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ABSTRACT 
 
Root-knot nematode infestations tend to be spatially clustered within agricultural fields and 
result in crop yield penalties. Site-specific nematode management provides the opportunity for 
producers to maximize profit while maintaining acceptable yield and reducing overuse of 
product. This paper determines the potential of site-specific nematicide application by using 
spatial econometric analyses of on-farm experiments panel data to estimate cotton yield 
response functions with respect to environmental factors and treatment applications. The results 
suggest that yield response for nematicide application differs by soil texture. The nematode 
populations at bloom season and nematicide treatment are significant factors in explaining yield 
variability. Spatial spillovers from neighboring plots also significantly impact yield estimates. 
The results can be used to provide practical recommendations for effectively controlling 
nematodes via site-specific management.  
 
Keywords: Site-specific nematode management, spatial autocorrelation, spatial panel 
econometrics. 

 
 
 

Introduction 
 

Nematode infestations tend to be spatially clustered within agricultural fields and result in crop 
yield penalties. Each year about 10% of all U.S. cotton production is lost to nematodes 
(Blasingame and Patel, 2005; Koenning et al., 1999) and yield losses in individual fields may 
reach 50%. Nematode control is primarily dependent on the application of nematicides 
(Koenning et al., 2004). The cost of nematicide is currently higher than other pesticides and 
also has potential negative environmental effect. Site-specific nematode management provides 
the opportunity for producers to maximize profit while maintaining acceptable yield and 
reducing potential for pollution by overuse of product. This strategy relies upon applying 
nematicides at a single or variable rates across the field only in locations where economically 
justified.  
 
Recent advances in precision agriculture technologies and spatial statistics allow realistic 
estimation of nematode damage to field crops, provide reasonable production recommendation, 
and deliver a practical method of site-specifically controlling nematodes. Specifically, spatial 
econometric theory applied to panel data provides the researcher the framework to control for 
both spatial and temporal heterogeneity and dependencies and obtain more reliable estimation. 
The overall objective of this study is to determine the potential of site-specific nematicide 
application by using spatial panel econometric analyses of on-farm experiments precision 
agriculture data collected in southeastern Arkansas. Spatial econometric methods for panel data 
were used to estimate the cotton yield response functions with respect to environmental factors 
and treatment applications while explicitly modeling spatial effects in cotton yield, nematode 
population, soil texture and nematicide application with controlling spatial and temporal 
heterogeneity and dependence. Specific objectives were: 1) to compare aspatial standard panel 
model, spatial autoregressive lag and spatial autoregressive error models with fixed and random 
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effects extensions for empirical on-farm trials panel data. 2) to determine the spatial effect of 
nematode population density, nematicide treatment, and soil texture on the yield of cotton 
based on the best fit model.  
 
The remainder of the paper proceeds as follows. First some background is provided on the 
spatial technologies for nematode management and on field-scale agricultural experiments. It is 
followed by an overview of the spatial panel methods and data used in this study. Empirical 
results are presented next. Implications and conclusions are drawn out in the last section. 
 
 
Background  
 
When combined with other spatial technologies such as variable rate applicators and electrical 
conductivity sensors, farmers with yield monitors have a toolkit to determine the impact of 
nematode infestation and a practical method of economically controlling the pests.  
 
Soils data have been used in precision agriculture modeling to account for environmental 
heterogeneity. The most commonly used soil data, soil mapping unit polygons such as those 
available for download at SSURGO, were only able to be used as categorical variables, i.e. 
heterogeneity between soils but not within a soil series.  Site-specific sensors that measure soil 
electrical conductivity or electromagnetic induction provide continuous data over space such 
that models can be evaluated with a continuous covariate for soils rather than discrete 
categories.  
      
Soil electrical conductivity is especially useful for site-specific nematode management since it 
is assumed that nematode crop yield penalties are a function of both the magnitude of 
infestation as well as the soil texture. Evidence indicates a given nematode population results in 
different yield penalties as soil texture changes (Monfort, et al. 2007). It is unclear as to the 
exact mechanism for this interaction although it logically follows that plants in more attractive 
growing environments are less likely to be adversely impacted by root damage compared to 
plants growing in soils that have limited water and/or nutrient availability (Mueller, et al. 
2011). Soil electrical conductivity sensors have been correlated to soil texture (Griffin et al., 
2005; Barnes et al., 2003).  
      
Although yield monitors data have been widely used to evaluate crop varieties, nitrogen rates, 
and seeding rates at the farm level (Griffin et al., 2008), analysis problems exist with precision 
agriculture datasets. Precision agriculture datasets tend to have very few explanatory variables 
that lead to omitted variable problems or an underspecification of the model. Ordinary least 
square (OLS) estimates are biased and generally inconsistent under omitted variables 
(Wooldridge, 2003). OLS residuals are expected to be spatially correlated when an important 
omitted variable has spatial structure (Bell and Bockstael, 2000; Bockstael, 1996). Additional 
aspatial problems arise from measurement errors in attributes and location.  
      
Yield monitor observation is correlated with its neighboring observation and result in spatial 
autocorrelation and heteroscedasticity. Spatial autocorrelation and heteroscedasticity has 
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traditionally been neutralized in agricultural field research by reducing experimental unit sizes 
until plot sizes could be assumed to be homogeneous (Montgomery, 2001). Replication, 
randomization, and blocking techniques are combined with small-plots to determine treatment 
differences. However, treatment effects are more efficiently estimated by modeling spatial 
autocorrelation via spatial econometric technique than the traditional approach of neutralizing 
spatial autocorrelation (Cressie 1993). The advanced development of site-specific 
measurements and spatial statistical computation allow for new approaches to statistically valid 
inference.  
 
 
Methodology 
 
Most agricultural data, such as site-specific crop yield data, are expected to be spatially 
structured i.e. autocorrelated and heteroscedastic, which violates the assumptions of classical 
statistics and failing to account for spatial autocorrelation results in OLS estimates inefficient 
and bias the test statistics (Anselin, et al 2004). Spatial econometric methods that adjust for 
spatial dependence should be chosen to obtain more accurate estimates.  
 
Spatial panel data model occupies an emerging and promising position in spatial econometrics. 
Spatial panel data related to time series observations of a number of spatial units. Compared to 
purely cross-sectional data or time-series data, panel data offer researchers extended modeling 
possibilities due to its more informative, more variability, less collinearity among the variables, 
more degrees of freedom, and hence the more efficient estimates (Elhorst 2003, 2011). Panel 
data can also be better able to specify some complicated behavioral hypotheses which can not 
be identified and measured by pure cross-section or pure time-series data (Hsiao 2005). Panel 
data can also reduce the rick of obtaining bias estimates resulting from the omitted variables by 
controlling for individual heterogeneity which can not be dealt with in in pure cross-section or 
pure time-series data (Moulton 1986, 1987). 
 
Spatial dependence may be incorporated into the model as spatial error autocorrelation which is 
known as spatial autoregressive error model or as a spatially lagged dependent variable which 
is known as spatial autoregressive lag model, or a combination of both which constitute the 
specification of spatial Durbin model (Anselin and Hudak, 1992; LeSage and Pace, 2009). Both 
spatial error model and spatial lag model have been used with site-specific yield data (Anselin 
et al., 2004, Lambert et al., 2004, Griffin et al., 2008). The econometric techniques for spatial 
processes testing and estimation with panel data can be applied for both spatial lag and spatial 
error model (Baltagi et al, 2003; Elhorst, 2003; Elhorst et al. 2010).  The standard panel data 
models---fixed effect (FE) and random effects (RE) can be tested in both a spatial 
autoregressive variable and a spatial autocorrelated error process.  
 
The spatial fixed effect model treat unobservable spatial and/or time period effects fixed while 
spatial random effect model treat it as a random variable that has an iid distribution. Hausman's 
specification test and other substantive reasoning can be used to test and choose the spatial 
fixed effects specification against spatial random effects specification. 
 



In this paper, we apply spatial lag and spatial error models using both fixed- and random-
effects extensions to the panel data. We follow the model specification from Elhorst (2003). If 
we stack the observations as one equation for each cross-sectional at one point in time (e.g., T 
spatial series with N observations over space), the spatial error autocorrelation model with fixed 
effect extension (referred as the SEM-FE model) can be expressed as: 
 

Nttttttttt IEEWXY 2)(,0)(,,                                         (1) 

 
where i 1,2,..., N refers to a spatial unit, t 1,2,...,T to a given time period, )( ,......1  tNtt YYY

N

is a 

 vector of dependent variable for specific location i  at time period t . X is a 1N K  
matrix of explanatory variables;   is the fixed unknown parameter representing the effect of 
omitted variables that are specific to individual spatial unit i  ( some space specific time-
invariant variables which can not measured or captured, like soil texture, weather availability, 
etc.). )( ,......1  tNtt  capture the peculiar effects to the t-th time period which are constant 

over space. )tN( ,......1 tt  is  vector of  independently and identically distributed (i.i.d.) 

error term with zero mean and variance for location i  at time period t . The weights matrix 
W is an N x N spatial weights matrix representing the interaction between the spatial units. 

is  the (i,j) th element of W (i,j = 1,2,…, N ), W =1 if i and j are neighbors, and 0  

otherwise. 

1N
2

ijW ij

 is the spatial autocorrelation coefficient. 
 
The SEM-FE model has the following stacked form: 
 

  )()( NtT IXIY                                                                                           (2) 

 
Where ,  )( ,......1  TYYY )( ,......1  T .  is the identity matrix of size T ; TI t is a 1T  vector 

of ones;  is the identity matrix of size N ; NI  is a 1TK  vector of coefficients, and   

denotes the Kronecker product operator. 
 
The fixed effect extension to a spatial lag model (referred as the SAR-FE model) can be 
specified as:  
  

Nttttttt IEEXWYY 2)(,0)(,                                                         (3) 

 
which can be written as stacked form as:  
 

  )()( BIXIY TT                                                                                                  (4) 
 
Where . 1)(  WIB N   is spatial autoregressive coefficient. The others are same as 

previously defined. 
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Anselin et al. (2006) point out that the potential problem is existed in the estimation approach 
of Elhorst (2003) for either spatial error or spatial lag model with fixed effects extension due to 
ignoring of demeaning the error term and suggest the use of  a generalized inverse to remedy 
this potential problem.  
 
Following Elhorst (2003), for the specification in (1), if we treat i as a random variable which 

is assumed to be iid~( 0, ) , and  if i=j and zero otherwise. Then the spatial 

error model with random effects extension (referred as the SEM-RE model) can be specified as: 

2


2),(  jiE

 
  1)()(,  WIIIvvXY NTNTtt                                                        (5) 

 
Where   is random variable intercept which capture the effect of omitted variables that are 
specific to individual spatial unit . The others are same as previously defined. i
 
 
The spatial lag model with random effects extension (referred as SAR-RE) can be expressed as: 
 

 )()(, NTNTttt IIIvvXWYY                                                           (6) 

 
Related symbols are same as previously defined. 
 
Spatial panel data models can be estimated both following the maximum likelihood (ML) and 
the generalized method of moments (GM) approach. To solve the computer capacity problem 
for the spatial data containing large number of spatial unit N, some extension of the generalized 
moment (GM) estimators were developed and applied for spatial panel data (Kelejian and 
Prucha 1999; Kapoor et al., 2007) 
 
In this study, using on-farm trial experiments panel data, we conducted econometric estimation 
for the model across a range of aspatial and spatial estimators with fixed effect and random 
effect extension. The Results were compared and interpreted with respect to theoretical 
rationale and empirical indication was discussed. 
 
Data and Empirical Model 
 
The dataset used in this study come from field-scale on-farm trials conducted in a commercial 
cotton field (6.1 ha) in Ashley County located in southeastern Arkansas. This field had been 
planted in cotton each year for at least 10 years prior to initiation of the study and had been 
identified by the grower as a problem field due to Meloidogyne incognita, a root-knot 
nematode. The field was subdivided into 512 plots (32 plots wide × 16 plots long) to facilitate 
sequential sampling across 5-yr period (2001-2004 and 2011). Each sampling plot 
approximately 0.012 ha with 3.6 m (four rows) wide and 30.5 m in length were established in 
March 2001. The geographic location of each plot was identified using a GPS receiver 
(Trimble, Sunnyvale, CA) and Site-Mate, a GPS mapping software (Farmworks, Hamilton 
Hamilton, IN). Yield was recorded by Ag Leader PF3000 yield monitor (Ag Leader 
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Technology, Ames, IA) mounted on a 4-row John Deere 9970 cotton picker and at least seven 
individual recordings for each plot. 
 
Each plot was sampled for M. incognita prior to fumigation (Ppre), at planting (Pi), at peak 
bloom (Pm) and at harvest (Pf) for year 2001-2003. Soil texture (percent sand fraction) and the 
pre-plant soil fertility levels were determined from each plot. To ensure that a range of 
nematode population densities was available, 1,3 dichloropropene was applied in strips (3.9-m 
wide) at rates of 14.1, 29.2 and 42.2 liter/ha (128 plots each) each year 2 wk prior to planting. 
Nematicide treatments were replicated 8 times in 2001 and 2002 and 16 times in 2003 and 
stopped in 2004.  
      
Data distribution and statistics can be found in the following figure and table. Figure1 shows 
the yield curve for five years (2001-2004, and 2011). Lint yield of 2011 when the nematicide 
application has been stopped for 8 years share both the lowest average value and most of lower 
peak values. The next lowest average value occurred in 2001 when the nematicide application 
was initiated. The lint yield reached both the highest mean value and peak value in 2002.  
 

Table1.reports the definitions and statistics of the variables used in the analysis. As for the root-
knot nematode population density, it was sampled prior to fumigation (Ppre), at planting (Pi), at 
peak bloom (Pm) and at harvest (Pf) for year of 2001-2003, but not for year 2004 and 2011. So 
we choose population at peak bloom (Pm) which shows the strongest significant effect on yield 
in cross-sectional regression representing the population density level for our panel data 
analysis. Since the spatial panel data model has problem to include time and space invariant 
variables due to perfect collinearity of such variables with the spatial or time dummies (Baltagi 
2001; Elhorst 2003), we created some interaction variables to explore the potential relationship 
between soil properties, treatment application and yield. With the inclusion of these variables, 
the empirical model estimated can be specified as: 
 

)*,04,03,02

,01,*,,*,*,(

treatyrpopyryryr

yrzsandtelonetelonezsandpopelevationpoppopfYield 
                       (7) 

 
Where , … are dummy variables for the time period 2001-2004. Treatyr is another 
dummy which is equal to 1 for year 2001,2002 and 2003 when the nematicide were applied in 
the field and equal to 0 for year 2004 and 2011 without treatment application.  

01yr 04yr

 
 
Empirical Results 
 
We estimated yield potential (penalty) as a function of nematode population, nematicide using 
rate, time dummies and other interaction variables as equation (7) using on farm field-scale trial 
experiment data in 2001, 2002, 2003, 2004 and 2011 in Ashley county, AR. The variation in 
the estimated effects that may occur across aspatial and spatial models were examined. The 
models were estimated in STATA 10. For spatial models we assume a queen contiguity matrix 
to define neighboring states in weight matrix W (Anselin, 2002). 
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The estimation results are summarized in Table 2. The first model is a standard panel model 
with fixed effects. The second column presents a standard panel model with random effects. 
The last four columns present results from the spatial panel estimations with fixed and random 
extension. The coefficients across all six models share the same sign although there are some 
difference for magnitude, and significance between the four spatial panel models. As expected, 
the spatial autoregressive parameter (Rho) in spatial lag models and the coefficient on the 
spatially correlated errors (Lambda) in spatial error models have positive effect and highly 
significant. It indicates that the spatial dependence inherently existed in our data, and spatial 
panel model is a better alternative to the aspatial standard panel model by accounting for the 
spatial dependence. Breusch and Pagan Lagrangian multiplier test for random effects model 
indicates the panel effect existed in the data and panel model is better fit than OLS regression. 
 
The estimate results for SAR model and SEM model are similar except the magnitude of the 
estimates of coefficient are larger for SAR model. Theory and a priori information suggest that 
when crop yield is the dependent variable, spatially autocorrelated error terms are expected 
rather than the contagion existing in the dependent variables, suggesting that the spatial analyst 
would opt to use spatial error process models to address the spatial effects explicitly. AIC 
values also suggest that spatial error model may be a better fit on our yield monitor data. As for 
the choice between FE and RE extension, the Hausman (1978) test yield a chi2 (8) = 87.10  
statistic, which is highly significant at the 1% level. It indicates that the RE model is 
inconsistent. However, some literatures state that the Hausman test should not interpret a 
rejection as an choice of the FE model and a nonrejection as an choice of the RE model (Hsiao 
and Sun 2000; Baltagi 2001). The essential interpretation should be based on whether the units 
in the sample can be viewed as a population or random draw from some underlying population 
(Verbeek 2004). Since yield monitor data are random sample rather than a population, random 
effect model may be more appropriate for this study and we give more attention to the results 
based on SEM_RE model. 
 
The nematode population density and nematicide using rate are significant determinants to 
explain the variation of cotton yield across aspatial and spatial models. The time effects from 
year 2001, 2002, 2003 and 2004 reveal a strong upturn in cotton yield relative to 2011. 
Nematode population interacted with nematicide application has significant effect on crop yield 
while nematode population interacted with elevation do not affect crop yield significantly. 
 
Nematicide application interacted with soil texture (telone_zsand) significantly affect crop 
yield. It indicates that the effect of nematicide on yield is different for different values of 
percent sand fraction. This provides the potential to develop the site-specific nematode 
management strategy. 
 
 

Conclusions 
     
This research conducted spatial panel econometric analysis to determine the potential of site-
specific nematicide application using on-farm field scale experiment data for cotton production 
in Ashley County, Arkansas. Aspatial standard panel model, spatial autoregressive error, spatial 
autoregressive lag model with fixed effect and random effect extension were used to estimate 
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crop yield response functions with respect to environmental factors and treatment applications. 
Test statistics indicate that spatial panel models are the proper alternative to aspatial panel 
models. The spatial error model with random effect extension may be the most appropriate 
model for this case study due to capturing spatial effects from nematode population, soil 
texture, and nematicide application rate with controlling spatial and temporal heterogeneity and 
dependence. Results suggest that nematode population at bloom season is significant factors in 
explaining yield variability. Yield response for nematicide application differs by soil texture. 
This finding provides evidence to support the potential of site-specific nematode management. 
Spatial spillovers of soil texture and nematode population from neighboring plots also 
significantly impact yield estimates. The results can be used to provide practical 
recommendations for effectively controlling nematodes via site-specific management.  
 
 
 
 



Figure.1. Lint Yield Curve 
 

0

500

1000

1500

2000

2500

1

2
4

4
7

7
0

9
3

1
1
6

1
3
9

1
6
2

1
8
5

2
0
8

2
3
1

2
5
4

2
7
7

3
0
0

3
2
3

3
4
6

3
6
9

3
9
2

4
1
5

4
3
8

4
6
1

4
8
4

5
0
7

Y
ie
ld
 (
p
o
u
n
d
s/
ac
re

)

Plot_ID

Lint Yield Curve

Yld01

Yld02

yld03

yld 04

yld11

 
 
 

10 

 



11 

 

Table 1. Descriptive Statistics for Variables Used in the Analysis 
 

Variable  Mean 
Std. 
Dev.  Min  Max  Definition 

elevation  128.52  12.62  88.55  142.03  elevation (feet) for the plot 

yield  1012.13  298.01  48.87  2179.32  Cotton yield (pounds/acre) 

pop  806.37  1643.94  0  22045 
M. incognita population density 
(juveniles/500 cm3 of soil) 

telone  1.25  1.63  0  4.5 
nematicide application rate 
(gallon/acre) 

zsand  46.36  11.03  21.66  82.96 
the percent sand fraction of the 
soil  
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Table 2. Regression Results from a Variety of Panel Specifications 
 
   Panel_FE  Panel_RE  SAR_FE  SAR_RE  SEM_FE  SEM_RE 

  Coef.  Coef.  Coef.  Coef.  Coef.  Coef. 

   (Std.Err.)  (Std.Err.)  (Std.Err.)  (Std.Err.)  (Std.Err.)  (Std.Err.) 

pop  0.143***  0.206***  0.139***  0.200***  0.114*  0.170*** 

  (0.028)  (0.025)  (0.030)  (0.026)  (0.028)  (0.026) 

pop_elev  0.0002  1.54E‐05  0.0003*  0.0001  0.0004*  0.0002 

  (0.00018)  (0.0002)  (0.0002)  (0.0002)  (0.0002)  (0.0002) 

pop_zsand  ‐0.0005**  ‐0.001***  ‐0.0004  ‐0.001***  ‐0.0003  ‐0.001*** 

  (0.00024)  (0.0002)  (0.0003)  (0.0002)  (0.0002)  (0.0002) 

telone  40.321***  87.501***  42.419***  90.010***  36.050***  95.0427*** 

  (11.686)  (9.648)  (12.830)  (10.010)  (12.643)  (9.833) 

telone_zsand  ‐0.201  ‐1.231***  ‐0.161  ‐1.335***  ‐0.087  ‐1.379*** 

  (0.239)  (0.195)  (0.263)  (0.202)  (0.263)  (0.197) 

yr01  52.110***  50.394***  57.600***  68.228***  54.571***  53.612*** 

  (15.461)  (14.915)  (16.975)  (16.214)  (14.839)  (14.778) 

yr02  363.780***  363.350*** 416.399***  428.558*** 364.794***  364.121*** 

  (16.987)  (16.342)  (18.650)  (17.737)  (16.155)  (15.998) 

yr03  292.855***  291.127*** 352.039***  362.459*** 292.211***  291.599*** 

  (14.274)  (14.010)  (15.672)  (15.308)  (13.436)  (13.458) 

yr04  493.876***  492.075*** 566.648***  569.366*** 495.763***  496.431*** 

  (12.083)  (12.260)  (13.267)  (13.525)  (11.610)  (11.818) 

pop_treatyr  ‐0.158***  ‐0.162***  ‐0.175***  ‐0.165***  ‐0.157***  ‐0.152*** 

  (0.013)  (0.012)  (0.014)  (0.013)  (0.013)  (0.012) 

_cons  722.110***  721.777*** 113.289***  97.155***  318.961***  307.874*** 

  (8.432)  (9.321)  (9.257)  (9.802)  (5.119)  (5.730) 

             

AIC      34016.12    33940.54   

Rho      0.558719*** 0.57438***    

Lambda              0.55872***  0.574379***

             

N=2560             

T=5             

 
Notes: Significance is at the 1, 5, and 10% level as noted by, ***, **, and *, respectively. 
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