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Abstract 

 

The scientific evidence on the effect of sugar consumption on obesity has propelled policy 

makers in several states across the U.S. to propose the imposition of a tax on soft drinks. In this 

paper, we look at the effect of two tax events: a 5.5% sales tax on soft drinks imposed by the 

state of Maine in 1991, and a 5% sales tax on soft drinks levied in Ohio in 2003. We investigate 

this question by using sales data collected by scanner devices in Maine, Massachusetts, New 

York and Connecticut, as well as Ohio, Illinois, Michigan and Pennsylvania. These samples 

comprise stores that account for more than 80% of all grocery sales nationwide and include 

brand-level sales data for the periods of study.  We employ a difference-in-difference matching 

estimator (DIDM) that, in our setting, permits the comparison among treatment and control 

groups based on brand identity. Results suggest that sales tax had a statistically insignificant 

impact on the overall consumption of soft drinks. This finding is robust to several alternative 

specifications, and over time. 

                                                           
*
 University of Massachusetts Amherst. We thank Ron Cotterill, director of the Food Marketing Policy Center, for 

generously providing the data. We also thank Petra Todd for helpful comments. 
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1.  Introduction 

 

The rate of obesity in the U.S. is increasing dramatically. According to data from the Center for 

Disease Control and Prevention (CDC), the percentage of obese people in the U.S. has increased 

from 20% in 2000 to 27.5% in 2010. Americans consume about 25% to 30% more daily calories 

today than they did 30 years ago
1
. This large increase in calorie intake appears to have been 

significantly fueled by soda consumption; in 2009, a statement by the American Heart 

Association indicated that soft drinks and sugar sweetened beverages were the number one 

contributor of added sugars in Americans’ diets.  Consistent with this observation, several 

studies have shown how the consumption of soft drinks has significantly contributed to the 

increase in obesity, leading to a higher incidence of various diseases such as heart disease, 

diabetes, stroke, hypertension and cancer. For instance, Libuda and Mathilde (2009) in a review 

article find that prior research has consistently reported evidence in support of a causal 

relationship between soft drink consumption and excess weight gain. Similarly, the meta-

analysis conducted by Vartanian et al. (2007) shows a clear association of soft drink intake with 

both increased energy intake and as well as body weight.  

In addition to the scientific evidence on the effect of sugar consumption on obesity, it is 

important to note that soft drinks have a very limited nutritional value. These two facts have 

propelled policy makers in several states across the U.S. to propose the imposition of a tax on 

soft drink consumption.  Policy interventions that modify the price of a good are supported by 

economic motivations based on market failures (Marshall 2000; Cawley 2004; Finkelstein, 

Ruhm, and Kosa 2005; Kim and Kawachi 2006; Powell and Chaloupka, 2009). Specifically, 

there are negative externalities associated with soft drinks consumption such as the increased 

health care costs of treating diseases caused by obesity. These can take the form of higher health 

insurance premiums and higher public health expenditures by the government. Additional social 

costs may consist of productivity losses (Cawley, 2004). Also, some people may have time-

inconsistent preferences that would require public interventions (Powell and Chaloupka, 2009). 

For instance, children do not take into account the future consequences of their actions, and 

people, in general, may not appropriately discount the future costs of their behaviors (Komlos, 

Smith, and Bogin 2004; Smith, Bogin, and Bishai 2005).  

Small excise taxes and special sales taxes on soda are already in place in 33 states. The 

Carbonated Soft Drinks (CSD) industry has succeeded in avoiding a soda tax to be included in 

the recent national health reform. Soda taxes have been proposed in at least 12 other states, 

though none of these proposals have yet been approved. The most effective way in which this tax 

should be imposed is not clear. Different proposals have been discussed, and they differ 

substantially across states. For example, Mississippi is considering legislation that would tax the 

syrup used to sweeten soda while the state of New York, in its proposed state budget, 

recommended a penny-per-ounce tax on sugary beverages. In Washington state, legislators 

                                                           
1
 http://www.cdc.gov/obesity/  
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approved a two-cent tax on every 12 ounces of soft drinks sold. The overarching political 

argument is based on the economic rationale that price increases caused by higher taxes will 

dampen consumption. However, while research has investigated the potential consumption 

reaction to a tax increase, our assessment is that there is still uncertainty as to what the ultimate 

impact on consumption will be.  

In this paper, we shed light on this issue by looking at the effect of two soft drinks sales 

taxes: one was imposed by the state of Maine in July 1991 (5.5%), and a more recent one was 

imposed in Ohio in January 2003 (5%). Initially, we analyzed the effect of the “snack tax” that 

was in force in Maine from 1991 to 2001 (when it was reduced by 0.5%). The tax in Maine was 

applied to snack foods, soft drinks, carbonated water, ice cream and pastries. A more recent 

dataset became available that allowed us to replicate the experiment using the sales tax levied in 

Ohio in 2003, which applied specifically to soft drinks. However, the definition of soft drinks in 

Ohio is broad including not only “traditional soda pop beverages” but also “any sweetened 

nonalcoholic beverage, whether sweetened naturally or artificially, (unless it either contains milk 

products or a milk substitute or it contains greater than fifty percent (50%) fruit or vegetable 

juice by volume); many fruit drinks or fruit punches that contain fifty percent (50%) or less juice 

by volume; bottled tea and coffee drinks”
2
. 

We first study the effect of this type of tax on CSD volume sales and prices, at the brand 

level, and then compare the results. We investigate this question by employing sales data 

collected by supermarket scanner devices in Maine as well as in the states of Massachusetts, 

New York and Connecticut, during the 1988-1992 period. Then, we compare the outcome from 

this experiment with the outcome from another case study, for which we utilize scanner data on 

Ohio, Michigan, Illinois and Pennsylvania, for the period 2001-2006.  

The use of a brand-level dataset presents two main advantages.  First, we are able to 

employ a difference-in-difference matching estimator (DIDM) that provides a more powerful 

identification technique than a difference-in-difference estimator (Todd, 2007). In our setting, the 

DIDM estimator permits the comparison among treatment and control groups based on brand 

identity. With the DIDM estimator, the matching mechanism is more transparent as it does not 

rely on propensity scores (i.e. each brand observed in the treatment group is matched to the same 

brand in the control group). 

A second advantage of a brand-level analysis is that it allows us to study whether the tax 

imposition causes consumption (or pricing behavior) to vary across brands. This is important 

since a tax increases the price of different brands by different dollar amounts. By accounting for 

differences in time-invariant unobservable factors between treated and control cities, we are able 

to isolate the sole impact of the tax policy on the volume and prices of soft drinks, at the brand 

level.   

                                                           
2
 Ohio Department of Taxation, available at 

http://tax.ohio.gov/divisions/communications/information_releases/sales/st200401.pdf 



5 
 

Our main finding is that the tax increase did not alter consumption in Maine, nor in Ohio.  

While our results are specific to a 5.5% tax increase in Maine, and 5% in Ohio, they may prove 

to be informative as the current mean sales tax rate (across states) on soft drinks is 5.2%, similar 

to the levels experienced by Maine and Ohio. Despite the fact that consumer attitude towards 

consumption of soft drinks might have changed in 12 years, as a consequence of increased 

awareness regarding the problem of obesity and its possible causes, and to the extent that 

consumer behavior in Maine and Ohio is similar to that of consumers in other states, our results 

suggest that the current level of soda sales taxes in the US appears to be too small to actually 

affect consumption in a sizeable way. If the objective of the tax is to influence behavior through 

a higher price of unhealthy foods (by inducing consumers to consume less high calorie drinks) 

our results are disappointing to policy makers. On the other hand, if the objective of the tax is to 

raise tax revenue and use the additional resources to engage in other strategies to address the 

obesity problem, then our results suggest that the tax can be successful. 

This paper is organized as follows. Section 2 presents a review of related research. 

Section 3 contains a description of the methodology employed while section 4 describes the data. 

Section 5 contains the main results and section 6 concludes.  

 

2.  Literature Review 

 

The effectiveness of a soft drinks tax is still not well-understood. Estimates by Yale 

University’s Rudd Center for Food Policy and Obesity suggest that for every 10% increase in 

price, consumption decreases by 7.8% (Brownell and Frieden, 2009); this estimate implies an 

own-price elasticity of demand of -0.78. The authors consider a 100% pass-through rate and 

compute their estimate based on two specific tax proposals: a 10% sales tax, and a penny-per-

ounce tax. Conversely, there is evidence from other studies suggesting that the imposition of a 

tax would have much milder effects on consumption reduction. For instance, some cross-

sectional studies have found minimal to no association among state-level soda taxes and body 

weight (Fletcher et al., 2010a and 2010b; Powell et al., 2009; Sturm et al., 2010). Fletcher et al. 

(2010b) provide the first empirical examination of the effectiveness of soft drinks taxation in 

reducing adult obesity. The authors analyze the ultimate impact of changes in states’ taxation 

rates in the period from 1990 to 2006 on changes in body mass index (BMI) and obesity, by 

exploiting the fact that approximately half of all states changed their soft drink tax rate in this 

period. Using an analysis that employed individual-level data, the authors find that soft drink 

taxes do influence behavior but not enough to lead to large changes in population weight. 

Results in Wang (2010) greatly scale down the ones by Brownell and Frieden (2009). As 

in Brownell and Frieden, Wang analyzes the impact of a 10% sales tax and a penny-per-ounce 

tax. The methodology consists of specifying a structural dynamic demand model that accounts 

for storability and heterogeneous tastes for soft drinks, which turn out to be crucial elements for 

obtaining accurate predictions for the two possible tax policies. The author argues that this model 
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provides more accurate estimates of consumers’ price sensitivity and thus allows for a more 

reliable prediction of the policies’ impact. Wang’s estimate of the overall price elasticity for soft 

drinks (-0.33) is less than half of that obtained by Brownell and Frieden. Wang argues that not 

accounting for intertemporal substitution can lead to an overestimate of the effect of the tax on 

consumption. 

Studies exclusively looking at the effect of an excise tax approach (a fixed fee per ounce) 

find that such a tax would reduce consumption of sugar sweetened beverages by a range that 

spans from 10% to 25% (Andreyeva et al., 2011; Institute of Medicine, Washington (DC), 2009; 

Hahn, 2009; Smith et al., 2010).  Regardless of the type of tax being analyzed (excise or ad 

valorem), inference in most empirical work has relied on an estimate of the own-price elasticity 

for soft drinks. In turn, estimates of the own-price elasticity for soft drinks differ in the literature 

since they depend on the methodology used, the type of data available, and whether substitutes 

(e.g. other beverages) are considered. However, studies typically report that demand for soft 

drinks (as a product category) is largely price-inelastic. A recent review on demand estimates for 

food products reports an own-price elasticity for soda and other beverages that ranges between -

0.8 and -1 (Andreyeva et al., 2010). Lin et al. (2010) estimated two beverage demand systems 

using retail purchase data for high-income and low-income households. The authors found that, 

among high-income households, the demand for CSD is price elastic (mean of -1.29) while 

among low-income households demand is price inelastic (mean of -0.95). A large variance of 

price elasticity estimates is illustrated by the results in Zheng and Kaiser (2008) and Dharmasena 

and Capps (2011) who place the price elasticity estimate for soft drinks at -0.15 and -1.90, 

respectively. 

The counterfactual nature of earlier studies implies that an assumption on the pass-

through rate needs to be made; the common practice is to assume that the tax will be fully passed 

through to the final price (i.e. that the tax-exclusive price after the imposition of the tax will 

remain unchanged). If firms react to the tax change, for example by reducing their prices to 

dampen the decrease in consumption, then this assumption would not be appropriate.  In 

addition, most of the previous studies assume that people would respond to the tax the same way 

they would to a price increase from the soft drink company.
3
 However, since a price increase 

caused by a tax is only reflected at the cash register, and to the extent that consumers are 

primarily guided by the tag price when making a purchase decision, a price increase through a 

sales tax is likely (as we find below) to cause a smaller reaction in consumption. Our study does 

not rely on either assumption. Further, we can directly test, as we will show below, whether the 

tax is fully passed onto the consumer. 

 

 

                                                           
3
 An exception is Fletcher et al. (2010b) who investigate the effect of soft drink taxes on consumption using 

different soft drink tax events in the U.S. The authors, however, rely on a self-reported survey of soft drinks 

consumption (rather than actual purchases).  
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3.  Method 

 

In this paper, we first investigate the consumption effect of a 5.5% sales tax on soft drinks 

imposed by the state of Maine in July 1991. We employ sales data collected by scanner devices 

in Portland, Maine as well as in Boston (Massachusetts), Albany (New York) and Hartford 

(Connecticut).  Subsequently, we consider a more recent similar tax event, a 5% sales tax on soft 

drinks levied in Ohio on the 1
st
 of January 2003. For the latter experiment we employ scanner 

data collected in Cleveland (Ohio), Detroit (Michigan), Chicago (Illinois) and Philadelphia 

(Pennsylvania). The available data therefore limit our comparison to consumption across cities 

(rather than across entire states). The data, provided by Information Resources Inc. (IRI), come 

from a sample of supermarkets in the largest metropolitan areas in the U.S. We use two datasets 

that include brand-level sales information for the periods 1988-1992 and 2001-2006, 

respectively. More details on characteristics and differences of the two sets of data are provided 

in the next session.  

To the extent that neighboring states serve as a reasonable control for both Maine and 

Ohio, data in such states allow us to isolate the effect of the tax (on soft drinks consumption) 

from all other possible factors (trends, seasonality, nationwide changes in companies’ policies, 

etc.). In addition, the brand-level analysis allows us to study whether the tax imposition causes 

consumption (or pricing behavior) to vary across brands. 

We employ a difference-in-difference matching estimator (DIDM), which provides a 

more powerful identification technique than a difference-in-difference estimator (DID) (Todd, 

2007).  This difference-in-difference matching (DIDM) estimator is superior to a simple DID 

estimator because comparison of treated and untreated units is based on their similarity. 

Conversely, a DIDM estimator is superior to a cross-sectional matching estimator since it 

accounts for differences in time-invariant unobservables between treated and untreated units 

(Heckman, Ichimura and Todd, 1997; Heckman, Ichimura, Smith and Todd, 1998).  In our 

setting, the DIDM estimator permits the comparison among treatment and control groups based 

on brand identity; this means that the matching mechanism is simpler, more transparent and 

more reliable as it does not rely on propensity scores.   

 

The DIDM estimator tailored for our panel data is given by: 

 

       
 

 
                   

 

   
                     

  
     (1) 

 

where i and j denote observations in the treatment and control groups, respectively, while t and t' 

denote pre- and post-treatment time periods. Ii is the set of units in the control group that are 

matched to treatment unit i and #Ii is the number of elements in that set.  The variable V denotes 
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the outcome being measured (in our case volume sales or price)
4
 and the scalar N is the number 

of treated units (i.e. brands). 

We tailor this estimator to the structure of our data. First, unlike usual matching 

estimators, we employ all treated units in the analysis rather than only those that would fall into a 

‘common support’ set. Second, instead of relying on propensity scores to match treated and 

untreated units, we define control units to be those brands in the control cities that match the 

identity of brand i in the treatment city (i.e. we manually choose the unit j that is matched to unit 

i).  Finally, we study the outcome variable in logarithmic form (i.e. V corresponds to the 

logarithm of the variable of interest: volume sales or price); we adopt this transformation because 

the variance of volume sales (across brands) in our dataset is unusually large (see Table 2).  

We report results of the estimator both for several control cities (i.e. #Ii>1) as well as for 

each control city separately (i.e. #Ii=1). In the case of #Ii>1, we consider two control cities (i.e. 

#Ii=2) as well as all control cities (i.e. #Ii=3) and weight all matches equally.  Standard errors are 

calculated using the formula provided by Abadie and Imbens (2008) for nearest neighbor 

matching estimators. 

As a robustness test, we also report results using the standard DID estimator: 

                                                          (2) 

 

Where b, m and t denote brand, city and time (quarter), respectively; V denotes the 

outcome variable (volume sales or price);            is a dummy variable equal to 1 if the 

observation is in the treatment city and 0 otherwise, and       is a dummy variable equal to 1 in 

the post-tax period. Note that the logarithm of the outcome variable allows interpreting      as 

the percentage change in the outcome variable due to the tax. 

 

4.  Description of the data 

 

We employ two sets of scanner data from IRI Infoscan. Characteristics of the two databases are 

different, thus we will distinguish between dataset A and dataset B, and proceed with a brief 

description of the two.  

Data from dataset A were collected from a large sample of supermarkets across the U.S. 

in the period 1988-1992; this sample of supermarkets accounts for 82% of all the grocery sales in 

the U.S. and includes stores with annual sales of more than 2 million dollars. The dataset 

includes dozens of brands for 65 metropolitan areas spanning 20 quarters. The database also 

contains information on the demographics for each metropolitan area, which is identified with 

                                                           
4
 While our primary focus is on quantity, in the empirical analysis we also study whether the imposition of the tax 

caused sizeable price reactions. This allows us to test whether the tax was, on average, fully passed on to the 

consumer. 
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the name of the main city in the area. A potential limitation of the IRI database is the exclusion 

of convenience stores, bars, restaurants and other retail outlets for soft drinks. This lack of 

information may be of limited concern as there is evidence suggesting approximately 70% of soft 

drinks was sold through supermarkets around the time of our study (Higgins et al., 1995).  

Dataset B contains store sales data on carbonated beverage sales and pricing spanning 5 

years (2001-2006) of weekly data and 47 IRI’s metropolitan areas (we refer to a metropolitan 

area as a “city” henceforth)
5
. Data are available at the store level for each chain. They include 

only chains and not independent stores, and the observations are drawn from IRI’s national 

sample of stores. For each store in each week, over 250 different carbonate beverage products 

are offered, comprising a combination of all brands and variety (i.e. regular/diet, packaging, 

volume, and flavors)(Bronnenberg et al,. 2008).  

We used 4 cities for each of our analyses: 1) Portland (ME), Albany (NY), Boston (MA) 

and Hartford (CT); 2) Cleveland (OH), Chicago (IL), Detroit (MI), Philadelphia (PA). Such 

cities were chosen on the basis of geographical proximity to the treatment city. Also, the chosen 

cities showed no major event concerning sales taxes during the period of study.  We focus our 

analyses on 6 quarters: 1) fourth quarter of 1990; first, second and fourth quarters of 1991; and 

first and second quarters of 1992; 2) second through fourth quarter of 2002; second through 

fourth quarter of 2003.  We exclude earlier and later quarters as the common trend assumption 

needed for the validity of a DID approach is less likely to hold.  We exclude the third quarter of 

1991 and the first quarter of 2003 (the quarters in which the each of the two taxes took place) for 

reasons that will be explained later. We selected brands that are present in all quarters and in all 

cities in our study; this procedure allows us to have a balanced panel (necessary for matching). In 

Table 1a and 1b we report the selected brands with the corresponding parent companies, as well 

as the number of observations. The 24 brands in Table 1a account for the 80% of the total 

volume sales in the selected city-quarter pairs. The 34 brands in Table 1b account for the 83% of 

the respective total volume sales in the selected city-quarter pairs. 

 

 

 

 

 

 

 

                                                           
5
 IRI’s metropolitan area definitions are similar to those used by the Bureau of Labor Statistics. 
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Table 1a. Brands, Parent Companies and Presence in City-Quarter pairs – Dataset A– 

Brand  Company # of City-Quarter pairs where 

present 

Canada Dry Cadbury/Schweppes
6
 24 

Canada Dry Light Cadbury/Schweppes 24 

Crush Cadbury/Schweppes 24 

Schweppes Cadbury/Schweppes 24 

Schweppes Light Cadbury/Schweppes 24 

Coke Coca-Cola 24 

Coke Classic Coca-Cola 24 

Diet Coke Coca-Cola 24 

Diet Sprite Coca-Cola 24 

Sprite Coca-Cola 24 

7 Up Hicks & Haas 24 

A & W Hicks & Haas 24 

A & W Light Hicks & Haas 24 

Diet 7 Up Hicks & Haas 24 

Diet Dr Pepper Hicks & Haas 24 

Dr Pepper Hicks & Haas 24 

Diet Pepsi Pepsi Co 24 

Diet Pepsi Free Pepsi Co 24 

Diet Slice Pepsi Co 24 

Mountain Dew Pepsi Co 24 

Pepsi Pepsi Co 24 

Pepsi Free Pepsi Co 24 

Slice Pepsi Co 24 

Diet Rite Royal Crown 24 

Total #obs 

 

576 

 

 

 

 

 

 

 

                                                           
6
 Cadbury Schweppes Americas Beverages became Dr Pepper Snapple Group Inc. on May 5, 2008. 

http://www.sec.gov/Archives/edgar/data/1418135/000144530511000302/dps2010123110k.htm 
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Table 1b. Brands, Parent Companies and Presence in City-Quarter pairs – Dataset B– 

Brand  Company 
# of City-Quarter pairs where 

present 

7up Cadbury /Schweppes 24 

A & W Cadbury /Schweppes 24 

Canada Dry Cadbury /Schweppes 24 

Cherry 7 Up Cadbury /Schweppes 24 

Diet 7 Up Cadbury /Schweppes 24 

Diet Cherry 7 Up Cadbury /Schweppes 24 

Diet Dr Pepper Cadbury /Schweppes 24 

Diet Rite Cadbury /Schweppes 24 

Diet Schweppes Cadbury /Schweppes 24 

Diet Vernors Cadbury /Schweppes 24 

Dr Pepper Cadbury /Schweppes 24 

Ibc Cadbury /Schweppes 24 

RC Cadbury /Schweppes 24 

Sunkist Cadbury /Schweppes 24 

Vernors Cadbury /Schweppes 24 

Welchs Cadbury /Schweppes 24 

Barqs                  Coca-Cola 24 

Caffeine Free Coke Classic           Coca-Cola 24 

Caffeine Free Diet Coke           Coca-Cola 24 

Cherry Coke           Coca-Cola 24 

Coke Classic           Coca-Cola 24 

Diet Barqs           Coca-Cola 24 

Diet Coke           Coca-Cola 24 

Fresca           Coca-Cola 24 

Sprite  Coca-Cola 24 

Caffeine Free Diet Pepsi Pepsi Co 24 

Caffeine Free Pepsi Pepsi Co 24 

Diet Mountain Dew Pepsi Co 24 

Diet Pepsi Pepsi Co 24 

Diet Sierra Mist Pepsi Co 24 

Mountain Dew Pepsi Co 24 

Mug Pepsi Co 24 

Pepsi Pepsi Co 24 

Slice  Pepsi Co 24 

Total #obs   816 
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As it appears from a comparison between Table 1a and Table 1b, some brands have 

changed Company ownership over time. For instance, “7 UP” which was initially acquired by 

Philip Morris in 1978, was sold to Hicks & Haas in 1986. It was then merged with “Dr Pepper” 

in 1988, and bought by Cadbury Schweppes in 1995. 

The IRI database A contains the total volume and the mean price (before taxes) per unit 

of volume (288 oz), for every brand, in a given city-quarter pair. In dataset A, IRI aggregates 

information by adding the volume sold for all package sizes of a brand into one observation. In 

dataset B this aggregation was manually obtained, and the unit of volume is 192 oz.  The average 

price per unit of volume is obtained by aggregating all revenue generated by a brand (regardless 

of package size) and dividing the resulting aggregate revenue by the aggregate volume sold for 

that brand
7
. Descriptive statistics for the brands and cities chosen for our study are provided in 

Table 2a and 2b. These data include information contained in the IRI dataset, as well as data 

collected from specialized sources (demographics, temperatures). Based on the similarity of 

demographics, these data suggest that Albany appears to be the most reliable control for Portland 

as it is the most similar to Portland in terms of size (population), income and temperature.   For 

the same reasons, Detroit is considered the most reliable control for Cleveland.  

 

Table 2a. Summary statistics of demographic and temperature data  

City Variable Description Mean Std. Dev. Min Max 

Albany: Mean Price per brand ($/288 oz)  4.1 0.7 1.7 7.3 

 
Volume sold (288 oz) 71,346 129,691 2.2 1,059,409 

 
Population

8
 101,082 - - - 

 
Median income ($) 31,813 - - - 

 
Annual Minimum Temperature 1990-1992

9
    F) 40 - -7* n.a. 

 

Annual Maximum Temperature 1990-1992
9
    F) 60 - n.a. 97** 

Boston: Mean Price per brand ($/288 oz)  3.8 0.7 2.3 7.7 

 
Volume sold (288 oz) 408,081 680,114 0.3 4,961,379 

 
Population 574,283 - - - 

 
Median income ($) 37,624 - - - 

 
Annual Minimum Temperature 1990-1992

9
    F) 45 - 3* n.a. 

  Annual Maximum Temperature 1990-1992
9
    F) 60 - n.a. 99** 

Hartford: Mean Price per brand ($/288 oz)  3.9 0.6 2.1 7.7 

 
Volume sold (288 oz) 250,304 487,841 2.2 4,504,493 

 
Population 139,739 - - - 

 
Median income ($) 37,308 - - - 

                                                           
7
 This procedure effectively yields a weighted average price across package sizes. 

8
 As of the 1990 Census. 
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City Variable Description Mean Std. Dev. Min Max 

 
Annual Minimum Temperature 1990-1992

9
    F) 42 - -2* n.a. 

 

Annual Maximum Temperature 1990-1992
9
    F) 61 - n.a. 100** 

Portland: Mean Price per brand ($/288 oz)  4.4 0.8 2.2 7.8 

 
Volume sold (288 oz) 95,883 156,508 1.8 1,150,649 

 
Population 64,358 - - - 

 
Median income ($) 29,615 - - - 

 
Annual Minimum Temperature 1990-1992

9
    F) 39 - -14* n.a. 

  Annual Maximum Temperature 1990-1992
9
    F) 56 - n.a. 96** 

* Record minimum temperature. ** Record maximum temperature. 

 

Table 2b. Summary statistics of demographic and temperature data  

City Variable Description Mean Std. Dev. Min Max 

Cleveland: Mean Price per brand ($/192 oz)  3.1 0.3 2.6 3.5 

 
Volume sold (192 oz) 104,420 34,763 56,125 156,714 

 
Population

10
 478,403 - - - 

 
Median income ($) 25,928 - - - 

 
Annual Minimum Temperature 2002-2004

9
    F)  42 - -2* n.a. 

 

Annual Maximum Temperature 2002-2004
9
    F) 57 - n.a. 88** 

Chicago: Mean Price per brand ($/192 oz)  2.8 0.24 2.5 3.2 

 
Volume sold (192 oz) 328,919 81,747 158,531 414,558 

 
Population 2,893,666 - - - 

 
Median income ($) 38,625 - - - 

 
Annual Minimum Temperature 2002-2004

9
    F) 44 - -7* n.a. 

  Annual Maximum Temperature 2002-2004
9
    F) 59 - n.a. 93** 

Detroit: Mean Price per brand ($/192 oz)  3.4 0.2 3 4.1 

 
Volume sold (192 oz) 232,984 66,877 149,579 321,747 

 
Population 951,270 - - - 

 
Median income ($) 25,787 - - - 

 
Annual Minimum Temperature 2002-2004

9
    F) 41 - -2* n.a. 

 

Annual Maximum Temperature 2002-2004
9
    F) 57 - n.a. 91** 

Philadelphia: Mean Price per brand ($/192 oz)  3.1 0.1 2.9 3.5 

 
Volume sold (192 oz) 106,466 17,647 76,771 134,432 

 
Population 1,517,550 - - - 

 
Median income ($) 36,669 - - - 

 
Annual Minimum Temperature 2002-2004

9
    F) 47 - 8* n.a. 

  Annual Maximum Temperature 2002-2004
9
    F) 62 - n.a. 93** 

* Record minimum temperature. ** Record maximum temperature. 

                                                           
9
 http://www.nesdis.noaa.gov/ 

10
 As of the 2000 Census. 
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5.  Results  

 

In July of 1991, a sales tax of 5.5% on snacks and soda was instituted by the state of Maine. This 

information was initially obtained from Jacobson and Brownell (2000) and later confirmed (by 

phone) with staff in the Law and Legislative Reference Library, an office of the Maine 

Legislature. In our dataset, this date corresponds to the beginning of the third quarter in 1991.  

For the second experiment, among the tax events
11

 that occurred in the time period covered by 

dataset B (2001-2006), we selected a 5% sales tax on soft drinks sold in grocery stores and 

through vending machines, levied in Ohio, on January 1, 2003, which, in our dataset corresponds 

to the beginning of the first quarter in 2003. The selection of this one event over the others is due 

to the availability of data for at least one city in the state where the tax was applied, and the 

availability of data on cities that may represent good controls.  

In this section, we first report some descriptive results and later discuss findings from the 

statistical analyses. 

Descriptive Evidence 

A crucial requirement for the reliability of difference in difference estimators is that the control 

units should share a common trend with the treatment units. Since this condition is largely 

difficult to ensure in non-lab environments, one needs to check how plausible this assumption is. 

We do this by graphically comparing the evolution of the outcome variable of main interest 

(volume sales) across treatment and control cities. Figures 1a and 1b depict, for each city, the 

quarterly series of total volume sales. These volume sales are computed using the selected brands 

reported in Tables 1a and 1b (similar graphs are obtained if all brands are included). The time 

period spans from the fourth quarter of 1990 to the second quarter of 1992, and from the second 

quarter of 2002 to the fourth quarter of 2003, respectively. To facilitate comparability, total 

volume sales are normalized by using volume sales in the fourth quarter of 1990 as the base 

period, and the fourth quarter of 2002, respectively.  

Both Figures exclude the quarter in which the tax was applied. The reason for this is that 

we observe an unusually large peak in total volume sales for Portland in the third quarter in 

1991.  This peak only occurs in Portland and we are unsure about its cause. This peak may be a 

reason to doubt the appropriateness of the control cities as one would expect control cities to 

mimic volume changes in the treatment city. However, one would be particularly worried about 

this if such disparity between control and treatment cities is also observed in other quarters. The 

graph obtained by excluding that specific quarter suggests that the Portland volume sales peak 

                                                           
11

Source:  Bridging the Gap Program, University of Illinois at Chicago Institute for Research and Policy, 2011. 

Available at: http://www.bridgingthegapresearch.org/research/sodasnack_taxes/ 
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appears to be an isolated event that occurred in the summer of 1991
12

 since volume trends seem 

to be reasonably similar across cities once this quarter is removed from the graph.  Due to this 

seemingly isolated disparity in trends, we exclude the third quarter in 1991 from our analysis. 

We note that, in any case, this choice will allow us to err on the conservative side when 

estimating the effect of the tax on consumption (including the spike in volume sales registered in 

the third quarter of 1991 in the regressions below leads to a positive effect of consumption by the 

tax increase, an unlikely scenario).  For consistency, we dropped the first quarter of 2003 from 

the analysis of the tax in Ohio. 

 

Figure 1a. CSD total volume sales* (y-axis) per city (different lines) and quarter (x-axis), IRI 

Infoscan Data, Dec 1990 – June 1992 [excluding the III quarter of 1991data] 

 

 
*Total volume sales have been normalized using the 2

nd
 quarter of 1991 as base period. 

 

 

 

 

 

 

 

                                                           
12

 We checked whether this event was due to an unusually warm summer in Portland with respect to other cities.  

Data from NOAA’s Satellite and Information Service (http://www.nesdis.noaa.gov/) suggests that this was not the 

case: the July-September average temperatures in 1990, 1991 and 1992 for our study were, respectively: 62.6°F, 

61.6°F, 60.2°F (ME); 66.8°F, 66.5°F, 64.5°F (MA); 64.7°F, 65.1°F, 62.8°F (NY); 68.2°F, 68.1°F, 65.7°F (CT). 
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Figure 1b. CSD total volume sales* (y-axis) per city (different lines) and quarter (x-

axis), IRI Infoscan Data, Apr 2002 – Dec 2003 [excluding the I quarter of 2003 data] 

 

 
*Total volume sales have been normalized using the 4

th
 quarter of 2002 as base period. 

 

Figure 1a shows reasonably similar volume trends between the treatment city and the control 

cities in the period prior to the imposition of the soft drinks tax, adding comfort to our 

methodology. Moreover, and consistent with the demographic information, Albany’s volume 

trend seems to more closely resemble that of Portland.  Any significant changes in trends 

(between Portland and its controls) in the period after the tax increase can be used to roughly 

infer what the effect of the tax on consumption might have been.   

Following the imposition of the tax, all cities show a negative trend in volume sales; 

further, it appears as if Portland’s downward trend  at least when compared with the most 

reliable control, Albany) might be somewhat more pronounced. While this “graphical” evidence 

suggests that the tax might have curbed soft drinks consumption in Maine, our overall 

assessment is that such effect is not substantial.   

Similar comments can be made by interpreting the graph in Figure 1b. Clearly, the 

control city that better represents volume sales trend in Cleveland (treatment city), before the tax 

was applied, is Detroit. However, also the other cities show a similar trend, despite the level of 

sales that is visibly higher in Philadelphia and Chicago than in Cleveland and Detroit. From the 

volume sales trend shown in the graph, Philadelphia does not appear to be a good control city for 

Cleveland. Unfortunately, we are limited in our choice of controls leaving us to include 

Philadelphia in the analysis. We will proceed with caution when considering results obtained by 

0.96 

0.97 

0.98 

0.99 

1 

1.01 

1.02 

1.03 

II-02 III-02 IV-02 II-03 III-03 IV-03 

Chicago Detroit Philadelphia Cleveland 

Pre-tax Period Post-tax Period 
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the comparison with Philadelphia. The effect of the tax, on the other hand, is not clear from 

graphical observation, as the level of volume sales in Cleveland is not lower for the quarters after 

the tax was applied than it is in the quarters before the tax applied.  

Regression Results 

 

Table 3a and 3b show the DIDM results for volume sales as well as for price. As opposed to the 

“total volume sales” variable in Figure 1 (which is the sum of volume sales over all brands in a 

city-quarter pair), “volume sales” in this analysis is measured at the brand level. We define the 

before period as the three quarters preceding the tax change (i.e. fourth quarter of 1990 through 

second quarter of 1991; second quarter of 2002 through fourth quarter of 2002) and the after 

period as the three quarters after the change due to the tax (i.e. fourth quarter of 1991 through 

second quarter of 1992; second quarter of 2003 through fourth quarter of 2003).  Because the 

matching estimator requires one observation in each the post- and pre-treatment periods, we 

aggregate quarters by taking the mean of the variable over the quarters considered (for either the 

before or the after period) and perform the test on the difference of the logs of these mean values 

(see equation 1)13. For robustness purposes, we compute the DIDM estimator for all possible sets 

of control cities. That is, we consider the case in which we use all 3 control cities in the 

estimator, as well as cases when we include a pair of cities, or just one city.   

The parameter estimates can be (roughly) interpreted as the percentage variation of the 

variable of interest (in the treatment city) respect to the control city (using the three quarters after 

the tax was enacted as the after period and the three quarters before the tax enactment as the 

before period)
14

. We observe from the results that there is no statistically significant change in 

either price or volume. The price estimates imply that firms did not react in any systematic way 

as a consequence of the imposition of the tax and that the tax was fully passed through to 

consumers. 

 

 

 

                                                           
13

 Results are not sensitive to this method of aggregation. Specifically, our conclusions remain unchanged if we: a) 

add volume sales across quarters (instead of taking the average); or b) report results on quarter by quarter 

comparisons. Results of these alternative estimations are shown in the appendix. 
14

 Strictly speaking, because we are using the difference of the variable in natural log format, the percentage change 

in the variable is given by        
  , where        is the DIDM estimate reported in Table 3.  For small enough 

       (as is the case here) ,         is a good approximation of         
  . 
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Table 3a: DIDM Results for Volume and Price, Portland as treatment city; Albany, Hartford and 

Boston as control cities  
 

 

Volume change Price change 

Control city 

  
All control cities  -0.02 (0.04) 0.00 (0.01) 

Albany-Boston  -0.04 (0.04) 0.00 (0.01) 

Albany-Hartford  0.00 (0.05) 0.00 (0.01) 

Hartford-Boston  -0.02 (0.04) 0.01 (0.01) 

Albany  -0.02 (0.05) -0.01 (0.01) 

Boston  -0.06 (0.04) 0.02 (0.01) 

Hartford  0.01 (0.06) 0.00 (0.02) 

Notes: Pre-tax period is fourth quarter of 1990 through second quarter of 1991; post-tax period is fourth quarter of 

1991 through second quarter of 1992.  The specification uses the mean volume (and mean price) over the pre-tax 

and the post-tax periods, respectively (alternative specifications are shown in the appendix). The DIDM estimator is 

applied on the log of these mean values (see equation 1). Standard errors (in parenthesis) correspond to the nearest 

neighbor estimator provided by Abadie and Imbens (2008). 

 

Table 3b: DIDM Results for Volume and Price, Cleveland as treatment city; Chicago, Detroit 

and Philadelphia  as control cities   
 

 

Volume change Price change 

Control city 

  
All control cities  -0.02 (0.06) 0.00 (0.01) 

Chicago-Detroit  0.00 (0.06) 0.02 (0.02) 

Chicago-Philadelphia  0.00 (0.06) 0.00 (0.02) 

Detroit- Philadelphia -0.06 (0.07) 0.00 (0.02) 

Chicago             0.06 (0.07) 0.03 (0.02) 

Detroit               -0.05 (0.08) 0.02 (0.02) 

Philadelphia      -0.07 (0.07) -0.03 (0.02) 

Notes: Pre-tax period is second quarter of 2002 through fourth quarter of 2002; post-tax period is second quarter of 

2003 through fourth quarter of 2003.  The specification uses the mean volume (and mean price) over the pre-tax and 

the post-tax periods, respectively (alternative specifications are shown in the appendix). The DIDM estimator is 

applied on the log of these mean values (see equation 1). Standard errors (in parenthesis) correspond to the nearest 

neighbor estimator provided by Abadie and Imbens (2008). 
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Table 4a and 4b present the results for the standard DID regression, which we use as a 

robustness test for our DIDM estimates. As in the DIDM analysis, we consider two independent 

variables: the natural logarithm of volume sales and the natural logarithm of price. We make the 

same comparisons among cities as in the DIDM analysis. The DID regressions confirm the 

overall DIDM results as they show how the tax application did not yield any statistically 

significant changes in either price or volume.   

 

Table 4a: DID Results for Volume and Price, Portland as treatment city; Albany, Hartford and 

Boston as control cities  

 

 

Volume change  Price change 

Control city (#obs) 

  All control cities (576) -0.04 (0.03) 0.00 (0.01) 

Albany-Boston (432) -0.07 (0.05) 0.00 (0.01) 

Albany-Hartford (432) -0.02 (0.04) -0.01 (0.01) 

Hartford-Boston (432) -0.03 (0.04) 0.01 (0.01) 

Albany (288) -0.07 (0.09) -0.01 (0.01) 

Boston (288) -0.07 (0.04) 0.01 (0.01) 

Hartford (288) 0.02 (0.06) 0.00 (0.02) 

Notes: Pre-tax period is fourth quarter of 1990 through second quarter of 1991; post-tax period is fourth quarter of 

1991 through second quarter of 1992.  The DID estimator is applied on the log of volume and price, respectively; 

the reported coefficient corresponds to       in equation (2). Standard errors (in parenthesis) are clustered at the 

brand level15. 

 

Table 4b: DID Results for Volume and Price, Cleveland as treatment city; Chicago, Detroit and 

Philadelphia  as control cities   

 

 

Volume change  Price change 

Control city (#obs) 

  All control cities (816)  -0.02 (0.07) 0.00 (0.02) 

Chicago-Detroit (612) -0.01 (0.07) 0.02 (0.02) 

Chicago-Philadelphia (612)  0.00 (0.07) 0.00 (0.02) 

Detroit- Philadelphia (612) -0.07 (0.07) -0.01 (0.02) 

Chicago (408)                 0.05 (0.07) 0.03 (0.02) 

Detroit  (408)                  -0.07 (0.08) 0.01 (0.02) 

Philadelphia (408)      -0.06 (0.07) -0.03 (0.02) 

                                                           
15

 Clustering at the company level does not alter our results. In all cases, significance levels as reported in Table 4 

remain unchanged. We choose to report brand-level clustering because clustered errors are valid only for a 

sufficiently large number of clusters, ideally more than 20-25 (Cameron, Gelbach and Miller, 2008). 
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Notes: Pre-tax period is second quarter of 2002 through fourth quarter of 2002; post-tax period is second quarter of 

2003 through fourth quarter of 2003.  The DID estimator is applied on the log of volume and price, respectively; the 

reported coefficient corresponds to       in equation (2). Standard errors (in parenthesis) are clustered at the brand 

level
16

. 

 

To further understand whether there are particular patterns in price and volume changes 

at the brand level, we visually inspect price and volume changes for each brand in our dataset. In 

the following Figures (2a/b and 3a/b) we plot the change in price and the change in volume for 

each brand–city pair. In the Figures, brands appear on the horizontal axis. Cities are depicted by 

markers.  The Figures not only highlight the importance of using a control in measuring the 

desired effect, but they are also consistent with the econometric results in that there is not a clear 

pattern suggesting a sizable effect of the tax increase in either volume or prices at the brand-

level.  
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Figure 2a. Change in Volume sales by Brand and City  log  Mean Volume sales IV’91-II’92/Mean Volume sales IV’90-II’91)) 
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Figure 2b. Change in Volume sales by Brand and City  log  Mean Volume sales II’02-IV’02/Mean Volume sales II’03-IV’03)) 

 

 
 

 

 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

Chicago Detroit Philadelphia Cleveland 



23 
 

Figure 3a. Change in Price by Brand and City  log  Mean Price IV’91-II’92/Mean Price IV’90-II’91)) 
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Figure 3b. Change in Price by Brand and City  log  Mean Price II’02-IV’02/Mean Price II’03-IV’03)) 
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6.  Conclusion 

In this paper we show the results of DIDM and standard DID estimations, with the aim of 

uncovering the effect that the imposition of a soft drinks sales tax might have had on brand-level 

consumption and prices. Results suggest that the 5.5% sales tax that Maine applied to soft drinks 

in July of 1991 did not cause a generalized impact on volume sales at either the aggregate or the 

disaggregate (brand) level. Subsequently, using a more recent dataset (2001-2006) available to us 

we identified a similar tax event, which occurred during the time covered by this dataset, and we 

replicated the analysis. This allowed us to verify whether the efficacy of this type of tax has 

changed with time and with possible greater awareness of people about the correlation between 

obesity and soda consumption. We also found that in the second case the application of a sales 

tax on soft drinks did not affect the consumption in a sensitive way. We find that our results are 

robust to several alternative specifications (see the Appendix). 

 While this outcome is consistent with the generalized conclusion in the literature that 

demand for soft drinks is inelastic, it casts some doubt about whether one should use price 

elasticities to form counterfactuals for how consumers might react to tax increases. Specifically, 

we find that such counterfactuals might be optimistic as they predict an actual reduction in 

consumption. The fact that the tax is not displayed on the shelf (where many consumers may 

base their purchasing decisions) may help explain why a tax does not cause a reduction in 

consumption in our data. One caveat of our study regarding Maine is that the tax was also 

applied to other high-calorie foods (snacks and pastries), so there is not much room for a possible 

substitution effect away from soda and towards other sources of sugar. This could partly explain 

the insignificant impact on soft drinks consumption in our experiment. However, that caveat has 

been eliminated in the second part of the study, given that no tax was applied on candies, 

pudding/gelatin, sugar and sugar substitutes or snacks in Ohio in 2003. Those items are 

considered food by Ohio Legislation and sales tax exempted
17

.  Still, our results raise interesting 

questions about the role of substitute categories when a commodity is taxed. For example, if the 

impact on soft drink consumption in our study had been statistically significant and the tax had 

been applied only on soft drinks, a reduction in consumption could have reflected a switch 

towards higher consumption of other sugary products (and not the reduction in sugar intake 

intended by policy makers).  

While we only look at an isolated instance of a tax increase, our results may have broader 

implications as the tax applied in Maine and Ohio are very close to the mean sales tax applied to 

soft drinks (currently in practice in 33 states), which is 5.2% (Brownell et al., 2009). Also, 

because our data for price excludes the tax, and results from our sample do not reflect a 

statistically significant change in prices as a result of the policy, we can directly test whether 

firms reacted in their pricing decisions. Our results suggest that the price increase due to the tax 

was entirely passed through to the consumer. This finding may be informative for future 

                                                           
17

 http://tax.ohio.gov/divisions/communications/information_releases/sales/st200401.pdf 
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researchers in suggesting a likely pass-through rate for a tax increase when one needs to be 

assumed for counterfactual purposes.  

Our results show the taxes in Maine and Ohio did not significantly decrease consumption. 

Therefore, these taxes have the effects of raising tax revenues for the states. While this added tax 

revenue should, in principle, be reinvested in programs and campaigns to promote a healthier 

consumption of food, in most of the cases the revenue from the “snack-taxes” has become part of 

the general treasury, as occurred in Maine (Jacobson and Brownell, 2000). Sales taxes like the 

ones we study have been demonstrated to be regressive in previous studies (Wang, 2010; Lin and 

Smith, 2010; Chouinard et al., 2006). In particular, it has been found that soda taxes generate a 

welfare loss not homogenously distributed across households of different income levels, with 

poorer consumers being more affected by such taxes (Wang, 2010).  The nature of our data does 

not allow us to separate the effects between different types of consumers; in this sense, we find 

that the “average” effect of the tax on consumption is null.  To the extent heterogeneous effects 

of taxation exist, there will be households that indeed reduce their consumption when a tax is 

applied while others might either be insensitive. Specifically, there might be individuals that 

show strong soda consumption habits, probably due to a component of addiction caused by either 

caffeine or high glucose content, or their combined effect (West, 2001; Keast and Riddell, 2007).    

Because the objective of the policy is to curb consumption for consumers who are less likely to 

give up consumption of soda, discussion of any proposal of special “soda taxes” should be 

accompanied by a systematic agenda of redistributive interventions on health. 

The analysis presented in this paper is part of a larger research agenda that intends to 

fully exploit the broader and richer scanner panel data spanning the 2001-2006 period, when 

several soda taxes were implemented. The richness of the data (weekly supermarket sales at the 

zip code level for all consumer packaged goods in 65 metropolitan areas in the U.S.) will allow 

us to answer, among other things, two questions we were not able to address here: the effect of 

the tax across different types of consumers, and the substitution of consumption towards sugary 

goods that are not affected by the tax. 

Finally, we note one methodological point. While our matching mechanism is simple and 

intuitive, we are not aware of other studies that have applied this approach. We think that this 

could be a particularly useful technique in work that investigates the effect of a policy (or other 

environment changes) that is homogenously applied to a differentiated commodity. 
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Appendix 

 

Table A1a: DIDM Results for Volume and Price, Portland as treatment city and Albany, Hartford 

and Boston as control cities [sum of volume instead of mean] 
 

 

Volume change Price change 

Control city 

  
All control cities  -0.02 (0.04) 0.00 (0.01) 

Albany-Boston  -0.04 (0.04) 0.00 (0.01) 

Albany-Hartford  0.00 (0.04) -0.01 (0.01) 

Hartford-Boston  -0.02 (0.05) 0.00 (0.01) 

Albany  -0.02 (0.05) -0.01 (0.01) 

Boston  -0.06 (0.04) 0.01 (0.01) 

Hartford  -0.01 (0.06) 0.00 (0.02) 
   

Notes: Pre-tax period is fourth quarter of 1990 through second quarter of 1991; post-tax period is fourth quarter of 

1991 through second quarter of 1992.  The specification uses the sum of volume (or price) over the pre-tax and the 

post-tax periods, respectively. The DIDM estimator is applied on the log of these mean values (see equation 1). 

Abadie-Imbens standard errors in parentheses. 

 

 

Table A1a: DIDM Results for Volume and Price, Cleveland as treatment city and Chicago, 

Detroit and Philadelphia as control cities [sum of volume instead of mean] 
 

 

Volume change Price change 

Control city 

  
All control cities  -0.01 (0.08) 0.01 (0.03) 

Chicago-Detroit  0.05 (0.08) 0.07 (0.04) 

Chicago-Philadelphia  -0.02 (0.08) -0.02 (0.04) 

Detroit- Philadelphia -0.05 (0.08) 0.00 (0.04) 

Chicago             0.08 (0.09) 0.05 (0.04) 

Detroit               -0.02 (0.10) 0.09** (0.04) 

Philadelphia      -0.13 (0.09) -0.09** (0.04) 

Significance level: **=5%. Abadie-Imbens standard errors in parentheses. 

Notes: Pre-tax period is second quarter of 2002 through fourth quarter of 2002; post-tax period is second quarter of 

2003 through second quarter of 2003.  The specification uses the sum of volume (or price) over the pre-tax and the 

post-tax periods, respectively. The DIDM estimator is applied on the log of these mean values (see equation 1). 

Abadie-Imbens standard errors in parentheses. 
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Table A2a: DIDM results for Volume and Price change, Portland as treatment city and Albany-

Hartford-Boston as control [quarter by quarter comparisons instead of aggregate comparisons] 

 

 

 

 

 

 

 

 

 

 

 

 

Table A2b: DIDM results for Volume and Price change, Cleveland as treatment city and 

Chicago-Detroit-Philadelphia as control [quarter by quarter comparisons instead of aggregate 

comparisons] 

 

 

 

 

 

 

Table A3a: DID results for Price and Volume change, Portland as treatment city 

and Albany-Hartford-Boston as control [quarter by quarter comparisons instead of 

aggregate comparisons] 

 

  Volume change 

 

Price change 

Date   Control cities 

  

Albany (96) 

Hartford - 

Boston - 

Albany (192) 
 

Albany  

(96) 

Hartford - 

Boston - 

Albany 

(192) 

II’91 v. IV'91 0.02 (0.06) 0.02 (0.04) 
 

0.03 (0.02) 0.02 (0.02) 

IV’90 v. IV’91 -0.01 (0.17) 0.07 (0.06) 
 

-0.03 (0.03) -0.02 (0.02) 

I’91 v. I'92 -0.06 (0.06) -0.06 (0.06)   -0.07** (0.03) -0.01 (0.02) 

              Significance level: **=5%. Standard errors (in parentheses) are clustered at the brand level.  

  

Volume change 
 

Price change 

Date Control cities 

  
 

Albany 

Hartford - 

Boston - 

Albany 

 Albany 

Hartford - 

Boston - 

Albany 

II’91 v. IV’91 
 

0.02 (0.05) 0.02 (0.04) 
 

-0.03 (0.02) 0.01 (0.01) 

IV’90 v. IV’91 
 

-0.01 (0.17) 0.07 (0.09)  -0.03 (0.02) -0.02 (0.02) 

I’91 v. I’92 
 

-0.07 (0.13) -0.10 (0.08)  -0.07** (0.03) -0.01 (0.02) 

Significance level: **=5%. Abadie-Imbens standard errors in parentheses. 

  

Volume change 
 

Price change 

Date Control cities 

  
 

Detroit 

Chicago - 

Detroit - 

Philadelphia 

 Detroit 

Chicago - 

Detroit - 

Philadelphia 

IV’02 v. II’03 
 

-0.02 (0.11) 0.01 (0.08) 
 

0.03 (0.03) 0.01 (0.03) 

II’02 v. II’03 
 

-0.09 (0.08) -0.12 (0.07)  0.08 (0.05) 0.03 (0.03) 

III’02 v. III’03 
 

-0.09 (0.12) -0.12 (0.09)  0.08 (0.05) 0.03 (0.02) 

Abadie-Imbens standard errors in parentheses. 
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Table A3b: DID results for Price and Volume change, Cleveland as treatment city 

and Chicago-Detroit-Philadelphia as control [quarter by quarter comparisons 

instead of aggregate comparisons] 

 

  Volume change 

 

Price change 

Date   Control cities 

  

Detroit 

Chicago - 

Detroit - 

Philadelphia 
 

Detroit 

Chicago - 

Detroit - 

Philadelphia 

IV’02 v. II’03 -0.01 (0.03) 0.00 (0.06)  0.03 (0.03) 0.02 (0.03) 

II’02 v. II’03 -0.08 (0.07) -0.10 (0.08)  0.08 (0.06) 0.03 (0.02) 

III’02 v. III’03 -0.08 (0.11) -0.11 (0.10)  0.08 (0.05) 0.03 (0.02) 

Standard errors (in parentheses) are clustered at the brand level.  

 


