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In a recent paper in this journal, Lence (2009) investigated the hypothesis whether it is possible 

to recover producers’ risk preferences parameters from typical production data. To answer this 

question, the author designed a Monte Carlo experiment with risk calibrated to match historical 

farm data. In the experiment, optimal input data are generated from an expected direct utility 

maximization model. Employing such data and a flexible utility function, the author applied a 

GMM estimation method based on unconditional moment restrictions and jointly estimated risk 

preferences and production technology. Although the experiment is designed to “favor the 

likelihood of obtaining the good estimates of the risk-aversion structure”, the results showed that 

risk preference parameters are estimated without reasonable precision. Therefore, the author 

challenged the decades long effort that pursues recovery of risk preferences in the literature and 

concluded that the structure of risk preferences is unlikely to be recovered from actual 

production data.  

In this comment we discuss the reasons why the author was not able to recover the 

parameters in his simulation -- the unconditional moment restrictions may not globally, or can 

only weakly, identify the true parameter. This potential identification problem has often been 

found in macroeconomic models (see a survey in Stock, Wright, and Yogo (2002)). In particular, 

weak identification arises frequently in nonlinear models, which can break down conventional 

GMM procedures and make standard GMM point estimates unreliable. We tested for weak 

identification in Lence nonlinear GMM model and the results indicate presence of weak 

identification. So it is not that there is no sufficient information that causes the problem as the 

author concluded; it is a result of the identification problems in the setup of the estimation 

procedure in the paper. This study further recommends alternative procedures robust to the 

identification problems in non-linear models. 
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GMM and Global Identification 

Economic models are often characterized by conditional moment restrictions in the underlying 

economic variables. The input decision making model gives rise to three conditional moment 

restrictions, which consists of production technology and two first-order conditions for input 

optimization (equations (10) and (11) in his paper). Assume 

(1)                                            , 

where    is a 7-dimensional vector                           
      

   , and   is a 5-dimensional 

parameter vector                  . Variables in    represent output, initial wealth, price of 

output, prices of inputs A and B, optimal inputs A and B, respectively.  and  are parameters 

of production technology and utility function, respectively; the latter are the risk preferences 

parameters to recover. Lence’s model is defined by the following conditional moment 

restrictions 

(2)                  , 

where    is the true parameter vector and    is the information set known at the time of decision 

making. The conditional moments in (2) are postulated to uniquely identify the parameter    in 

his simulation experiment. Lence used the typical approach – a set of unconditional moment 

restrictions implied from the conditional ones – when estimating the parameters of interest: 

(3)                 , 

where    is the selected instruments set, a subvector of   ; then he used Hansen’s (1982) 

generalized method of moments (GMM) estimator to estimate    by minimizing quadratic form 

with respect to the unknown parameters: 

(4)                                    , 
 



4 
 

where                          
 
    and    is a positive definite weighting matrix.This 

estimation procedure is often performed because of its computational attractiveness. However, 

the prerequisite for the validity of this unconditional GMM-based approach is the potential 

global identification assumption – the parameters identified in the conditional moment 

restrictions can be globally identified by the implied unconditional moment restrictions, i.e.,  

(5)                     . 

That is, the identification hinges on uniqueness of the solution to the unconditional moment 

conditions. But the assumption is often not satisfied. Dominguez and Lobata (2004) argued that 

the unconditional moment restrictions do not guarantee global identification of the parameters of 

interest. For example, in one extreme case the identifying set                          

by the unconditional moment restrictions may not be a singleton          As a result, the 

GMM objective function may have several global minima. In this case, the GMM method cannot 

identify the true parameters and thus leads to inconsistent estimates. Another less extreme case is 

that there exists a large set of   , under which               is fairly small while nonzero, so 

that parameters are only weakly identified. At all events, the conversion to unconditional 

moments from conditional moments may introduce an identification issue. The failure or near-

failure of global identification in unconditional restrictions is quite common in nonlinear models 

regardless of whether the instruments    are optimally chosen or not. Dominguez and Lobta 

(2004) provide some examples where (5) is not satisfied, one of which is as follows:  

“Assume that the random variable   satisfies the simple nonlinear model        
  

      
 . Suppose that        and that         (the conditional variance of  ) is constant. 

Assume that the research properly specifies the model and, instead of an arbitrary instrument, she 

chooses the optimal instrument, given by            . … in practice the researcher just 

knows the form of the optimal instrument, given by         . In this case the parameter 

   is not identified again, since the equation model                   is also satisfied 

for   = -5/4 and for   = -3 when   follows an        random variable.” 
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Besides this problem, the unconditional GMM based approach results in efficiency loss 

because it does not utilize all information from the conditional moment restrictions (2) to 

estimate    A general loss of information from (3) is due to it being an implication of (2); not 

equivalent (Dominguez and Lobta, 2004). The conditional version of the first-order condition of 

the optimization problem contains distributional information about future production and price 

and thus may be used to improve the precision of the estimates. In fact, some prior studies, e.g., 

Saha, Shumway, and Talpaz (1994), adopted an estimation procedure that is directly based on 

the conditional moment restrictions defining the parameters of interest. Such estimators preclude 

identification issues as well as loss of information arising from using unconditional moments. In 

Kumbhakar (2001, 2002a, and 2002b) effort was also made to derive closed-form conditional 

moment restrictions with functional form approximations when more flexible-utility functions 

are allowed for.  

  

GMM with Weak Identification 

The global identification problem in unconditional restrictions so often appears in the form of 

weak identification. In nonlinear GMM, empirical economists often confront that 

              is very nearly 0 for a large set of  . This in turn implies that the GMM 

population objective function has large regions of plateaus that are close to its minimum value. 

Thus the objective function has only limited ability to identify among a large set of parameter 

values. In such circumstances   can be thought of as being weakly identified.  

In Lence’s study, the GMM estimation yields extremely large point estimates which 

makes no sense from an economic standpoint. For example, the upper bound of the 95% CIs for 

risk aversion preference ( 
 
) in most scenarios is very far from the calibrated value of the 
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parameter and fairly distant even from high degrees of risk aversion found in some empirical 

applications.
1
 Additionally, the estimates systematically overestimate the risk preference 

parameter in terms of the medians. The 95% CIs in most scenarios fail to contain the true risk 

preference parameter. In fact, these erratic results of conventional GMM procedures in nonlinear 

models have been well documented in the economics literature. For example, Hansen, Heaton, 

and Yaron (1996) examined GMM estimators of various consumption-based capital asset-pricing 

models (CCAPM) using a Monte Carlo design calibrated to match U.S. data.  They found that 

the time nonseparability preference models would result in a large number of very large 

estimates of CRRA, just like Lence did, and the risk preference parameters are not estimated 

with any reasonable precision. They used two-step, iterative, or continuous-updating estimator, 

but none saves the CCAPM. Weak identification is considered a frequent cause of the 

breakdown of conventional GMM procedures. GMM is easily contaminated by weak 

identification and in turn leads to unreliable point estimates. Also, other problems of GMM 

under failure or near-failure of identification condition are well documented. For instance, the 

sampling distribution of GMM estimators is not normal under these circumstances, that is, 

conventional Gaussian asymptotic theory would provide a very poor approximation to the actual 

sampling distribution of estimators; and hypothesis tests of parameter values and tests of 

overidentifying restrictions can exhibit substantial distortions so that any inference based on it is 

unreliable (Stock, Wright, and Yogo, 2002).  

 

Detection of Weak Identification 

Whether the imprecise parameter estimates from unconditional moments are resulted from the 

identification failure can be tested.  Although various tools are now available for detecting and 
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handling weak identification in linear IV models, the development of a reliable statistic to detect 

weak identification in nonlinear GMM still remains an open challenge. Stock and Wright (2000) 

and Stock, Wright, and Yogo (2002) pointed to several symptoms of weak identification that can 

be readily detected in empirical work. If those symptoms are present, a diagnosis of weak 

identification is appropriate. We will examine whether the GMM estimators exhibit those 

symptoms in Lence unconditional moment restrictions. We replicate Lence Monte Carlo 

experiment focusing on the case which combines CRRA (    , and     ) with high 

uncertainty regarding output and price shocks. In the replication, the only difference is the 

probability distribution of output shocks. Since historical corn yields for Iowa farms are not 

available to the reader, we simply assume that output risk is following a lognormal distribution 

with the same mean and standard deviation as calibrated by Lence.  

Stock and Wright (2000) developed asymptotic distribution theory for GMM estimators 

when some or all of   are weakly identified. In the proof of theorem 1, they remarked that if the 

weakly identified parameters   are known, the well identified parameter vector, i.e.,   , a 

subvector of  , would be   -consistent. But the weakly identified parameters either could not be 

consistently estimated or converge at a very slow rate even if    were known. This would further 

impart a nonzero bias to the estimates of  . Before checking the symptom, we examine a priori 

which risk preference parameter in Lence model is weakly identified.
2
 As shown in Lence 

estimation results,     is more widely dispersed than      in terms of the 95% CIs implying    

more difficult to pin down. Since      is of an even larger order than   , the effect of an even 

large change in    on                  
          

                  would be so small 

that the optimization input restrictions are flat over a wide range of     Therefore,    enters the 

model weakly and can be considered weakly identified. The test is to perform estimation of 
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Lence restricted utility specifications by fixing either    or    at its true value or other reasonable 

values and estimating the other. The first test is to fix  
 
 at its true value 0 and estimate   . We 

then set         to see how much bias is imparted to     from the inconsistency of  
 
 . Finally, 

we fix  
 
 at its true value 3 and check whether  

 
 can be consistently estimated. Tables 1, 2, and 

3 report results from these three CRRA restricted utility specifications, respectively.  Besides for 

sample sizes of 100, 500 and 1000, we also report the median and the 95% CIs of the estimates 

for sample size of 10000 to see whether one parameter  converges to its true value when the 

other is known.  

Different from the estimation results in Lence’s restricted utility estimation specifications 

(see table 6 and 7, Lence (2009) , our parameter estimates  
 
 converge to its true value across 

sample sizes if    is fixed at its true value 0, as shown in table 1. This finding is in agreement 

with the conclusion in Theorem 1 of Stock and Wright (2000). Furthermore,    estimates have 

distributions that are much more concentrated around the true parameter value than Lence’s 

estimates do. Meanwhile, we did not observe that the medians systematically overestimate the 

true value of  
 
. Although the 95% CIs for small samples (100-observation samples) are wider 

and a little skewed to the right, the median of     is fairly close to the true value. The precision of 

parameter estimates, as measured by the width of the 95% CIs, increases with sample size. This 

suggests that the variability in the price and output shocks as specified in the experiment is 

adequate to identify the level of relative risk aversion.  

In sum, with prior knowledge of the parameter   , parameter   can be consistently 

estimated. However,    cannot be estimated precisely if    is fixed at its true value as reported in 

table 2. The medians for     have larger bias and the dispersion is substantially wider than that of  

  . Even in 10,000-observation samples, the dispersion of     is considerably large as measured 
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by the 2.5% and 97.5% quantiles. However,   
 
 does seem to converge albeit at a slow rate.

3
 

Finally, the bias of     would negatively impact    . Table 3 reports    estimates when we set    

at -12, instead of its true value 0.  Although the 95% CIs of     cover its true value in the small 

sample cases,     is systematically underestimated.  

The second symptom for weak identification is that two-step estimates are sensitive to 

instrument choice when simultaneously estimating the weak and well identified parameters. We 

again perform GMM estimation with different sets of instruments for the flexible-utility 

specification.  Tables 4 report statistics summarizing the properties of the estimates when 

instrument sets [1,                        
      

    Similar estimate statistics can be reached when 

[1,                      are used, respectively. The optimal inputs are excluded from the second 

instrument set. The 95% CIs do cover the true value, but are widely dispersed. In our simulation, 

we observed that, when the sample size equals 100, some estimations produced some odd results 

with very large values. Further examination shows that the gradient of moment conditions in 

those cases has no full rank and the weighting matrix is close to singular and the algorithm 

actually did not converge, which might well have occurred in Lence’s simulation. Our reported 

statistics exclude the estimates in those non-convergence cases. Further comparing estimates 

one-by-one (pairwise), we find a number of interesting phenomena. First, in many cases, the 

estimate of  
 
 is substantially different in terms of its sign and magnitude when different 

instruments are used for an identical sample set.  Second, convergence not achieved with one 

instrument set could be achieved with the other set, and vice versa. Finally, inferences based on 

the   statistic often differ.  

 The third symptom is that point estimates of risk preference parameters and inference 

based on GMM estimators are substantially affected by the procedure for constructing the 
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weighting matrix  . Besides 2-step GMM estimator, we use continuous-updating estimator in 

which the weighting matrix is changed for each hypothetical parameter value (Hansen, Heaton, 

and Yaron, 1996). These two estimators are asymptotically equivalent under the conventional 

GMM theory. Continuous-updating GMM estimation results are summarized in table 5 while 2-

step GMM results are in table 4. The median bias of  
 
 for the continuous-updating estimator is 

much greater, whereas the medians of  
 
for the 2-step and continuous-updating estimators are 

similar. The distribution for the continuous-updating estimator is also more dispersed, as 

evidenced by the larger spread. This is consistent with findings in other Monte Carlo studies that 

the continuous-updating estimates have much fatter tails and tend towards arbitrarily large values 

(Stock and Wright, 2000). We also observed that inference from the over-identification tests 

under two equivalent GMM estimators are often in conflict.  

 The symptoms exhibited in the simulation suggest that weak identification is present, in 

which case, estimation results should be interpreted with caution, and more robust approach may 

be needed. This is particularly important in empirical estimation when the sample size is small.  

 

An Alternative Approach 

In addition to the issues discussed above, conventional asymptotic normality will provide a poor 

approximation to the sampling distribution of GMM estimators and the conventional Wald test 

will not in general be valid. Researchers have made much progress proposing new approaches to 

address these issues. The proposed approaches all give up point estimation and directly construct 

tests of hypotheses concerning the parameters of interest where the asymptotic distribution of the 

test statistic is not affected by the identification issue (Wright, 2010). Among them, Stock and 

Wright (2000) developed test statistics for constructing confidence sets immune to weak 
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identification. They referred to these confidence sets as S-sets and found that the S-sets lead to 

substantially different conclusion than the conventional GMM analysis. The following 

introduces the way to construct S-sets. 

As we know, the GMM continuous-updating estimator    minimizes the objective 

function    over    : 

(6)                                  

where       is a weighting matrix, continuously evaluated at the parameter values used for the 

moments. Stock and Wright (2000) showed that at the true values of the parameters, the 

objective function has a standard asymptotic   distribution if an efficient weighting matrix is 

used: 

(7)       
 
   

 , 

where   is the number of moment restrictions. This theorem provides a straightforward method 

for constructing asymptotically valid hypothesis tests and confidence set. For example, to 

perform an asymptotically valid test of the hypothesis     , reject if        exceeds the 

appropriate   
  critical value. Joint confidence sets for whether well identified or weakly-

identified parameters are constructed by directly comparing      , evaluated over the entire 

parameter space, with the chi-squared critical value. For example, an asymptotic 100(1- )% 

confidence set is such as                
  , where     

  is the      % critical value of the   
  

distribution. Also, they derived another theorem (see Theorem 3 in Stock and Wright (2000)) to 

construct CIs for the weakly identified parameters. Assume that weakly-identified parameter 

subvector   is  -dimensional. Then 

(8)              
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The theorem holds under the condition that   is well identified. Likewise, a confidence set for   

can be constructed by searching the acceptance regions based on the concentrated objective 

function              .  

Disagreement between inferences based on S-sets and conventional GMM in the case of 

weak identification has been documented in the literature (e.g., Stock and Wright, 2000; Yogo, 

2004). It is important that the weak identification be tested in empirical studies, especially in 

small sample.  

 

Concluding Remarks 

Through a Monte Carlo Study of an input optimization model, Lence found significant biases 

risk preference parameter estimates in a flexible utility specification. He consequently concluded 

that “typical production data are unlikely to allow identification of the structure of risk aversion”. 

Our simulation results showed that recovery of risk preference structure is possible. We found 

that weak identification in nonlinear models can make it difficult for the conventional GMM 

procedure to pin down the true value of some parameters, in our case the parameter  
 
. 

Additionally, unlike Lence, we found the relative risk aversion parameter   
 
 can be well 

identified in one-parameter utility function (e.g., when   
 
equals zero).    

The inadequacy of conventional asymptotics in the case of weak identification requires 

alternative, robust approaches.
4
 The S-sets proposed by Stock and Wright (2000) are constructed. 

This approach yields robust inference regardless of whether parameters are well or weakly 

identified. Although point estimates are often preferred by researchers to be reported, it is helpful 

to have a diagnostic to examine whether the identification is sufficiently strong in nonlinear 

models when using GMM estimation.  
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1
 For example, Kocherlakota (1990) estimated the CRRA to be as high as 13.7, which is much 

greater than the one (i.e., 3) set by Lence.  

2
 All technology parameters in the (log)linear model are well identified as evidenced by the 

consistent estimates in the simulation.  Note that the bias in alpha0 resulted from the logarithmic 

transformation of production function and can be corrected by adding the expectation of log 

normally distributed error.  

3
 The rate of convergence in weak identification is the square-root T as assumed by Stock and 

Wright (2000). If the convergence rate is slower, Antoine and Renault (2009) proposed a 

framework which ensures that GMM estimators of all parameters are consistent. 

4
 Stock, Wright, and Yogo (2002) gave a brief survey of the literature on detecting weak 

identification and on procedures that are robust to weak identification.  
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Table 1. GMM Parameter Estimates for Restricted-Utility Estimation Specification 

(      

 

Risk  

Structure 

 

Sample  

Size 

Parameter Estimates 

Utility Technology 

                

CRRA 100 4.529 

(0.52,11.60) 

2.862 

(2.59,3.12) 

0.203 

(0.19,0.22) 

0.609 

(0.56,0.66) 

CRRA 500 3.393 

(1.86,5.26) 

2.862 

(2.75,2.98) 

0.201 

(0.19,0.21) 

0.602 

(0.58,0.62) 

CRRA 1,000 3.217 

(2.07,4.48) 

2.863 

(2.78,2.95) 

0.200 

(0.20,0.21) 

0.601 

(0.59,0.62) 

CRRA 10,000 2.998 

(2.63,3.39) 

2.866 

(2.84,2.89) 

0.200 

(0.20,0.20) 

0.600 

(0.60,0.60) 

Note: for each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within 

parentheses) for sample sizes of 100, 500, 1,000, and 10,000, respectively. CRRA risk structures 

correspond to [ 
 
,  

 
] equal to [0, 3].  
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Table 2. GMM Parameter Estimates for Restricted-Utility Estimation Specification 

(    ) 

 

Risk  

Structure 

 

Sample  

Size 

Parameter Estimates 

Utility Technology 

                

CRRA 100 -7.319 

(-19.60,98.13) 

2.885 

(2.62,3.18) 

0.200 

(0.19,0.21) 

0.600 

(0.56,0.64) 

CRRA 500 -2.180 

(-11.46,24.51) 

2.868 

(2.76,2.99) 

0.200 

(0.19,0.21) 

0.600 

(0.58,0.62) 

CRRA 1,000 -1.150 

(-8.90,17.50) 

2.867 

(2.79,2.95) 

0.200 

(0.20,0.20) 

0.600 

(0.59,0.61) 

CRRA 10,000 -0.002 

(-3.80,4.65) 

2.866 

(2.84,2.89) 

0.200 

(0.20,0.20) 

0.600 

(0.60,0.60) 

Note: for each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within 

parentheses) for sample sizes of 100, 500, 1,000, and 10,000, respectively. CRRA risk structures 

correspond to [ 
 
,  

 
] equal to [0, 3].  
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Table 3. GMM Parameter Estimates for Restricted-Utility Estimation Specification 

         

 

Risk 

Structure 

 

Sample 

Size 

Parameter Estimates 

Utility Technology 

                

CRRA 100 2.932 

(0.14,7.37) 

2.870 

(2.60,3.17) 

0.198 

(0.19,0.22) 

0.605 

(0.56,0.66) 

CRRA 500 2.213 

(1.02,3.44) 

2.874 

(2.76,3.00) 

0.200 

(0.19,0.21) 

0.600 

(0.58,0.62) 

CRRA 1,000 2.067 

(1.22,2.90) 

2.875 

(2.80,2.96) 

0.200 

(0.20,0.20) 

0.599 

(0.58,0.61) 

CRRA 10,000 1.878 

(1.59,2.14) 

2.879 

(2.86,2.90) 

0.200 

(0.20,0.20) 

0.600 

(0.59,0.60) 

Note: for each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within 

parentheses) for sample sizes of 100, 500, 1,000, and 10,000, respectively. CRRA risk structures 

correspond to [ 
 
,  

 
] equal to [0, 3].  
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Table 4. GMM Parameter Estimates for Flexible-Utility Estimation Specification with 

Instruments [1,                         
      

   

 

Risk 

Structure 

 

Sample 

Size 

Parameter Estimates 

Utility Technology 

                    

CRRA 100 0.935 

(-17.40,396.73) 

6.182 

(0.19,60.32) 

2.851 

(2.58,3.15) 

0.204 

(0.19,0.22) 

0.612 

(0.56,0.66) 

CRRA 500 0.351 

(-15.36,231.10) 

3.957 

(1.19,22.41) 

2.857 

(2.74,2.98) 

0.201 

(0.19,0.21) 

0.603 

(0.58,0.63) 

CRRA 1,000 0.073 

(-13.66,119.4) 

3.520 

(1.51,12.58) 

2.861 

(2.78,2.95) 

0.200 

(0.20,0.20) 

0.602 

(0.59,0.62) 

CRRA 10,000 0.001 

(-6.62,11.08) 

3.011 

(2.37,4.19) 

2.867 

(2,84,2.89) 

0.200 

(0.20,0.20) 

0.600 

(0.60,0.60) 

Note: for each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within 

parentheses) for sample sizes of 100, 500, and 1,000, respectively. CRRA risk structures correspond to 

[ 
 
,  

 
] equal to [0, 3].  
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Table 5. GMM Parameter Estimates for Flexible-Utility Estimation Specification with The 

Continuous-Updating Estimator 

 

Risk 

Structure 

 

Sample 

Size 

Parameter Estimates 

Utility Technology 

                    

CRRA 100 2.241 

(-17.70,707.15) 

6.198 

(0.30,102.10) 

2.838 

(2.53,3.15) 

0.204 

(0.19,0.23) 

0.613 

(0.56,0.67) 

CRRA 500 4.668 

(-16.07,316.40) 

3.874 

(1.11,24.22) 

2.856 

(2.74,2.99) 

0.201 

(0.19,0.21) 

0.603 

(0.58,0.62) 

CRRA 1,000 2.927 

 (-14.75,132.77) 

3.385 

(1.36,13.56) 

2.863 

(2.78,2.95) 

0.200 

(0.20,0.21) 

0.601 

(0.59,0.62) 

Note: for each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within 

parentheses)  for sample sizes of 100, 500, and 1,000, respectively. CRRA risk structures correspond to 

[ 
 
,  

 
] equal to [0, 3]. The set of instruments contains [1,                         

      
  .  

 

 


