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Abstract

This study seeks to provide a rigorous theoretical and empirical understanding of the effects of
exogenous geographic and climate-related factors on the first three moments of crop yields.
We hypothesize that exogenous geographic and climate factors that have beneficial effects on
crop production, such as better soils, less overheating damage, more growing season
precipitation and irrigation should make crop yield distributions less positively or more
negatively skewed. We employ a large crop insurance dataset for corn, soybean, and wheat to
find general support for the hypothesis. The novel empirical method optimally uses
correlations between the first three moments and thus significantly improves estimation

performance over existing methods.

Keywords: cross-moment correlation, generalized method of moments, von Liebig production
technology
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1. Introduction

Concerns about how climate change could affect global food security, grain production, and
corresponding crop market prices have been addressed by many, e.g., Lobell, Schlenker, and
Costa-Roberts (2011). Yield mean responses to historical weather realizations, such as growing
season temperature and precipitation, have been modeled explicitly (see, among others,
Rosenzweig and Parry 1994). Results indicate statistically significant and large impacts on the
yields of major crops including corn, soybeans, wheat and rice. Despite an extensive literature
documenting the impacts of exogenous factors on crop yield means and variances, their effects
on yield skewness are not well understood. It is an important oversight as a more negatively
skewed distribution implies more frequent left-tail disasters. For U.S. crop insurance markets,
there would be larger indemnity payouts and higher crop insurance subsidies. The objective of
this study is to provide a rigorous theoretical and empirical understanding of the effects of
exogenous geographic and climate-related factors, including soil quality, growing season
temperature and precipitation, location, and irrigation, on the first three moments of crop
yields. The estimates shed light on the role of geography in insurance rate setting. A carefully
controlled geographic cross-sectional analysis of average climate variation also allows
inferences on how temporal climate change in a given location would affect the first three
moments of crop yields.

There have been recent developments in the understanding of the impact of weather
conditions on crop yield distribution. For example, Lobell and Asner (2003) conclude that
gradual temperature changes have reduced both corn and soybean yield by approximately 17%
for one degree increase in growing season temperature over 1982-1998. Deschénes and
Greenstone (2007) find beneficial effects of the increase in precipitation on corn and soybean

yields while the increase in temperature is harmful. But the significance and magnitude of the



effects vary across model specification. Nonlinear and asymmetric effects of temperature on
crop yields are found by several studies including, e.g., Schlenker, Hanemann, and Fisher
(2006) and Schlenker and Roberts (2009). In general, crop yield increases with temperature
only up to a certain threshold, above which yield declines significantly. Based on the drought
index constructed from monthly county-level rainfall and temperature, Yu and Babcock (2010)
find that corn and soybeans are more drought tolerant in main Corn Belt states since 1980.

A related issue is how land quality shapes the moments of yield distributions. Although
land quality is often measured with reference to impact on mean yield effects, effects on other
moments are not so clear. The relation is important because land quality is spatially clustered
and so its spatial distribution may explain some aspects of geographic regularities in crop
disaster patterns. Although a voluminous literature exists on how soil quality affects yields
(e.g., ISU 20006), the literature on higher moment effects is not well developed and we are not
aware of any study on how soil quality affects yield skewness.

Another strand of literature studies the effects of various inputs on crop yield distribution
using the stochastic production function (SPF) specification (Just and Pope 1978, 1979). In the
SPF model, both mean and variance responses of crop yield to input factors are explicitly
modeled and estimated. For example, McCarl, Villavicencio and Wu (2008) investigate the
impact of historical climate change on the mean and variability of crop yield in the framework
of SPF. Du, Hennessy and Yu (2012) extend the SPF model to accommodate crop yield
skewness and apply it to assess how skewness responds to nitrogen use.

In the current study we propose an empirical model in the generalized method of moment
(GMM) framework in which the impacts of exogenous input factors on the first three
moments of crop yields are jointly estimated. The proposed GMM method is related to but
different from the linear moment model (hereafter LMM) proposed in Antle (1983). The LMM

method is flexible, easy to implement and has been widely applied in the literature. The



applications include, for example, the effects of crop diversity on farm productivity and
production risk (Di Falco and Chavas 2009), the role of production uncertainty and incomplete
information in the adoption of irrigation technology (Koundouri, Nauges, and Tzouvelekas
2006), and asymmetric effects of inputs on distribution tails (Antle 2010). But in our Monte
Carlo simulation the LMM method is found to be significantly biased for the coefficients of the
skewness equation. After a modification of the third moment equation, the modified LMM
method (M-LMM hereafter), largely corrects the biases. One distinctive feature of the
proposed GMM estimation method is that we explicitly take into account the correlations
between the first three moments. Compared with the LMM and M-LMM as well as a
traditional OLS method using aggregated county level moment information, the GMM
estimator outperforms the other methods, especially in small samples with fewer sampled
counties.

The present study distinguishes itself from the existing studies by: (i) showing that
commonly assumed production technologies lend support to the hypothesis that better growing
conditions reduce yield skewness, (ii) making full use of a large insurance unit level yield
dataset for corn, soybean and wheat, and (iii) optimally using correlations between the first
three moments and thus significantly improving estimation performance over existing
methods. Different from the majority of studies in the literature, which employ either aggregate
county- or state-level data or relatively few farm-level observations (see a similar discussion in
Claassen and Just 2010), this study utilizes a vast number of farm- or subfarm-level
observations (over three million for each crop) and thus obtains sufficient power for the
empirical study. Accounting for simultaneous correlation in a system of moment equations,
which has been largely ignored in the literature, the proposed GMM method not only provides
unbiased parameter estimates but also results in a substantial gain of statistical power.

Section 2 outlines the theoretical framework regarding how better growing conditions



affect higher moments of the yield distribution. Section 3 explains the empirical method and
data. Monte Carlo simulations are described and the results are discussed in Section 4. After

the analysis of the estimation results, some concluding comments are offered.

2. Analytic Framework

We posit a standard stochastic production relation y =Q(&;2) where Yy is output, ze Z is
some exogenous geographic factor and ¢ is a random variable that follows distribution F(¢):
[£,€]—[0,1]. Here the geographic factor could be soil quality, precipitation or sunshine and it
is assumed that ¢ is ordered such that Q_(-) >0, i.e., more is beneficial. Furthermore, Q(¢;2)
is held to be smoothly differentiable in that 0° In[Q,(-)]/ 0£0z exists on (&,2) €[g,€]xZ . Our
interest throughout is in yield skewness as commonly understood, i.e., E[{(y — )/ c}’] where
4 and o are, respectively, the mean and standard deviation of yield.

Proposition 1. For any z, > z,, the yield distribution of Yy, =Q(¢;Z,) is more negatively
(positively) skewed than that of Y, =Q(¢;2,) if and only if 0In[Q,(&;2)]/ O¢ is decreasing

(increasing) in exogenous geographic factor z.

The proof is provided in the supplementary appendix. We provide three examples, showing
different skewness implications for a shift in exogenous factor under three commonly used
functional forms for modeling production relations.

EXAMPLE 1. Consider the logistic production technology where y =(g+2)/(1+&+2) and

£+2>0.Then In[Q,()]=-2In(l+&+2), dIn[Q,()]/de=-2/(1+&+2) and

d*In[Q,(-)]/dedz =2 /(1+¢&+2)* > 0. Thus an increase in the value of the geographic

attribute increases skewness in this case.



EXAMPLE 2. For y=1-¢*“"* with A e R, then In[Q,()]=In(1)-A(e+12),
dIn[Q,(-)]/de=-2 and d*In[Q,(-)]/dedz = 0. In this case an increase in the value of the

geography attribute has no impact on skewness.

EXAMPLE 3. The von-Liebig law of the minimum production function is a widely accepted
model of crop growth technology; see, e.g., Cerrato and Blackmer (1990). A standard

representation of this production function is y = min[y, 8] where § is some latent production

level that would occur absent a limiting factor, in this case represented by parameter & .

Limiting constraint & might be of form & = g(a) where ¢(-) is an increasing function and a

is the state of seed genetics. In its most simple, linear, form the production function could be

written as Y = min[¢ + Z,6], where a point of non-differentiability (pnd) occurs at e +z=6.
Notice that random yield y can be positively skewed as & can be positively skewed with
support below 6 —z.

Because Y =min[¢ +z,0] is not an everywhere differentiable function we apply a
smoothing kernel, i.e., a non-negative function k(w):[-5,56]—> I?& so that the unsmoothed
value is ¥ = min[w+ ¢ + Z,8]. The intent of this example is to demonstrate that under
reasonable smoothing over the linear von-Liebig function’s pnd then an increase in the

exogenous geographic factor leads to a negative skewing of the yield distribution.

As is standard, the kernel satisfies Jik(w)dw =1 and k(-w) =k(w) where & >0 (Parzen

1962). A rationale for kernel smoothing is randomness in input expression or spatial variability

in soil endowments at the fine topography level (Berck and Helfand 1990). Condition



5
.[ 5 k(w)dw =1 is no more than a normalization constraint while k(—w) =k(w) ensures

symmetry around ¢+ Z so that any asymmetries are less likely to be imposed by the kernel.

For the uniform smoothing kernel the calculation Q(¢&;z,60) = Ji min[W+ ¢ + z, 81k (w)dw

=(20 )‘IJ: min[W + ¢ + Z,0]dw has three distinct regions of interest. The first is when the
kernel smooths only below the pnd. In that case 6 <0 —&—z and Q(¢;2,0) =
26)"[ _‘1 min[w+ ¢ +2,8]dw=¢ +z so that Q_()=1, dIn[Q,()]/de =0 and

d*In[Q,(-)]/dedz = 0. Alternatively, the smoothing could occur entirely above the pnd. In that

case the value of d In[Q,(-)]/de is not defined (being 0/0), but we will shortly show that its

limiting value is negative infinity. The intermediate, and most interesting, case is where

0<-0+e+2<60<0+¢&+17.Then
O-¢c-2 5
Q(&;2,0) = (25)™ j L Wretz)dw+ (25)-‘j9_  odw

0-c-1
_[05w e +w] LO=0+2+2)
26 26
(0+£+2)5-0.55"—0.5(0— ¢ - 2)}
25 '

(1)

So Q,()=(0+0—-¢-12)/(20), dIn[Q,(-)]/de=-1/(0+0—-&c—1) and
d*In[Q,()]/dedz =~1/(5 +68—&—12)* <0. Thus, and by contrast with examples 1 and 2, an

increase in the level of geographic factor makes skewness more negative. Figure 1 depicts the
three cases. As the uniform kernel distributions shift to the right then relative curvature

becomes more negative. The limiting value is where z =0+ 68 — ¢, i.e., the left-most tail of the

smoothing kernel barely covers the pnd. Then the relative curvature expression d In[Q,(-)]/de



has limiting value lim

d1n[Q,()]/de — —o0.

15+0-¢
We will show next that the uniform kernel is not at all special. Indeed symmetry is not
needed either for yield under a smoothed linear von Liebig production function to become

more negatively skewed upon an increase in an exogenous factor.

General Result for Smoothed Linear von Liebig Production

As above, the production technology is modeled as being of von-Liebig type with linear
additive smoothing component Yy = min[W+ & +2,6], or

2) y(W;e+2)=¢c+2Z+min[w,0 —¢—12],

where W follows distribution K(w) with density k(w). For future reference we write the

survival function as K(@—&—12)=1-K(6—&—12) and we note from an integration by parts

that J: min[w,0 — ¢ —-z]dK(W)=0—-¢—-2— Ii;g_z K(w)dw . Our interest is in mean, or

aggregate, yield over the heterogeneity, i.c., '
5 0-¢-1
3) Q(&;2) = J.,(; y(w; e+ 2)dK(w) =86 - J.,(; K (w)dw.

Applying Proposition 1 to the kernelized production relation we obtain

@ 9nQue) Kk, w-kw) _d inlKwl
dedz [K(w)] aw

where K(w) is said to be logconcave (resp., logconvex) whenever In[K(w)] is concave (resp.,

convex) in W. Thus we have

Proposition 2. For the kernel smoothed linear von Liebig production relation, an increase in

" Although Hennessy (2009) also considered a production function of type (2) above, there
both & and 1 were random. By contrast with the production function in (3), the yield

distribution function was bivariate. The skewness to be considered here is upon aggregating
across realizations of &. As we will discuss, aggregation has important implications for

skewness.



the exogenous geographic factor reduces (resp., increases) yield skewness whenever kernel

distribution K(w) is logconcave (resp., logconvex).

Notice that symmetry on k(W) was not invoked in the analysis leading up to Proposition 2.

We will show later that the logconcave distribution property bears no relation with symmetry

of the form k(w) =k(—w) so that one assumption has no implications for the plausibility of the

other.

We will comment first, and briefly, on logconvexity of the distribution function as we
believe it to be less plausible. In their extensive overview of the property and allied matters,
Bagnoli and Bergstrom (2005) only identify one common distribution to possess a logconvex
distribution. This is the mirror image Pareto distribution. To confirm why a logconvex
distribution is implausible consider that it requires ratio k(w)/ K(w) to be increasing. The
denominator, being a distribution function, is increasing so the density function must be
increasing everywhere on its support. Even absent an assumption on kernel density symmetry,
this is very implausible and is contrary to the concept of smoothing because the density would

collapse to zero just beyond its mode k(o).

Regarding logconcavity, this is true whenever K(w)k,(w) < [k(W)]* and applies whenever
density k(w) is concave. More generally, it applies whenever the density function is log-
concave, or kK(w)k,, (W) <[k, (W)]* (An 1998). As such, it applies for the normal, uniform and

beta distributions with interior mode (An 1998).? Notice that the beta distribution can be highly
skewed. The logconcave density property and the unimodal property are strongly related

(Ibragimov 1956), where a restricted form of unimodality (strong unimodality) implies

* The statistics literature on log-concave densities, distributions and survival functions is very
large. See Dharmadhikari and Joag-dev (1988) for an extensive but dated review.
10



logconcave density. Kernel densities, and so kernel distributions, are typically assumed to be
logconcave because they endow the smoothed function with analytically and intuitively
appealing properties (Mukerjee 1988). The triweight kernel used elsewhere in this paper
(Claassen and Just 2011) is logconcave, as is the Epanechnikov kernel that is optimal in
minimizing density estimate mean square error (Epanechikov 1969) and under certain

conditions when estimating regressions (Benedetti 1977).
3. Empirical Methods

In this section, we present the empirical GMM estimation method followed by a brief

description of the LMM, M-LMM, and county-level OLS methods.
GMM method

Here we propose an empirical model in the generalized method of moment (GMM) framework

that explicitly takes into account the possible cross moment correlations. Let y; be the crop

yield of farmer j in county i, i € {l,...,n} , je{l,....n.}, and let X, be the NxK (N = Zin:l n,)
vector of exogenous input factors considered for each county. We define the mean, variance
and skewness of crop yield in an individual county, @,,0,, and g, as the linear functions of

covariates:

9,(X, )=z:=1akxki (mean)
(5) 9,(X;)= Z::l B X (variance)
g,(X;)= 2::1 7 Xy (skewness)

Notice that, by definition, variance is computed by use of an estimate for mean, while

skewness is computed by use of estimates for mean and variance. That is, the fit of

parameters in the second moment equation depends on « parameters choices of the first

11



moment equation, while the fit of y parameters in the third moment equation depends on «
and S parameters choices for both the first and the second moments. Incorporating cross

moment equation information will improve the efficiency of parameter estimates. In the
proposed GMM method, a system of mean, variance, and skewness equations is estimated
jointly in the GMM framework to account for potential cross-moment correlations. The

moment conditions that we will use to carry out GMM estimation are
EI:yij o 91(Xi)]

2
(6) E[(yij_gl(xi)) _gz(xi)}

E| (v~ 0:X)) / 8:06)" - 0u(X)) |

The corresponding sample moment conditions are’

yij_gl(xi)
M =YY (- 0(X)) /8, () -1
(¥ = 9,0%)) 7 8,(X)™ = g, (X))

Parameter vector ® = {ao,al,...,ak,ﬂo,ﬂl,...,ﬂk,70, yl,...,;/k} can be estimated as © =
arg minw'Wty where W is a weighting matrix. The iterated GMM estimator is employed in

our study.” In the first iteration, W is assumed to be the identity matrix. But thereafter the

iterated approach is applied where updated weights come from \7(6?) , the parameter vector

variance-covariance matrix in the previous iteration. Specifically, the GMM estimator

3 Note that the second moment is rescaled in order to speed up convergence.
* In the two GMM estimation methods, two-step feasible GMM applies the same procedure as

the iterated GMM, in which the weighting matrix W iteratively with © until the estimators
satisfy pre-determined convergence criterion. Iterated GMM has slightly better finite-sample
properties, although asymptotically the two methods are equivalent. See Hull (2005), Ch. 2 for
a more detailed discussion.

12



proceeds as follows:
Step 0: Take W,* = I, ,, an identity matrix for an individual county i, i € {l,...,n}, to be the
diagonal elements of the initial weighting matrix \//V\0 (off-diagonal entries are all zero). Then

minimize the objective function y 'V/V\Ol// to compute the GMM estimate O , which is a
consistent but not efficient estimator.
Stepd: Take the GMM estimate to calculate W, = n~'(n, — 1)*12?21 (6, —€)(&;—6)', where

Yi _Z:; 4 Xy /\/Zleﬂkxki

R K K
(®) € = (yij _Zk:]akxki)z /Zk:]ﬂkxki -1

((yij _Zlilakxki)/\/ZkK:lﬂkxki )3 _Zk:?’kxki

and € =n’ IZL €; - The optimal matrix W consists of the \//V\I ’s as the diagonal elements.

Then minimize 'Wt// to obtain © , which should be asymptotically efficient.

Step 2. Iterate Step 1 until convergence, i.e., the iteration changes in the estimated parameters

are less than a specified threshold.
One thing worth mentioning is that in the estimation of the optimal weighting matrix W
we take into account only the within county cross-moment correlation as in V/V\I , not the across

county moment correlations. The reason is that we have insufficient information to match
between farms in different counties for calculating variance-covariance matrix. This implies

that the resulting optimal weighting matrix is a block diagonal matrix in which the diagonal
entries are variance-covariance for individual counties, V\A/i , and the entries outside the main
diagonal are all zero.

The variance of our GMM estimator @ is
13



AN n , ~ A ~ -1
© V@)=Y rOewWr®]
where © is the iterated estimate of ® , I (@)) =[om,(®)/08]]|,_; , the gradient matrix of

m,(6), and W. is the weighting matrix computed in Step 1 above.

LMM, M-LMM, and regional OLS methods
Given the notation in the GMM section above, the LMM method (Antle 1983) proceeds as
follows:

(1) Estimate the mean regression model
K
(10) y; :Zkzlakxki +9,
to obtain the mean effect parameters & and the associated error term 5‘1 =Y~ z:; o, X,

(i1) Estimate the variance and skewness parameters, ,B and 7, from the regressions

A1-D) (3 =X, BXq+6,
11-2) (6) =2, %X +6,
(ii1) Deal with the heteroscedasticity issues in the estimation of eqns. (10) and (11) in two
ways: (a) the Weighted Least Square (WLS) method (Antle 1983), and (b) the White
heteroskedastic-consistent estimator for standard error estimation (Antle 2010). For eqn. (10),
the weights for WLS are chosen as the fitted values in eqn. (11-1). But weights can be negative
for some observations for eqn. (11). In this case, correction method (b) is feasible and easy to
implement.

Eqn. (11-2) of the LMM is modified to correct for the estimation biases we find in the

Monte Carlo simulation,’

11-2) G /(£06.H) =X 7 X +8,

5> We will discuss the Monte Carlo simulation in a later section.
14



where fz(Xi,,B) is the fitted value of eqn. (11-1). So in the M-LMM method, eqns. (10), (11-1)
and (11-2") are estimated using least square to obtain parameter estimates and we calculate

White standard errors to account for heteroscedasticity.

A county-level OLS method is also used for model comparison and identifying initial
values for the GMM method. First, using all yield observations in an individual county, we
calculate sample mean, variance, and skewness. Then we regress the first three moments on
county level explanatory variables. It is feasible in our case as our sample includes over 600
counties for each crop considered. It will be shown that compared with the proposed GMM
method, the regional OLS method is restricted and disadvantaged with limited geographic

coverage, i.e., fewer sampled counties.
4. Data

Now we turn to the discussion of crop yield data and county level explanatory variables
considered in this study. Crop insurance unit level yield data for corn and soybean in 13 states
(IL, IN, IA, KS, MI, MN, MO, NE, ND, OH, OK, SD, and WI) and wheat yield in 11 states
(all states listed above except IA and WI) over 1990-2009 are obtained from the Risk
Management Agency (RMA) of the U.S. Department of Agriculture (USDA). The data contain
up to 10 years yield history (likely non-consecutive) on each included unit, which has been
insured under the federal crop insurance program over the sample period. The insured unit can
comprise one or more fields on a farm. From the dataset, we restrict our sample to the units
with 10 years of yield record.

To investigate crop yield distribution, it is necessary to remove the systematic components
of yield variation, which link to the characteristics of the production sites in both spatial and

temporal dimensions (Claassen and Just 2010). Following Claassen and Just (2011), unit level

15



crop yields are de-trended in the following three steps:®

(1) Estimate each county’s trend yield, ¥°, using a nonparametric local regression method.
(ii) Transfer the county level trend yield to those of individual units, ¥*, in a multiplicative
model, ¥ =¢"Y°, where ¢" is the unit-specific productivity measure.

(iii) Obtaining the corresponding unit level random error &' =y—¥", where Y is the unit level

yield observation.

To ensure positive yield and full utilization of all the available data across the whole
sample period, we transfer all de-trended historical yield to the yield of 2009 by adding back
the county-level trend yield of 2009 and adjusting for unit-specific productivity.” Now we
obtain the yield datasets with a large number of observations (over four million for each crop)
that can be treated as being generated from the distribution of a particular year.

The exogenous input factors ( X ) considered to be influencing factors of crop yield
distribution include a variety of geographic and climate related factors including soil quality,
growing season precipitation and temperature, county location, and irrigation.® In what
follows, we discuss the construction of these county-level independent variables and their
expected effects on crop yield distribution.

Soil quality

County level average soil quality is represented by the proportion of land acreage under certain
Land Capacity Classes (LCC) and sub-classes.” Land capability classes and subclasses are
determined based on the soil’s potential capacity to produce field crops or pasture. In the LCC

classification, land belonging to Class I is the most productive with few land use limitations

% Interested readers are referred to eqns. (1), (2°)-(4’) in Claassen and Just (2010).

" This is essentially the reverse of the de-trending process, i.e., normalizing to a particular year.
® The impact of irrigation will be discussed at a later juncture.

? Readers are referred to the National Soil Survey Handbook for more information, which is
available at http://soils.usda.gov/technical/handbook/contents/part622.html.

16



and Classes II-IV are land with moderate to severe limitations but are still suitable to
cultivation. Land in Classes V-VIII is unsuitable for agricultural production. Thus for
individual counties, we focus on the LCC classes I to IV.

We use the county level LCC data contained in the National Resource Inventory (NRI)
dataset. For a given county the soil quality measure is constructed as the percentage of land
acres classified as Classes I and II in the total acreage of Classes I-IV. Counties with high
constructed soil quality measure represent good soil productivity are expected to have
relatively high crop yield.

Growing degree days

Growing degree days (GDD) has been widely applied in the literature to measure the heat
accumulation during a crop’s growing season (see, e.g., Deschénes and Greenstone 2007;
Schlenker, Hanemann and Fisher 2006; Schlenker and Roberts 2009). GDD is defined as the
sum of degrees in the range between lower and upper thresholds over a specific time period.
The temperature thresholds are 8°C and 32°C for corn and soybeans, and 0°C and 25°C for
wheat. April-September is chosen as the growing season for corn and soybeans, April-August
for wheat. County-level GDD is calculated as the annual average growing degree days in
growing season over the period of 1975-2005. U.S. county-level monthly average growing
degree days developed in Schlenker and Roberts (2009) are employed for our calculation.

Overheating is found to be harmful to crop growth and yield production. Temperature
above 34°C is considered to be overheated (Schlenker, Hanemann and Fisher 2006)."" In this

study, we construct the variable GDD34 to capture the effect of overheating on crop yield

' A detailed data description and original dataset can be downloaded at
http://www.columbia.edu/~ws2162/dailyData/.

" Following the literature, the over-heat threshold is assumed to be the same for corn,
soybeans, and wheat.

17



distribution. GDD34 is calculated as the county average growing degree days with temperature
above 34°C over the period of 1975-2005.

Precipitation

The precipitation variable denoted by Prec is constructed to represent total amount of rainfall
during each crops growing season. Similarly, it is averaged over the 31 year period for
individual counties in the sample. The original dataset is also developed in Schlenker and
Roberts (2009).

Location

The x and y coordinates of a county centroid (denoted by Location-X and Location-Y) are
included to indicate the geographic location of each county. The county level spatial centroids
are obtained from the US Census Bureau.'? Inclusion of location is a judgement call as county
geographic location tends to be strongly correlated with weather condition as counties located
further east are likely associated with increasing precipitation and counties further north could
be linked with decreasing growing degree days. On the other hand, we attempt to use the
location variables to capture county level non-climate features such as distance to market,
planting date choice, and infrastructure problems that aren’t fully captured by the climate
variables. So the two location variables are used to test for the robustness of the parameter
estimates.

Irrigation is expected to have a significant impact on crop yield distributions. But it is well
known that a farmer’s irrigation decision is endogenous and is affected by a number of factors
including, for example, surface and/or underground water quality and availability, climate, and
growing condition. More importantly it could potentially weaken the effects of the included

climate variables on crop yield. Therefore we first conduct the empirical analysis on the

'2 The county spatial data are available at
ftp://ftp.igsb.uiowa.edu/gis_library/USA/us_counties.htm (accessed March 22, 2012).
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irrigated and non-irrigated land separately and then combine the two data sets to investigate the

effect of irrigation.

4. Monte Carlo Simulation

The simulation scheme is set up as follows. As discussed above, the mean, variance, and
skewness functions, g,, d,,and g,, of county i in eqn. (5), are defined as functions of
county-level exogenous input factors of X,. For simplification, we consider only two
exogenous factors, which are randomly sampled from normal distribution, i.e.,

X, ~Normal(10,5) X, ~Normal(1,1). The corresponding coefficients for the first three
moment equations including the constant term are (¢, 5,7, ), K €{1,2,3} . We generate

random samples for farm j of county i as the following:

(12) Vi = 9:(X)+4/09,(X))ég;, &; ~Skewed Normal(&, @, 7).
where the random error & is drawn from a skewed normal distribution with location, scale,

and shape parameters &, , and 77, respectively.'® Thus we have
E(g))=S+wrV2/x, t=n/\1+ 7’

(13)  V(g)=o’(1-27"/7)
skew(g,) =0.5(4 - )2/ 7)1 (1-277 / 7)”

We solve for (&,m,7) for county i to satisfy the following conditions

E(g;)=0
(14) V(gij)zl
skew(g;) = 9,(X;)

' Note that given true parameters in generated X, ’s only those satisfying —1<g,(X;) <1 are
selected, which is a restriction of the skewed normal distribution and also ensure the solvability
of eqn. (14).
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By doing so, we generate the error terms & satisfying

(15)  E(g;)=0, E(5))=1, E(&))#0, E(¢;)#0, and E(s])#0.

Therefore the off-diagonal elements of the covariance matrix of the first three moments, which
14

are functions of the quantities defined in eqn. (15), are not necessarily zero.

According to the simulation scheme described above, we generate random samples of Y;;

for county i. The yield samples are then employed for the estimation of the LMM, M-LMM,
OLS and GMM models. To compare the estimation results across models, three statistics are
calculated including Monte Carlo (MC) relative biases, MC variance, and mean squared error

(MSE). They are defined as:

we) » Where M is the number of

(a) Monte Carlo (MC) relative biases: M ™ z::zl ((:)m -0

simulations, M =1000 in our case; ®,,, is the true parameters for generating the random

true

samples, and (:)m is the estimated parameters from the mth random sample.

(b) MC variances: var(©), © = ((:)l,(:)z,...,(:)M ).

2

(c) Mean squared error: M 712::1 ((:)m -0,,) -

Table 1 presents the simulation estimation and model comparison results for 10 counties
(n=10) and 200 observations for each county (n, =200). The results for 100 counties
(n=100) and 200 observations for each county (n, =200) are included in the Supplemental
Materials. The results indicate that for the coefficients in the skewness equation, y,, 7,, and
7,, when compared with other methods, LMM generates significant biases. After

normalization using fitted values of the second moment equation, The M-LMM method largely

corrects the biases. The OLS and GMM methods further reduce the biases. For the mean and

'* The derivation of the variance covariance matrix is provided in the Supplemental Materials.
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variance equations, LMM and M-LMM generate the same results as they are essentially the
same method. The OLS and GMM methods generate slightly better results for some
coefficients. The MC biases are comparable between the OLS and GMM methods, while OLS
performs better in the large samples with more sampled counties.

For the MC variances, after taking into account the cross-moment correlation the GMM
method outperforms all other methods, especially LMM, on all coefficients. In the large
samples, OLS generates comparable results in the skewness coefficients. It is not surprising
given that the OLS method is based on aggregated county level moment information. We
observe significant MSE reduction of the GMM method on all coefficients in the small sample
over all other methods, especially the LMM on the coefficients of the skewness equation. Due
to large biases, the LMM method has the largest MSE on the skewness parameters. M-LMM
shows improvement over LMM after modifying the third moment equation, even in the large

sample.
5. Analysis of Results

Table 2 presents the GMM estimation results for corn, soybeans, and wheat on non-irrigated
land." For each crop, column I in Table 2 includes the estimated impact on crop yield
moments of geographic and climate-related variables, while column II includes two location
variables, Location-X and Location-Y. The purpose of doing so is to distinguish the effect of
county location from those of other included exogenous factors and to test for robustness of
main results. We don’t see consistent effects of county geographic location on the first three
moments of yield distribution across crops, although all estimated coefficients are statistically

significant at 1% level. As expected, soil quality (LCC) and growing season precipitation

5 To save space, not all estimation results of LMM, M-LMM, and OLS methods are presented.
The complete set of estimates is available upon request.
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(Prec) are found to have significant and positive effects on the mean yield across crops and
model specifications. Overheating temperature during growing season (GDD34) damages the
mean yield of corn, soybean, and wheat. In the variance equation, the results indicate that
good-quality soils (LCC) tend to associate with relatively high yield variation. For the third
moment of the crop yield distribution, better average soil quality in an individual county
represented by higher LCC makes unit-level crop yields of corn, soybeans and wheat more
negatively skewed. During the growing season more overheating days tend to make the crop
yield distribution more positively or less negatively skewed. The estimates confirm the
hypotheses described in the Propositions 1 and 2.

GMM estimation results for crop yield on irrigated land are reported in Table 3. Across the
three crops and model specifications, we don’t find consistent impact of all included variables
on the first three moments of yield distribution. Especially for soybean and wheat, the majority
of the estimated coefficients are not significant. This is not surprising given the fact that the
crop yield data on irrigated land are very limited, which include only 53 counties for corn, 17
for soybeans and 7 for wheat.

To separate the impact of irrigation on crop yield distribution, we combine crop yield data
for non-irrigated and irrigated land and report the GMM estimation results in Table 4.
Irrigation is found to significantly increase the mean yield and doesn’t have a consistent impact
on crop yield variation. For the skewness, after separating the irrigation effect, growing season
precipitation (Prec) decreases crop yield skewness. Also the results show that irrigation makes
corn and soybean, but not wheat, yield distributions more negatively skewed.

It is readily surmised that the irrigation decision is endogenous and is largely determined by
hydrological and institutional factors including surface and underground water availability,
water right and government policies (see, e.g., Moore and Negri 1992, Schlenker, Hanemann

and Fisher 2005). Therefore the estimated irrigation effect could be potentially biased. Finding
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appropriate instrumental variables is challenging and will be addressed in future study. Table 5

summarizes the results in regard to Proposition 2.
6. Conclusion

We hypothesize that crop yield distributions will become more negatively skewed when
growing conditions become more benign. Making full use of a large farm level yield dataset
for corn, soybean, and wheat, we quantify the impact of exogenous geographic and climate
related factors including soil quality, growing season temperature and precipitation, location,
and irrigation on the first three moments of yield distribution. In general, exogenous
geographic and climate related factors having beneficial effects on crop production, such as
better soils, less overheating damage, and more precipitation, are found to support our
hypothesis. The novel empirical method optimally uses correlations between the first three

moments and thus significantly improves estimation performance over existing methods.
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Table 1. Simulation results for 10 counties and 200 observations for each county

Coefficient  LMM (I) M-LMM (I) _ OLS (Ill) _ GMM (V) VI VI V/II
MC relative biases (x107)
Mean- &, 13.6028 13.6028 13.6028 9.1836 0.6750 0.6750 0.6750
a 0.5460 0.5460 0.5460 0.1520 0.2780 0.2780 0.2780
a, 2.0243 2.0243 2.0243 1.1470 0.5670 0.5670 0.5670
Variance- §, 195496 19.5496 19.6725 29777 -0.1520  -0.1520  -0.1510
ﬂl 2.5518 2.5518 3.0829 -2.9629 -1.1610 -1.1610 -0.9610
ﬂz 5.1001 5.1001 6.8713 -5.2623 -1.0320 -1.0320 -0.7660
Skewness-y, 919585 73.5376 310560 -9.6676 0.1050 01310 -03110
7 280.2923 -12.1866 -6.3189 -10.1452 -0.0360 0.8320 1.6060
7, 518.5034 -33.2444 -16.7233 -23.4231 -0.0450 0.7050 1.4010
MC variances (x107)
Mean- &, 0.1924 0.1924 0.1924 0.1674 0.8700 0.8700 0.8700
a 0.0120 0.0120 0.0120 0.0093 0.7740 0.7740 0.7740
a, 0.2417 0.2417 0.2417 0.2232 0.9230 0.9230 0.9230
Variance- ﬁo 0.6862 0.6862 0.6918 0.4625 0.6740 0.6740 0.6680
ﬂl 0.0519 0.0519 0.0522 0.0263 0.5070 0.5070 0.5040
ﬂz 1.0144 1.0144 1.0253 0.7654 0.7550 0.7550 0.7470
Skewness-y, 64216 3.0120 12613 1.1809 0.1840 0.3920 0.9360
7 0.6340 0.1649 0.0767 0.0677 0.1070 0.4110 0.8840
7, 9.9877 1.7260 1.2310 1.1051 0.1110 0.6400 0.8980
MSE (x107)
Mean- @, 2.1051 2.1051 2.1051 1.7546 0.8340 0.8340 0.8340
a 0.1197 0.1197 0.1197 0.0924 0.7720 0.7720 0.7720
a, 2.4167 2.4167 2.4167 2.2293 0.9220 0.9220 0.9220
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Variance- f, 12302 7.2302 72916 4.6246 0.6400 0.6400 0.6340
B 0.5245 0.5245 0.5300 02712 0.5170 0.5170 0.5120
B, 10.1499 10.1499 10.2796 7.6663 0.7550 0.7550 0.7460
Skewness-y, 723440 65.4679 13.5520 11.8788 0.1640 0.3350 0.8770
7 84.8914 1.7946 0.8050 0.7790 0.0090 0.4340 0.9680
7 368.5235 18.3328 12.5649 11.5779 0.0310 0.6320 0.9210
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Table 2. GMM Estimation Results of Corn, Soybeans, and Wheat Yield Moments on Non-
irrigated Land (Standard errors are in the parentheses)

Corn Soybeans Wheat
I II 1 11 I II
Mean
Constant 1.13¢ 0.27° 0.08° 0.54° 0.12° 1.95¢
(0.003) (0.009) (0.0007) (0.003) (0.003) (0.006)
LCC 0.04° 0.21° 0.04° 0.06° 0.20° 0.13¢
(0.001) (0.001) (0.0003) (0.0003) (0.0005) (0.0005)
GDD 0.17° 0.43° 0.07° -0.07¢ 0.001 -0.41°¢
(0.001) (0.004) (0.0004) (0.001) (0.001) (0.003)
GDD34 -0.38° -0.33¢ -0.05° -0.09° -0.03° -0.01°
(0.001) (0.001) (0.0002) (0.0002) (0.0002) (0.0002)
Prec 0.36° 0.47° 0.21° 0.13¢ 0.26° -0.16°
(0.002) (0.002) (0.0005) (0.0007) (0.002) (0.002)
Location-X -0.20° -0.10° 0.47°
(0.0009) (0.0003) (0.0009)
Location-Y 0.08° -0.16° -0.16°
(0.002) (0.0008) (0.0006)
Variance
Constant -0.04° -0.19° 0.03° -0.01°¢ -0.01°¢ 0.08°
(0.001) (0.0009) (0.00004) (0.0002) (0.0001) (0.0004)
LCC 0.01° 0.01° 0.003°¢ 0.002° 0.004° 0.004°
(0.0001) (0.0001) (0.00001)  (0.00002)  (0.00002)  (0.00002)
GDD 0.08°¢ 0.15¢ -0.01° 0.004° 0.0004° -0.03°
(0.0002) (0.0003) (0.00001) (0.0001) (0.0001) (0.0002)
GDD34 0.10° -0.01° 0.005° 0.005° 0.002° 0.002°
(0.0003) (0.0002) (0.00001)  (0.00001)  (0.00001)  (0.00001)
Prec -0.07¢ -0.01°¢ -0.002° 0.002¢ 0.03¢ 0.02°
(0.0004) (0.0002) (0.00003)  (0.00005) (0.0001) (0.00016)
Location-X -0.004° 0.004° -0.01°
(0.0001) (0.00002) (0.00003)
Location-Y -0.02°¢ 0.01° -0.01°¢
(0.0002) (0.0001) (0.00005)
Skewness
Constant 1.05¢ 8.28°¢ -2.89°¢ 1.88° -2.67° -1.56°
(0.04) (0.15) (0.04) (0.14) (0.10) (0.17)
LCC -0.14° -0.33¢ -0.48° -0.02 -0.98° -0.39°
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
GDD -1.60° -2.18° 1.38¢ -0.73¢ 1.03¢ -0.90°
(0.03) (0.06) (0.03) (0.06) (0.05) (0.06)
GDD34 0.52° 1.81° 0.06° 0.90° 0.12° 0.15¢
(0.007) (0.01) (0.01) (0.01) (0.004) (0.004)
Prec 1.31° -4.50° -0.19° -0.98°¢ -0.80° 2.88°
(0.03) (0.03) (0.03) (0.03) (0.05) (0.07)
Location-X 0.92¢ 0.57¢ -2.03¢
(0.02) (0.01) (0.05)
Location-Y 0.23¢ -0.57¢ 0.06°
(0.04) (0.03) (0.01)

Note: a, b and ¢ denote significance at 0.10, 0.05, and 0.01 levels, respectively.
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Table 3. GMM Estimation Results of Corn, Soybeans, and Wheat Yield Moments on Irrigated
Land (Standard errors are in the parentheses)

Corn Soybeans Wheat
I II 1 11 I II
Mean
Constant 2.25°¢ 5.60° 0.55°¢ -0.05 0.23° -3.64
(0.02) (0.07) (0.02) (0.10) (0.11) (7.20)
LCC 0.28¢ 0.36° -0.002 0.01° 0.08 0.13
(0.003) (0.004) (0.003) (0.005) (0.05) (0.23)
GDD -0.64° -1.20° 0.16° 0.35° 0.09 1.58
(0.02) (0.02) (0.02) (0.03) (0.11) (2.73)
GDD34 0.07¢ 0.09°¢ 0.02° 0.04°¢ -0.02 -0.10
(0.002) (0.002) (0.002) (0.004) (0.03) (0.19)
Prec 0.86° -0.42° -0.30¢ -0.28° -0.005 -0.54
(0.001) (0.03) (0.01) (0.04) (0.33) (1.29)
Location-X 1.57° -0.19¢ -0.42
(0.03) (0.04) (1.12)
Location-Y -0.30° 0.17¢ 0.66
(0.009) (0.01) (1.10)
Variance
Constant -0.44° 1.23¢ 0.006° -0.11° -0.02 1.94
(0.007) (0.03) (0.004) (0.02) (0.03) (1.73)
LCC -0.08° -0.09° 0.004° -0.001 -0.05° 0.02
(0.002) (0.002) (0.001) (0.001) (0.02) (0.06)
GDD 0.29°¢ 0.17¢ 0.01°¢ 0.03°¢ -0.04 -0.81
(0.006) (0.008) (0.003) (0.006) (0.03) (0.66)
GDD34 0.05°¢ 0.01°¢ -0.0004 -0.004°¢ 0.01* 0.02
(0.001) (0.001) (0.0005) (0.001) (0.007) (0.05)
Prec -0.07° -0.93¢ -0.02° 0.02°¢ 0.25° 0.34
(0.005) (0.02) (0.003) (0.008) (0.09) (0.31)
Location-X -0.75¢ -0.05° -0.03
(0.01) (0.008) (0.27)
Location-Y -0.26° 0.01° -0.44*
(0.005) (0.003) (0.26)
Skewness
Constant 1.42¢ 4.48° 0.84 2.37 -6.31° -32.95
(0.27) (0.81) (1.24) (5.37) (0.98) (66.45)
LCC -0.26° -0.71° -0.03 -0.17 1.14° 2.84
(0.03) (0.03) (0.15) (0.30) (0.52) (2.29)
GDD -2.02° -4.53° -1.99° 2.36" 4.71° 13.84
(0.20) (0.31) (0.92) (1.41) (1.10) (25.71)
GDD34 0.33¢ 0.41° 0.41° 0.23 -0.71¢ -1.64
(0.03) (0.03) (0.14) (0.25) (0.23) (1.85)
Prec 1.13¢ 3.63¢ 1.93° 2.09 -8.95° 13.35
(0.14) (0.28) (0.89) (2.21) (3.14) (13.35)
Location-X -0.64° 0.70 -7.70
(0.31) (2.21) (10.02)
Location-Y -1.00° -0.83 2.73
(0.10) (0.68) (10.19)

Note: a, b and ¢ denote significance at 0.10, 0.05, and 0.01 levels, respectively.
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Table 4. GMM Estimation Results of Corn, Soybeans, and Wheat Yield Moments on Non-
irrigated and Irrigated Land (Standard errors are in the parentheses)

Corn Soybeans Wheat
I II 1 11 I II
Mean
Constant 1.10¢ 0.64° 0.08° 0.54¢ 0.13¢ 1.84¢
(0.002) (0.01) (0.0007) (0.003) (0.003) (0.006)
LCC 0.18¢ 0.21¢ 0.04¢ 0.06 0.19¢ 0.13¢
(0.0008) (0.0009) (0.0003) (0.0003) (0.0005) (0.0005)
GDD 0.03¢ 0.21¢ 0.07¢ -0.07° -0.0004 -0.37°
(0.001) (0.003) (0.0004) (0.001) (0.001) (0.003)
GDD34 -0.16° -0.20° -0.05° -0.09° -0.03° -0.01°
(0.0006) (0.0007) (0.0002) (0.0002) (0.0002) (0.0002)
Prec 0.46° 0.51° 0.21° 0.13°¢ 0.26° -0.18°
(0.002) (0.002) (0.0005) (0.0007) (0.001) (0.002)
Location-X -0.14° -0.10° 0.47°
(0.0008) (0.0003) (0.0009)
Location-Y 0.04¢ -0.16° -0.16°
(0.002) (0.0007) (0.0006)
Irrigation 0.46° 0.44¢ 0.17¢ 0.13¢ 0.19¢ 0.14¢
(0.0006) (0.0008) (0.0004) (0.0004) (0.001) (0.001)
Variance
Constant -0.16° -0.11° 0.03¢ -0.01° -0.01° 0.08¢
(0.0003) (0.0004) (0.00004) (0.0002) (0.0001) (0.0003)
LCC 0.01°¢ 0.02¢ 0.004° 0.002 0.004° 0.004°
(0.00006) (0.0001) (0.00001) (0.00002) (0.00002) (0.00002)
GDD 0.12¢ 0.12¢ -0.01° 0.004° -0.0009°¢ -0.03°
(0.0002) (0.0002) (0.00001) (0.00009) (0.00007) (0.0001)
GDD34 0.05¢ 0.003¢ 0.005°¢ 0.005° 0.002° 0.002°
(0.0002) (0.0001) (0.000001) (0.00001) (0.00001) (0.00001)
Prec -0.02° -0.04° -0.002°¢ 0.001° 0.03¢ 0.02¢
(0.0001) (0.0001) (0.00003) (0.00005) (0.00006) (0.0002)
Location-X -0.005°¢ 0.004° -0.009°
(0.0001) (0.00002) (0.00003)
Location-Y -0.04° 0.01° -0.01°¢
(0.0001) (0.00005) (0.00005)
Irrigation -0.03¢ -0.04° 0.0007°¢ 0.003° 0.03°¢ 0.03°¢
(0.0002) (0.0002) (0.00006) (0.00006) (0.0003) (0.0003)
Skewness
Constant 1.81°¢ 0.36° -3.20° 1.63° -3.55° -2.07°
(0.04) (0.13) (0.04) (0.14) (0.10) (0.17)
LCC -0.63° -0.93¢ -0.38° -0.05° -0.98° -0.39°
(0.01) (0.02) (0.02) (0.02) (0.01) (0.01)
GDD -0.64° 1.00¢ 1.54¢ -0.59¢ 1.35¢ -1.00°
(0.02) (0.05) (0.03) (0.06) (0.05) (0.06)
GDD34 0.10¢ -0.07° 0.02° 0.85°¢ 0.11¢ 0.16¢
(0.005) (0.008) (0.01) (0.01) (0.004) (0.004)
Prec -0.72° -2.58° -0.21° -0.98° -0.86° 3.44¢
(0.03) (0.03) (0.03) (0.03) (0.05) (0.07)
Location-X 0.05° 0.57° -2.44°¢
(0.02) 0.01) (0.05)
Location-Y 1.00¢ -0.55¢ 0.10°
(0.03) (0.03) (0.01)
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Irrigation

1.05°
(0.01)

127
(0.02)

-0.59°
(0.03)

0.73°
(0.02)

0.05°
(0.01)

0.19°
(0.01)

Note: a, b and ¢ denote significance at 0.10, 0.05, and 0.01 levels, respectively.

Table 5. Effects of Geographic Factors on Yield Skewness; ‘Y’ if as hypothesized and

significant at 1% level, ‘N’ otherwise
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Figure 1. Effect of smoothing kernel location on relative curvature of smoothed
production function.
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Appendix A: Proof of Proposition 1

It is known from van Zwet (1964) that an increasing and concave transformation of a random

variable makes it more negatively skewed. We will use this observation to compare the
distributions of Yy, and Y, . Let £” solve p=F(&"), i.e., it is the pth quantile. As Q_(&;2) >0
it follows that the pth quantile for Y, is given by y) =Q(&";z,) so that inversion in the first
argument provides £” =Q'(yP;z,). We can perform the same quantile inversion for y =
Q(s”:2,) so that &” =Q'(y/52,) =Q (832, and YP =Q(Q (¥£52,):2,) . Because
Q. (&;2) > 0 ensures that yield quantiles follow that of ¢, we may drop quantile notation and
just write the transformation of random variables as Y, = Q(Q ™' (Y,:2,):2,) = I (Y, 2y, 2,)

We seek to identify conditions under which J(Y,;Z,,Z,) is concave in its first argument.
Write £ =Q7'(Y,;2,) and U=Q(¢;2,) so that du/dy, =Q,(&;z,)(de/dy,). Now de/dy, =
1/(dy,/de)=1/Q,(&;z,) and therefore

Aan M_QE=2)
dy, Q.(&:2,)

In addition,
d’u 1
d(y,)® [Q.(&:2)T

__Q(&17) {dln[Qg(S;Zl)]_dln[Qg(f:;Zo)]}
[Q.(&:2))T de de '

{Qg(e; 2)Q.,(¢; zJjTE—Qs(“’* 20Q..(&; 20)376}

(A.2)

As the term outside the parentheses is strictly positive, the curvature of J(Y,;Z,,Z,) in Y, is
determined by the sign of the term in brackets, i.e., by the monotonicity of d In[Q_(&;2)]/de

in z. The proposition follows from (A.1) and (A.2).
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Appendix B: Derivation of the variance covariance matrix for the simulation studies

Given the simulation setup in Eqn. (12), we have the three moments equations for county i as

m;, = ”fIZL &
(B-1) qm,=n">7 (& - 1)
m;; = n;1zf;i:l(8i? - g3(xi))

Let m(®)=[m,(®) m,(®) m,(®)]', the variance covariance matrix for m;(®) is

Vll V12 Vl3
V(m(@©)=|V, V,, V|, where
Vl3 V23 V33

vV, =n"

Vy, =0V (g) =n"(E(g)-1)

Vi =n V(g =0 (E(e)) - 95 (X))

V,, = ni_l cov(gij,gi? -1)= ni_lE(gS) = ni“g3(Xi)

Vs =0 cov (.65 - 0,(X))) = n,'E(e))

Vy, =0 cov (5,6 — 9,(X)) =1 (E() - E(&)) =1 (E() - 95(X)))

The quantities E(gﬁ) , Ce{3,4, 5}, can be readily derived from the moment generating

function M () = 2exp(&t+ w’t’ / 2)D(wrt) (P is the cumulative distribution function of

standard normal) by taking the Cth derivation and evaluating at t =0, i.e.,

E(gil]?) =oM (1) /at],,.
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Appendix C: Simulation Results for 100 counties and 200 observations of each county

Coefficient  LMM(I) M-LMM () _ OLS (Il)  GMM (IV) V1 VI TV/III
MC relative biases (x107)
Mean- @, -10.6082 -10.6082 -10.6082 -6.5096 0.6136 0.6136 0.6136
a 0.7328 0.7328 0.7328 1.4521 1.9816 1.9816 1.9816
a, -4.4400 -4.4400 -4.4400 -4.5129 1.0164 1.0164 1.0164
Variance- §, 3610 8.3610 81697  -13.9225  -1.6652  -1.6652  -1.7042
131 1.3901 1.3901 1.4507 -7.3202 -5.2659 -5.2659 -5.0461
ﬂz 6.5200 6.5200 6.8661 -6.3594 -0.9754 -0.9754 -0.9262
Skewness-y, 13022075 385102 194708 351772 0.027 09134 -1.8067
7 -530.5507 3.1587 3.9932 8.0105 -0.0151 2.536 2.0061
7, -329.5575 -6.0307 -11.1404 -23.2649 0.0706 3.8578 2.0883
MC variances (x107)
Mean- @, 0.5615 0.5615 0.5615 0.4205 0.7488 0.7488 0.7488
a 0.0096 0.0096 0.0096 0.0080 0.8375 0.8375 0.8375
a, 0.1645 0.1645 0.1645 0.1323 0.8042 0.8042 0.8042
Vatiance- , 49340 4.9340 4.9579 1.5520 0.3146 0.3146 0.3130
131 0.0892 0.0892 0.0897 0.0465 0.5208 0.5208 0.5179
ﬂz 1.2670 1.2670 1.2728 0.5169 0.4080 0.4080 0.4061
Skewness-y, 1425465 30059 1.8747 2.1859 0.0153 0.7272 1.166
7 2.4663 0.0331 0.0255 0.0316 0.0128 0.9559 1.2404
7, 26.1962 0.6299 0.4574 0.5386 0.0206 0.8550 1.1773
MSE (x107)
Mean- az, 0.6735 0.6735 0.6735 0.4624 0.6866 0.6866 0.6866
a 0.0101 0.0101 0.0101 0.0101 1.0013 1.0013 1.0013
a, 0.1842 0.1842 0.1841 0.1525 0.8287 0.8287 0.8287
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Variance- f3,

21

5
Skewness- ¥,

7

7>

4.9989

0.0910

1.3083

1838.1483

283.9479

134.7781

4.9989

0.0910

1.3083

4.4859

0.0430

0.6657

5.0197

0.0917

1.3186

2.2519

0.0414

0.5811

1.7443

0.1000

0.5569

34212

0.0957

1.0793

0.3489

1.0984

0.4256

0.0019

0.0003

0.0080

0.3489

1.0984

0.4256

0.7627

2.2260

1.6214

0.3475

1.0903

0.4223

1.5192

2.3124

1.8573
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