exposure and potential for risk mitigation options in other 

contexts. In our view, finding strong empirical evidence of fat tails and 90% of 

the cost of risk occurring in the lower quantile among irrigated Korean rice farms 

is likely to provide lower bounds estimates relative to other contexts. In addition, 

these risk estimates may be conservative at a social level, because they do not 

incorporate broader food security concerns of consumers and governments. 

Finally, there is the obvious need to explore the economics of risk and downside 

risk in other sectors. These tasks seem critical to advancing scientific discussions 

on the effects of downside risk on economic welfare and policy discussions on the 

private and social options for mitigation.     
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Table 1. Estimation of partial variance equations (dep. var. = variance of rice 
production) 

Variables 11st quantile 2nd quantile 3rd quantile 4th quantile 
age -0.864** 0.200 0.0767 1.328*** 
 (0.416) (0.248) (0.185) (0.403) 
t 0.028 -0.001 0.088 0.425* 
 (0.207) (0.079) (0.061) (0.251) 
prod_vegi 0.002 -0.026** -0.012 0.012 
 (0.007) (0.011) (0.011) (0.027) 
prod_soybean 0.009 -0.019 0.006 0.039 
 (0.037) (0.029) (0.021) (0.028) 
prod_barleymisc -0.003 0.008 -0.034 -0.002 
 (0.017) (0.066) (0.048) (0.014) 
prod_potato -0.035** -0.001 -0.010 0.155* 
 (0.014) (0.036) (0.014) (0.087) 
ln_land_paddy -1.603** -0.377 -0.020 -4.951** 
 (0.656) (0.432) (0.413) (1.489) 
ln_land_upland 0.196 -0.101 0.102 -0.142 
 (0.199) (0.117) (0.106) (0.302) 
ln_labor -4.389 2.082 0.745 11.596*** 
 (3.243) (2.661) (2.024) (3.465) 
age_ln_labor 0.121** -0.032 -0.015 -0.207*** 
 (0.061) (0.041) (0.030) (0.061) 
ln_cost_seed 0.611*** 0.072 0.139 -0.161 
 (0.190) (0.116) (0.124) (0.247) 
ln_cost_fertilizer -0.418 0.014 -0.088 0.893** 
 (0.277) (0.183) (0.125) (0.401) 
ln_cost_pesticide -0.758 -0.307* 0.193* 0.557* 
 (0.485) (0.170) (0.102) (0.310) 
ln_capital -1.789** 0.248 -0.319 -0.476 
 (0.915) (0.417) (0.400) (0.776) 
intra 0.546 -1.681 1.728 -2.719 
 (2.951) (7.033) (3.254) (2.695) 
intra_paddy -1.004** 2.639 1.145 -1.053* 
 (0.464) (5.281) (1.815) (0.633) 
lag_hi 2.556 -0.019 1.011 4.485 
 (2.244) (1.119) (0.905) (3.119) 
lag_upland_soybean_share 14.655** -5.442 2.563 8.616 
 (6.194) (5.093) (5.684) (7.986) 
lag_upland_potato_share -45.981 3.878 2.388 -68.233 
 (31.159) (8.070) (9.982) (54.479) 
Constant 57.421*** -11.686 -0.659 -76.786*** 
 (22.222) (17.613) (13.020) (13.763) 
Observations 390 1,558 1,558 389 

       Note: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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Table 2. Estimation of partial skewness equations (dep. var. = skewness of rice 
production 

Variables 1st quantile 2nd quantile 3rd quantile 4th quantile 
age 0.605 -73.009 -33.418 -0.361 
 (2.717) (54.130) (59.891) (0.226) 
t -0.764 11.318 11.766 -0.034 
 (1.369) (15.311) (15.729) (0.077) 
prod_vegi 0.063 0.987 -3.297 0.043** 
 (0.062) (2.129) (2.249) (0.025) 
prod_soybean 0.951 4.231 2.525 0.027 
 (0.657) (6.972) (5.335) (0.017) 
prod_barleymisc -0.116 6.416 -3.229 -0.006* 
 (0.138) (7.013) (9.937) (0.004) 
prod_potato -0.026 -4.001 -4.592 0.040** 
 (0.138) (8.167) (5.969) (0.021) 
ln_land_paddy 11.911 -136.259 -109.119 -0.190 
 (8.656) (87.501) (87.588) (0.355) 
ln_land_upland -2.481 91.855** 21.867 0.044 
 (1.934) (52.487) (13.233) (0.092) 
ln_labor 6.085 -851.818 -365.904 -2.933 
 (13.645) (575.729) (560.20) (1.837) 
age_ln_labor -0.066 11.290 3.656 0.048 
 (0.405) (8.760) (8.395) (0.030) 
ln_cost_seed -0.610 8.785 -15.552 -0.012 
 (1.337) (18.147) (28.430) (0.074) 
ln_cost_fertilizer 0.464 -5.636 -72.036*** -0.043 
 (1.461) (14.738) (28.837) (0.089) 
ln_cost_pesticide -2.116 6.266 -19.452 0.198* 
 (2.738) (37.027) (20.291) (0.119) 
ln_capital 2.454 -223.10*** -154.035* 0.594 
 (5.962) (79.795) (91.229) (0.385) 
intra 25.572 1,023.49 1,170.71 -1.699 
 (19.859) (1,124.30) (899.37) (1.235) 
intra_paddy -3.475 -437.298 112.988 0.217 
 (3.467) (703.31) (378.03) (0.163) 
lag_hi -14.923 703.672*** 582.699*** 2.540* 
 (16.534) (215.39) (180.12) (1.447) 
lag_upland_soybean_share 94.204 -544.569 -305.755 7.331* 
 (102.43) (1,057.46) (1,274.92) (3.760) 
lag_upland_potato_share 539.076 3,436.13*** 1,781.96 -28.090 
 (525.22) (1344.21) (2,440.28) (22.758) 
Constant -62.103 6,801.46** 4,225.94 15.566 
 (178.02) (3,718.86) (3,403.07) (12.449) 
Observations 390 1,558 1,558 389 

    Note: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
              Skewness measures in 1st and 4th quantile are rescaled by dividing by 1,000,000. 
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Table 3.  Marginal effects of multinomial logit estimates  
 

Variables 1st quantile 2nd quantile 3rd quantile 4th quantile 
     
Age -0.001931 -0.010172 0.011489 0.000614 
 (0.004) (0.007) (0.008) (0.004) 
prod_vegi -0.000013 -0.000839* 0.000950** -0.000099 
 (0.000) (0.000) (0.000) (0.000) 
prod_soybean 0.001063** -0.00596*** 0.004246*** 0.000646 
 (0.001) (0.002) (0.002) (0.000) 
prod_barleymisc -0.000390** -0.000369 0.000933 -0.000174 
 (0.000) (0.001) (0.001) (0.000) 
prod_potato -0.000433 -0.000773 0.001452* -0.000245 
 (0.000) (0.001) (0.001) (0.000) 
ln_land_paddy 0.067157*** -0.12947*** -0.012327 0.074645*** 
 (0.013) (0.023) (0.022) (0.012) 
ln_land_upland -0.000807 -0.01913*** 0.019543*** 0.000394 
 (0.003) (0.006) (0.007) (0.002) 
ln_labor -0.006855 -0.070018 0.054576 0.022298 
 (0.034) (0.073) (0.080) (0.038) 
age_ln_labor 0.000069 0.001677 -0.001484 -0.000262 
 (0.001) (0.001) (0.001) (0.001) 
ln_cost_seed 0.000307 -0.013472 0.011549 0.001616 
 (0.005) (0.010) (0.010) (0.004) 
ln_cost_fertilizer -0.008603 0.073044*** -0.05204*** -0.012401** 
 (0.006) (0.012) (0.012) (0.006) 
ln_cost_pesticide 0.006961 0.005963 -0.013112 0.000188 
 (0.005) (0.011) (0.011) (0.005) 
ln_capital 0.017847* 0.027452* -0.05760*** 0.012304 
 (0.010) (0.015) (0.015) (0.008) 
Intra 0.061125*** -0.19107*** 0.053595 0.076352*** 
 (0.023) (0.044) (0.045) (0.023) 
intra_paddy -0.001618 0.001872 0.006897 -0.007151 
 (0.004) (0.020) (0.018) (0.008) 
t 0.004898 0.008953 -0.015417* 0.001567 
 (0.004) (0.008) (0.008) (0.004) 
lag_hi 0.036633 -0.24134*** 0.126158* 0.078551** 
 (0.033) (0.063) (0.064) (0.033) 
lag_upland_soybean_share -0.035812 0.392265 -0.360758 0.004304 
 (0.118) (0.336) (0.324) (0.100) 
lag_upland_potato_share 0.107360 -0.113734 -0.154572 0.160946 
 (0.142) (0.333) (0.354) (0.108) 
Note: Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Hypothesis Test Results for Asymmetric Input Effects 

 

Variables 1st/2nd 1st/3rd 1st/4th 2nd/3rd 2nd/4th 3rd/4th 

Partial Variance 

     ln_land_paddy 1.561 2.042** 2.058** 0.597 2.950*** 3.191*** 

ln_land_upland 1.287 0.417 0.935 1.286 0.127 0.762 

ln_labor 1.543 1.343 3.368*** 0.400 2.178** 2.704*** 

age_ln_labor 2.082** 2.001** 3.802*** 0.335 2.381** 2.824*** 

ln_cost_seed 2.421** 2.080** 2.477** 0.395 0.854 1.085 

ln_cost_fertilizer 1.301 1.086 2.690*** 0.460 1.994** 2.336** 

ln_cost_pesticide 0.878 1.919* 2.285** 2.522** 2.444** 1.115 

ln_capital 2.026** 1.472 1.094 0.981 0.822 0.180 

Partial Skewness 

     ln_land_paddy 1.685* 1.375 1.397 0.219 1.555 1.244 

ln_land_upland 2.218** 1.002 1.304 1.431 2.161** 0.901 

ln_labor 1.489 0.663 0.365 0.605 1.474 0.648 

age_ln_labor 0.516 0.525 0.447 0.722 0.485 0.547 

ln_cost_seed 0.516 0.525 0.447 0.722 0.485 0.547 

ln_cost_fertilizer 0.237 2.511** 0.346 1.718* 0.217 2.497** 

ln_cost_pesticide 0.226 0.847 0.844 0.609 0.164 0.968 

ln_capital 2.821*** 1.713* 0.374 0.570 2.803*** 1.695* 

Note: t-test statistics for each pair of quantiles are reported:  *** p<0.01, ** p<0.05, *p<0.1 
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Table 5. Decomposition of risk premium by quantiles   
 

CRRA coeff. 

Total (R) 1st quantile 2nd quantile 3rd quantile 4th quantile 

Type  
Aa 

Type 
Bb 

Type 
A 

Type 
B 

Type 
A 

Type 
B 

Type 
A 

Type 
B 

Type 
A 

Type 
B 

Variance + skewness 
components  

        2 

 

30.69 28.636 28.439 26.942 0.216 0.222 0.228 0.23 1.816 1.242 

  

(1.00) (1.00) (0.93) (0.94) (0.01) (0.01) (0.01) (0.01) (0.06) (0.04) 

1 

 

9.426 8.32 8.168 7.539 0.11 0.113 0.119 0.121 1.029 0.548 

  

(1.00) (1.00) (0.87) (0.91) (0.01) (0.01) (0.01) (0.01) (0.11) (0.07) 

Variance components only 

        2 

 

13.198 9.411 9.013 5.547 0.211 0.215 0.235 0.236 3.74 3.413 

  

(1.00) (1.00) (0.68) (0.59) (0.02) (0.02) (0.02) (0.03) (0.28) (0.36) 

1 

 

5.818 4.333 3.495 2.349 0.107 0.109 0.123 0.124 2.093 1.75 

  

(1.00) (1.00) (0.60) (0.54) (0.02) (0.03) (0.02) (0.03) (0.36) (0.40) 

Skewness components only 

        2 

 

17.492 19.225 19.426 21.395 0.005 0.007 -0.007 -0.006 -1.924 -2.171 

  

(1.00) (1.00) (1.11) (1.11) (0.00) (0.00) (0.00) (0.00) (-0.11) (-0.11) 

1 

 

3.608 3.987 4.673 5.19 0.003 0.004 -0.004 -0.003 -1.064 -1.202 

  

(1.00) (1.00) (0.80) (1.30) (0.00) (0.00) (0.00) (0.00) (-0.18) (-0.30) 

Composition ratios of risk premium in each quantile are in parenthesis 
a/ “Type A” farm is a typical rice farm.   
b/ “Type B” farm is a large-size rice farm (evaluated at 75 percentile of land paddy).    
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FOR ONLINE PUBLICATION 

Appendix A 

The proof of proposition 2 requires analyzing the elimination of risk in 

two steps. The first step involves eliminating the risk in each quantile and moving 

it the partial mean of the quantile. And the second step involves moving the 

partial means of each quantile to the overall mean.  

We start with the first step. Letting σ = (σ1, …, σK), where σk ∈ [0, 1], k = 

1, …, K, define  

v(π, σ) ≡ σk π + (1-σk) mk1 when π ∈ Sk, k = 1, …, K.  (A1) 

The parameters σ in v(π, σ) capture a shift in risk. Letting 0 = (0, …, 0) 

and 1 = (1, …, 1), note that v(π, 1) = π, and v(π, 0) = mk1 when π ∈ Sk, k = 1, …, 

K. It follows that a move of the vector σ from 1 to 0 reflects a redistribution of 

risk from π to the partial means of each quantile mk1, k = 1, …, K.  

Using (A1) provides a basis to explore the cost of risk associated with 

different quantiles. For a given σ in (A1), define Ra(σ) as the sure amount of 

money satisfying  

E[U(v(π, σ))] = 
k

K

k=1 π S∈∑ ∫  U[v(π, 0) – Ra(σ)] dF(π),  (A2) 

where Ra(σ) is the amount of money the decision maker is willing to pay to 

replace v(π, σ) by v(π, 0) = mk1 when π ∈ Sk, k = 1, …, K. Clearly, equation (A2) 

implies that Ra(0) = 0. And Ra(1) measures the willingness-to-pay to replace π by 

the partial means mk1’s, with mk1 occurring with probability [F(bk) – F(bk-1)], k = 

1, ..., K.  

  Next, we consider the second step (where the mk1’s are replaced by the 

sure overall mean M1). Given s ∈ [0, 1], define  

w(π, s) ≡ s mk1 + (1-s) M1, when π ∈ Sk, k = 1, …, K. (A3) 
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The parameter s in w(π, s) captures a shift in risk. Noting that w(π, 0) = 

M1, and w(π, 1) = mk1 when π ∈ Sk, k = 1, …, K, it follows that a move of the 

vector s from 1 to 0 reflects a redistribution of risk from the partial means {mk1: k 

= 1, …, K} to the overall mean M1.  

Using (A3) provides another basis to explore the cost of risk across 

quantiles. For a given Ra(1) and a given s in (A3), define Rb(s) as the sure amount 

of money which satisfies   

k

K

k=1 π S∈∑ ∫ U[w(π, s) – Ra(1)] dF(π) = U[w(π, 0) – Ra(1) – Rb(s)],  (A4) 

where Rb(s) is the amount of money the decision maker is willing to pay to 

replace [w(π, s) – Ra(1)] by [w(π, 0) – Ra(1)]. Clearly, equation (A3) implies that 

Rb(0) = 0. And given w(π, 0) = M1, Rb(1) measures the willingness-to-pay to 

replace all mki’s by the overall mean M1.  

Combining (A2) and (A4), and using equation (6), gives the following 

result: 

Lemma 1:  

R = Ra(1) + Rb(1).   (A5) 

 

Equation (A5) shows that the risk premium R can be decomposed into two 

additive parts: Ra(1) capturing the cost of risk associated with the first step 

(moving the risk in each interval to the corresponding partial means); and Rb(1) 

capturing the cost of risk associated with the second step (moving the risk from 

the partial means to the overall mean). Next, we use (A5) in lemma 1 to prove 

Proposition 2.  
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We first derive a moment-based measure of Ra(1) across quantiles. From equation 

(A1), let vk' (π, σ) ≡ ∂v(π, σ)/∂σk =  k1π - m
0

⎧ ⎫
⎨ ⎬
⎩ ⎭

 when π 
∈⎧ ⎫
⎨ ⎬
∉⎩ ⎭

 Sk. Differentiating 

(A2) with respect to σk gives  

E{U'[v(π, σ)] ⋅ [vk' (π, σ)]} = - Rak'(σ) ⋅ [
K

i-1 i1 ai=1
{[F(b ) - F(b )] U'[m - R (σ)]}i ⋅∑ ],   (A6) 

where U' (v) = ∂U/∂v, and Rak'(σ) = ∂Ra/∂σk. Evaluated at σ = 0 and using Ra(0) = 

0, (A6) yields 

E{U'[v(π, 0)] [vk'(π, 0)]} = - Rak'(0) ⋅ [
K

i=1∑ {[F(bi) – F(bi-1)] ⋅ U’(mi1)}].  (A7) 

Using vk'(π, σ) ≡ k1π - m
0

⎧ ⎫
⎨ ⎬
⎩ ⎭

 when π 
∈⎧ ⎫
⎨ ⎬
∉⎩ ⎭

 Sk, E(vk'(π, σ)) = 
kπ S∈∫ (π - mk1) 

dF(π), and v(π, 0) = mk1 when π ∈ Sk, k = 1, …, K, (A7) can be written as  

U'( kM ) 
kπ S∈∫ (π - mk1) dF(π) = - Rak'(0) ⋅ [

K
i i-1 i1i=1

{[F(b ) - F(b )] U'(m )}⋅∑
].  (A7’)  

Since 
k

k1π S
(π - m ) dF(π)

∈∫  = 0, (A7’) implies that Rak'(0) = 0.    

Noting that vk'(π, σ) does not depend σ, differentiating (A6) with respect to σj 

gives 

E{U''[v(π, σ)] ⋅ [vk'(π, σ)] ⋅ [vj'(π, σ)]}  

= - Rakj''(σ) ⋅ [
K

i i-1 i1 ai=1
{[F(b ) - F(b )] U'[m - R (σ)]}⋅∑ ]  

+ Rak'(σ) ⋅ Raj'(σ) ⋅ [
K

i i-1 i1 ai=1
{[F(b ) - F(b )] U"[m - R (σ)]}⋅∑ ],  (A8) 

where U''(v) = ∂2U/∂v2, and Rakj''(σ) = ∂2Ra/(∂σk∂σj). Using Ra(0) = 0 and Rak'(0) 

= 0, evaluating (A8) at σ = 0 gives 

E{U''[v(π, 0)] ⋅ [vk'(π, 0)] ⋅ [vj'(π, 0)]}  
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= - Rakj''(0) ⋅ [
K

i i-1 i1i=1
{[F(b ) - F(b )] U'(m )}⋅∑ ] . (A9) 

Using vk'(π, σ) ≡ k1π - m
0

⎧ ⎫
⎨ ⎬
⎩ ⎭

 when π 
∈⎧ ⎫
⎨ ⎬
∉⎩ ⎭

 Sk, E(vk'(π, σ)) = 

k
k1π S

(π - m ) dF(π)
∈∫ , and v(π, 0) = mk1 when π ∈ Sk, k = 1, …, K, (A9) can be 

written as  

0 = - Rakj''(0) ⋅ [
K

i i-1 i1i=1
{[F(b ) - F(b )] U'(m )}⋅∑ ] , when k ≠ j, (A10a) 

U''(mk1) ⋅ [
k

2
k1π S

(π - m ) dF(π)
∈∫ ]  

= - Rakk''(0) ⋅ [
K

i i-1 i1i=1
{[F(b ) - F(b )] U'(m )}⋅∑ ] , when k = j.  (A10b) 

Equations (A10a)-(A10b) imply that  

Rakj''(0) = 0, when k ≠ j, (A11) 

Rakk''(0) = – k1
K

i i-1 i1i=1

U"(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [
k

2
kπ S

(π - M ) dF(π)
∈∫ ] 

= – k1
K

i i-1 i1i=1

U"(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ mk2,  (A12)  

where mk2 = 
k

2
k1π S

k k-1

1 (π - m ) dF(π)
F(b ) - F(b ) ∈∫  is the partial variance of π in the 

interval Sk.  

Noting that vk'(π, σ) does not depend on σ, differentiating equation (A8) 

with respect to σn gives 

E{U'''[v(π, σ)] ⋅ [vk'(π, σ)] ⋅ [vj'(π, σ)] ⋅ [vn'(π, σ)]}  

= - Rakjn'''(σ) ⋅ [
K

i i-1 i1 ai=1
{[F(b ) - F(b )] U'[m - R (σ)]}⋅∑ ]  

+ Rak''(σ) ⋅ Ran'(σ) ⋅ [
K

i i-1 i1 ai=1
{[F(b ) - F(b )] U"[m - R (σ)]}⋅∑ ] 
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+ Rakn''(σ) ⋅ Raj'(σ) ⋅ [
K

i i-1 i1 ai=1
{[F(b ) - F(b )] U"[m - R (σ)]}⋅∑ ] 

+ Rak'(σ) ⋅ Rajn''(σ) ⋅ [
K

i i-1 i1 ai=1
{[F(b ) - F(b )] U"[m - R (σ)]}⋅∑ ] 

- Rak'(σ) ⋅ Raj'(σ)⋅ Ran'(σ) ⋅ [
K

i i-1 i1 ai=1
{[F(b ) - F(b )] U"'[m - R (σ)]}⋅∑ ],  (A13) 

where U'''(v) = ∂3U/∂v3, and Rakjn'''(σ) = ∂3Ra/(∂σk∂σj∂σn). Using Ra(0) = 0 and 

Rak'(0) = 0, evaluating (A13) at σ = 0 gives 

E{U'''[v(π, 0)] ⋅ [vk'(π, 0)] ⋅ [vj'(π, 0)] ⋅ [vn'(π, 0)]}  

= - Rakjn'''(0) ⋅ [
K

i i-1 i1i=1
{[F(b ) - F(b )] U'(m )}⋅∑ ].   (A14) 

Using vk'(π, σ) ≡ k1π - m
0

⎧ ⎫
⎨ ⎬
⎩ ⎭

 when π 
∈⎧ ⎫
⎨ ⎬
∉⎩ ⎭

 Sk, E(vk'(π, σ)) = 

k
k1π S

(π - m ) dF(π)
∈∫ , and v(π, 0) = mk1 when π ∈ Sk, k = 1, …, K, (A14) can be 

written as 0 = - Rakjn''(0) ⋅ [
K

i i-1 i1i=1
{[F(b ) - F(b )] U'(m )}⋅∑ ], when {k = j = n} does 

not hold,  (A15a) 

U'''(mk1) ⋅ [
k

3
k1π S

(π - m ) dF(π)
∈∫ ]  

= - Rakkk'''(0) ⋅ [
K

i i-1 i1i=1
{[F(b ) - F(b )] U'(m )}⋅∑ ], when k = j = n.  (A15b) 

Equations (A15a)-(A15b) imply that  

Rakjn''(0) = 0, when {k = j = n} does not hold, (A16) 

Rakkk'''(0) = – k1
K

i i-1 i1i=1

U"'(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [
k

3
k1π S

(π - m ) dF(π)
∈∫ ] 

= – k1
K

i i-1 i1i=1

U"'(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ mk3, when k = 

j = n,  (A17)  



 

 

37 

where mk3 = 
k

3
k1π S

k k-1

1 (π - m ) dF(π)
F(b ) - F(b ) ∈∫  is the partial skewness of π in 

the interval Sk. Using Ra(0) = 0, Rak'(0) = 0 and equations (A11), (A12), (A16) 

and (A17), a third-order Taylor series approximation of Ra(1) in the neighborhood 

of σ = 0 is given by 

Ra(1) ≈ Ra(0) + 
K

k=1∑ Rak'(0) ⋅ [1 – 0] + 0.5 ⋅ 
K

k=1∑ Rakk''(0) ⋅ [1 – 0]2  

+ (1/6) ⋅ 
K

k=1∑ Rakkk'''(0) ⋅ [1 – 0]3 

≈ –0.5 ⋅ 
K

k=1∑ { k1
K

i i-1 i1i=1

U"(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ 

mk2} 

- (1/6) ⋅ 
K

k=1∑ { k1
K

i i-1 i1i=1

U"'(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ 

mk3}.  (A18) 

Next, we derive a moment-based measure of Rb(1) across quantiles. From 

equation (A3), we have w(π, 0) = M1, w(π, 1) = mk1 when π ∈ Sk, and Rb(0) = 0. 

Let w’(s) ≡ ∂w/∂s = mk1 – M1 when π ∈ Sk, k = 1, …, K. Assuming 

differentiability, differentiating equation (A4) with respect to s gives 

k

K
a k1 1k=1 π S

U'[w(π, s) - R (1)] (m - M ) dF(π)
∈∑ ∫  = -Rb'(s) ⋅ U'[M1 – Ra(1) – 

Rb(s)],   (A19) 

where U'(w) ≡ ∂U/∂w and Rb'(s) ≡ ∂Rb/∂s. Evaluated at s = 0 and using Rb(0) = 0 

and Ra = 0 (since all risk has been eliminated at s = 0), (A19) gives 

U'(M1) ⋅ [
k

K
k1 1k=1 π S

 (m - M ) dF(π)
∈∑ ∫ ] = -Rb'(0) ⋅ U'(M1).  (A20) 

Since 
k

K
k1 1k=1 π S

 (m - M ) dF(π)
∈∑ ∫  = 0, it follows that Rb'(0) = 0. Differentiating 

(A19) with respect to s gives 
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k

K 2
a k1 1k=1 π S

U"[w(π, s) - R (1)] [(m - M ) ] dF(π)
∈∑ ∫   

= -Rb''(s) ⋅ U'[M1 – Ra(1) – Rb(s)] + [Rb'(s)]2 ⋅ U''[M1 – Ra(1) – 

Rb(s)],   (A21) 

where U''(w) ≡ ∂2U/∂w2 and Rb''(s) ≡ ∂2Rb/∂s2. Evaluated at s = 0, and using Rb(0) 

= 0, Rb'(0) = 0 and Ra = 0, (A21) gives 

U''(M1) ⋅ [
k

K 2
k1 1k=1 π S

(m - M )  dF(π)
∈∑ ∫ ] = -Rb''(0) ⋅ U'(M1),  

which implies 

Rb''(0) = - 1

1

U"(M )
U'(M )

 ⋅ [
k

K 2
k1 1k=1 π S

(m - M )  dF(π)
∈∑ ∫ ].  (A22) 

Differentiating (A21) with respect to s gives 

k

K 3
a ka 1k=1 π S

U"'[w(π, s) - R (1)] [(m - M ) ] dF(π)
∈∑ ∫   

= -Rb'''(s) ⋅ U'[M1 – Ra(1) – Rb(s)]  

+ Rb''(s) ⋅ Rb'(s) ⋅ U''[M1 – Ra(1) – Rb(s)] 

+ 2 Rb'(s) ⋅ Rb''(s) ⋅ U''[M1 – Ra(1) – Rb(s)] 

- [Rb'(s)]3 ⋅ U'''[M1 – Ra(1) – Rb(s)],    (A23) 

where U'''(w) ≡ ∂3U/∂w3 and Rb'''(s) ≡ ∂3Rb/∂s3. Evaluated at s = 0, and using 

Rb(0) = 0, Rb'(0) = 0 and Ra = 0, equation (A23) gives 

U'''(M) ⋅ [
k

K 3
k1 1k=1 π S

(m - M )  dF(π)
∈∑ ∫ ] = -Rb'''(0) ⋅ U'(M1), 

which implies 

 Rb'''(0) = - 1

1

U"'(M )
U'(M )

 ⋅ [
k

K 3
k1 1k=1 π S

(m - M )  dF(π)
∈∑ ∫ ].  (A24) 

Taking a third-order Taylor series expansion of Rb(s) in the neighborhood of s = 

0, and using Rb(0) = 0, Rb'(0) = 0, and equations (A22) and (A24), we obtain  
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Rb(1) ≈ Rb(0) + Rb'(0) ⋅ [1 – 0] + 0.5 Rb''(0) ⋅ [1 – 0]2 + (1/6) Rb'''(0) ⋅ [1 – 

0]3 

≈ -0.5 1

1

U"(M )
U'(M )

 ⋅ [
k

K 2
k1 1k=1 π S

(m - M )  dF(π)
∈∑ ∫ ] 

- (1/6) 1

1

U"'(M )
U'(M )

 ⋅ [
k

K 3
k1 1k=1 π S

(m - M )  dF(π)
∈∑ ∫ ].   (A25) 

Substituting equations (A18) and (A25) into (A5) gives  

R = Ra(1) + Rb(1),  

≈ –0.5 ⋅ 
K

k=1∑ { k1
K

i i-1 i1i=1

U"(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ 

mk2} 

- (1/6) ⋅ 
K

k=1∑ { k1
K

i i-1 i1i=1

U"'(m )
{[F(b ) - F(b )] U'(m )}⋅∑

 ⋅ [F(bk) – F(bk-1)] ⋅ 

mk3} 

-0.5 1

1

U"(M )
U'(M )

 ⋅ [
k

K 2
k1 1k=1 π S

(m - M )  dF(π)
∈∑ ∫ ] 

- (1/6) 1

1

U"'(M )
U'(M )

 ⋅ [
k

K 3
k1 1k=1 π S

(m - M )  dF(π)
∈∑ ∫ ],  

which is equation (8).  
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FOR ONLINE PUBLICATION: Appendix B 
Table B1.  Estimation of the mean equation (dep. variable = rice production) 

Variables Coefficients 
(Std errors) 

Variables Coefficients 
(Std errors) 

Variables Coefficients 
(Std errors) 

age -1.131** upland_prod_potato 1.091** intra_paddy 55.190*** 
 (0.455)  (0.545)  (5.715) 
t -0.152 upland_prod_potato2 -0.007 lag_hi -24.823*** 
 (0.806)  (0.005)  (9.182) 
edu0 -1.012 intra_prod_vegi -0.417 lag_upland_soybean_share 10.823 
 (39.423)  (0.427)  (39.641) 
edu1 -0.149 intra_prod_vegi2 -0.006*** lag_upland_potato_share -33.793 
 (38.402)  (0.002)  (75.009) 
edu2 -5.002 intra_prod_soybean 3.099* Constant -257.70*** 
 (38.718)  (1.687)  (55.530) 
edu3 -6.329 intra_prod_soybean2 -0.116**   
 (35.783)  (0.053) Observations 3,895 
edu4 -88.402 intra_prod_barleymisc -0.963*** Number of households 1,327 
 (56.570)  (0.344)   
paddy_prod_vegi 0.203*** intra_prod_barleymisc2 -0.002* Note: Standard errors in parentheses: 

 *** p<0.01, ** p<0.05, * p<0.1 
Regional dummy variable estimates 

 (0.036)  (0.001) 
paddy_prod_vegi2 -0.001*** intra_prod_potato -2.939 
 (0.000)  (2.322) are not reported. 
paddy_prod_soybean 0.542*** intra_prod_potato2 0.025   
 (0.062)  (0.028)   
paddy_prod_soybean2 -0.003*** prod_vegi_barleymisc 0.008***   
 (0.001)  (0.002)   
paddy_prod_barleymisc 0.072** prod_vegi_potato 0.003   
 (0.034)  (0.004)   
paddy_prod_barleymisc2 0.000 prod_vegi_soybean -0.017***   
 (0.000)  (0.003)   
paddy_prod_potato -0.213 prod_barleymisc_potato 0.019   
 (0.153)  (0.017)   
paddy_prod_potato2 -0.002 prod_barleymisc_soybean -0.038***   
 (0.002)  (0.011)   
upland_prod_vegi -0.374*** prod_soybean_potato 0.006   
 (0.115)  (0.018)   
upland_prod_vegi2 0.002*** ln_land_paddy 18.065***   
 (0.000)  (3.618)   
upland_prod_soybean -0.434 ln_land_upland -2.267*   
 (0.281)  (1.167)   
upland_prod_soybean2 0.004* ln_labor 16.118***   
 (0.002)  (2.974)   
upland_prod_barleymisc -0.240 ln_cost_seed -0.475   
 (0.170)  (0.994)   
upland_prod_barleymisc2 -0.001*** ln_cost_fertilizer 5.606***   
 (0.000)  (1.158)   
upland_prod_potato 1.091** ln_cost_pesticide 3.363***   
 (0.545)  (1.236)   
upland_prod_potato2 -0.007 ln_capital 34.288***   
 (0.005)  (3.034)   
intra_prod_vegi -0.417 intra -55.039***   
 (0.427)  (15.620)   
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Table B2. Estimation of multinomial logit equations (dependent variable = 
probability of being in each quantile, base outcome = 2nd quantile) 

Variables 1st quantile 3rd quantile 4th quantile 
age -0.003238 0.050304* 0.032808 
 (0.061) (0.029) (0.065) 
prod_vegi 0.001773 0.004153** 0.000472 
 (0.002) (0.002) (0.002) 
prod_soybean 0.028618*** 0.023690*** 0.023490*** 
 (0.009) (0.007) (0.009) 
prod_barleymisc -0.004570 0.003023 -0.001738 
 (0.004) (0.003) (0.005) 
prod_potato -0.004228 0.005167 -0.001866 
 (0.006) (0.004) (0.005) 
ln_land_paddy 1.234535*** 0.272029*** 1.416788*** 
 (0.222) (0.094) (0.217) 
ln_land_upland 0.033208 0.089810*** 0.050313 
 (0.046) (0.028) (0.039) 
ln_labor 0.067270 0.289344 0.496000 
 (0.565) (0.323) (0.614) 
age_ln_labor -0.002934 -0.007341 -0.007809 
 (0.009) (0.005) (0.010) 
ln_cost_seed 0.035556 0.058108 0.055444 
 (0.073) (0.042) (0.072) 
ln_cost_fertilizer -0.28925*** -0.29048*** -0.35504*** 
 (0.092) (0.053) (0.100) 
ln_cost_pesticide 0.082948 -0.044300 -0.011035 
 (0.083) (0.046) (0.088) 
ln_capital 0.184437 -0.19753*** 0.120236 
 (0.152) (0.061) (0.135) 
intra 1.293701*** 0.568174*** 1.585362*** 
 (0.373) (0.187) (0.381) 
intra_paddy -0.026849 0.011671 -0.111265 
 (0.088) (0.086) (0.144) 
t 0.047320 -0.056597 0.002637 
 (0.061) (0.035) (0.060) 
lag_hi 1.069853** 0.853432*** 1.734969*** 
 (0.523) (0.267) (0.547) 
lag_upland_soybean_share -1.408890 -1.748750 -0.846538 
 (2.092) (1.483) (1.699) 
lag_upland_potato_share 1.757049 -0.094881 2.670661 
 (2.266) (1.527) (1.831) 
Constant -2.396414 0.822611 -4.362678 
 (5.069) (2.075) (5.428) 
Note: Robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1. 
Log likelihood = -4164.5; pseudo R2 = 0.104.  
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Footnotes 

                                                
1 Partial moments have been used to evaluate risk exposure relative to some reference point: higher 
(lower) partial moments are defined for risky outcomes that are above (below) the reference point 
(e.g., Markowitz; Fishburn; Bawa; Jorion; Rockefellar and Uryasev; Antle, 2010). Our quantile-
based analysis generalizes partial moments to multiple intervals, each interval corresponding to a 
different quantile.  

2 This modeling approach builds on a companion article (Kim et al., 2012) that examines 
productivity outcomes in rice farms based on a careful analysis of the gains from 
specialization/diversification.  

3 One way to estimate the distribution function is using quantile regression (e.g., Kroenker and 
Bassett; Chernozhukov and Hansen). Another way is to rely on the estimation of partial moments. 
This paper follows this latter approach.   

4 In this paper, our evaluation of the cost of risk is based on the expected utility model. As 
discussed below, this provides a good basis to investigate the role of downside risk. Extensions of 
the quantile approach to non-expected utility model are explored in Chavas and Kim (2012).   

5 The capital variable is constructed by adding agricultural machinery costs, rent, maintenance 
costs, sub-contract fees, interest paid, and depreciation costs. 

6 Intra is defined as the ratio of the size of intra-year double cropping paddy land to total irrigated 
paddy land. 

7 When b → 1 and using L’Hôpital’s rule, the utility function can be written as U(π) = ln(π).   


