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Abstract 

This study seeks to provide a rigorous theoretical and empirical understanding of the effects of 

exogenous geographic and climate-related factors on the first three moments of crop yields. 

We hypothesize that exogenous geographic and climate factors that have beneficial effects on 

crop production, such as better soils, less overheating damage, more growing season 

precipitation and irrigation should make crop yield distributions less positively or more 

negatively skewed. We employ a large crop insurance dataset for corn, soybean, and wheat to 

find general support for the hypothesis. The novel empirical method optimally uses 

correlations between the first three moments and thus significantly improves estimation 

performance over existing methods.  

 
Keywords: cross-moment correlation, generalized method of moments, von Liebig production 
technology 
 
JEL Code: Q10, Q18, Q50. 
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1. Introduction 

Concerns about how climate change could affect global food security, grain production, and 

corresponding crop market prices have been addressed by many, e.g., Lobell, Schlenker, and 

Costa-Roberts (2011). Yield mean responses to historical weather realizations, such as growing 

season temperature and precipitation, have been modeled explicitly (see, among others, 

Rosenzweig and Parry 1994). Results indicate statistically significant and large impacts on the 

yields of major crops including corn, soybeans, wheat and rice. Despite an extensive literature 

documenting the impacts of exogenous factors on crop yield means and variances, their effects 

on yield skewness are not well understood. It is an important oversight as a more negatively 

skewed distribution implies more frequent left-tail disasters. For U.S. crop insurance markets, 

there would be larger indemnity payouts and higher crop insurance subsidies. The objective of 

this study is to provide a rigorous theoretical and empirical understanding of the effects of 

exogenous geographic and climate-related factors, including soil quality, growing season 

temperature and precipitation, location, and irrigation, on the first three moments of crop 

yields. The estimates shed light on the role of geography in insurance rate setting. A carefully 

controlled geographic cross-sectional analysis of average climate variation also allows 

inferences on how temporal climate change in a given location would affect the first three 

moments of crop yields.  

There have been recent developments in the understanding of the impact of weather 

conditions on crop yield distribution. For example, Lobell and Asner (2003) conclude that 

gradual temperature changes have reduced both corn and soybean yield by approximately 17% 

for one degree increase in growing season temperature over 1982-1998. Deschȇnes and 

Greenstone (2007) find beneficial effects of the increase in precipitation on corn and soybean 

yields while the increase in temperature is harmful. But the significance and magnitude of the 
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effects vary across model specification. Nonlinear and asymmetric effects of temperature on 

crop yields are found by several studies including, e.g., Schlenker, Hanemann, and Fisher 

(2006) and Schlenker and Roberts (2009). In general, crop yield increases with temperature 

only up to a certain threshold, above which yield declines significantly. Based on the drought 

index constructed from monthly county-level rainfall and temperature, Yu and Babcock (2010) 

find that corn and soybeans are more drought tolerant in main Corn Belt states since 1980.  

A related issue is how land quality shapes the moments of yield distributions. Although 

land quality is often measured with reference to impact on mean yield effects, effects on other 

moments are not so clear. The relation is important because land quality is spatially clustered 

and so its spatial distribution may explain some aspects of geographic regularities in crop 

disaster patterns. Although a voluminous literature exists on how soil quality affects yields 

(e.g., ISU 2006), the literature on higher moment effects is not well developed and we are not 

aware of any study on how soil quality affects yield skewness. 

Another strand of literature studies the effects of various inputs on crop yield distribution 

using the stochastic production function (SPF) specification (Just and Pope 1978, 1979). In the 

SPF model, both mean and variance responses of crop yield to input factors are explicitly 

modeled and estimated. For example, McCarl, Villavicencio and Wu (2008) investigate the 

impact of historical climate change on the mean and variability of crop yield in the framework 

of SPF. Du, Hennessy and Yu (2012) extend the SPF model to accommodate crop yield 

skewness and apply it to assess how skewness responds to nitrogen use.  

In the current study we propose an empirical model in the generalized method of moment 

(GMM) framework in which  the impacts of exogenous input factors on the first three 

moments of crop yields are jointly estimated. The proposed GMM method is related to but 

different from the linear moment model (hereafter LMM) proposed in Antle (1983). The LMM 

method is flexible, easy to implement and has been widely applied in the literature. The 
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applications include, for example, the effects of crop diversity on farm productivity and 

production risk (Di Falco and Chavas 2009), the role of production uncertainty and incomplete 

information in the adoption of irrigation technology (Koundouri, Nauges, and Tzouvelekas 

2006), and asymmetric effects of inputs on distribution tails (Antle 2010). But in our Monte 

Carlo simulation the LMM method is found to be significantly biased for the coefficients of the 

skewness equation. After a modification of the third moment equation, the modified LMM 

method (M-LMM hereafter), largely corrects the biases. One distinctive feature of the 

proposed GMM estimation method is that we explicitly take into account the correlations 

between the first three moments. Compared with the LMM and M-LMM as well as a 

traditional OLS method using aggregated county level moment information, the GMM 

estimator outperforms the other methods, especially in small samples with fewer sampled 

counties. 

The present study distinguishes itself from the existing studies by: (i) showing that 

commonly assumed production technologies lend support to the hypothesis that better growing 

conditions reduce yield skewness, (ii) making full use of a large insurance unit level yield 

dataset for corn, soybean and wheat, and (iii) optimally using correlations between the first 

three moments and thus significantly improving estimation performance over existing 

methods. Different from the majority of studies in the literature, which employ either aggregate 

county- or state-level data or relatively few farm-level observations (see a similar discussion in 

Claassen and Just 2010), this study utilizes a vast number of farm- or subfarm-level 

observations (over three million for each crop) and thus obtains sufficient power for the 

empirical study. Accounting for simultaneous correlation in a system of moment equations, 

which has been largely ignored in the literature, the proposed GMM method not only provides 

unbiased parameter estimates but also results in a substantial gain of statistical power. 

Section 2 outlines the theoretical framework regarding how better growing conditions 
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affect higher moments of the yield distribution. Section 3 explains the empirical method and 

data. Monte Carlo simulations are described and the results are discussed in Section 4. After 

the analysis of the estimation results, some concluding comments are offered.  

2. Analytic Framework 

We posit a standard stochastic production relation ( ; )y Q z   where y  is output, z Z  is 

some exogenous geographic factor and   is a random variable that follows distribution ( ) :F   

[ , ] [0,1]  . Here the geographic factor could be soil quality, precipitation or sunshine and it 

is assumed that   is ordered such that ( ) 0Q   , i.e., more is beneficial. Furthermore, ( ; )Q z  

is held to be smoothly differentiable in that 2 ln[ ( )] /Q z      exists on ( , ) [ , ]z Z    . Our 

interest throughout is in yield skewness as commonly understood, i.e., 3[{( ) / } ]E y    where 

  and  are, respectively, the mean and standard deviation of yield. 

Proposition 1. For any 1 0z z , the yield distribution of 1 1( ; )y Q z   is more negatively 

(positively) skewed than that of 0 0( ; )y Q z   if and only if ln[ ( ; )] /Q z     is decreasing 

(increasing) in exogenous geographic factor z . 

 

The proof is provided in the supplementary appendix. We provide three examples, showing 

different skewness implications for a shift in exogenous factor under three commonly used 

functional forms for modeling production relations. 

EXAMPLE 1. Consider the logistic production technology where ( ) / (1 )y z z      and 

0z  . Then ln[ ( )] 2ln(1 )Q z      , ln[ ( )] / 2 / (1 )d Q d z        and 

2 2ln[ ( )] / 2 /(1 ) 0d Q d dz z       . Thus an increase in the value of the geographic 

attribute increases skewness in this case. 
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EXAMPLE 2. For ( )1 zy e      with   then ln[ ( )] ln( ) ( )Q z       , 

ln[ ( )] /d Q d      and 2 ln[ ( )] / 0d Q d dz   . In this case an increase in the value of the 

geography attribute has no impact on skewness. 

 

EXAMPLE 3. The von-Liebig law of the minimum production function is a widely accepted 

model of crop growth technology; see, e.g., Cerrato and Blackmer (1990). A standard 

representation of this production function is min[ , ]y y    where y  is some latent production 

level that would occur absent a limiting factor, in this case represented by parameter  . 

Limiting constraint   might be of form ( )g a  where ( )g   is an increasing function and a  

is the state of seed genetics. In its most simple, linear, form the production function could be 

written as min[ , ]y z   , where a point of non-differentiability (pnd) occurs at z   . 

Notice that random yield y  can be positively skewed as   can be positively skewed with 

support below z .  

Because min[ , ]y z    is not an everywhere differentiable function we apply a 

smoothing kernel, i.e., a non-negative function ( ) : [ , ]k w      so that the unsmoothed 

value is ˆ min[ , ]y w z    . The intent of this example is to demonstrate that under 

reasonable smoothing over the linear von-Liebig function’s pnd then an increase in the 

exogenous geographic factor leads to a negative skewing of the yield distribution. 

As is standard, the kernel satisfies ( ) 1k w dw






 and ( ) ( )k w k w   where 0   (Parzen 

1962). A rationale for kernel smoothing is randomness in input expression or spatial variability 

in soil endowments at the fine topography level (Berck and Helfand 1990). Condition 
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( ) 1k w dw






 is no more than a normalization constraint while ( ) ( )k w k w   ensures 

symmetry around z  so that any asymmetries are less likely to be imposed by the kernel. 

For the uniform smoothing kernel the calculation ( ; , ) min[ , ] ( )Q z w z k w dw



   


    

1(2 ) min[ , ]w z dw


  




    has three distinct regions of interest. The first is when the 

kernel smooths only below the pnd. In that case z      and ( ; , )Q z    

1(2 ) min[ , ]w z dw z



   


     so that ( ) 1Q   , ln[ ( )] / 0d Q d    and 

2 ln[ ( )] / 0d Q d dz   . Alternatively, the smoothing could occur entirely above the pnd. In that 

case the value of ln[ ( )] /d Q d   is not defined (being 0/0), but we will shortly show that its 

limiting value is negative infinity. The intermediate, and most interesting, case is where 

0 z z            . Then  

(1) 

1 1

2

2 2

( ; , ) (2 ) ( ) (2 )

0.5 ( ) ( )

2 2

( ) 0.5 0.5( )
.

2

z

z

z

Q z w z dw dw

w z w z

z z

  

  

 



     

    
 

     


  

  

 



   

       

     


 

  

So ( ) ( ) / (2 )Q z         , ln[ ( )] / 1 / ( )d Q d z           and 

2 2ln[ ( )] / 1 / ( ) 0d Q d dz z           . Thus, and by contrast with examples 1 and 2, an 

increase in the level of geographic factor makes skewness more negative. Figure 1 depicts the 

three cases. As the uniform kernel distributions shift to the right then relative curvature 

becomes more negative. The limiting value is where z      , i.e., the left-most tail of the 

smoothing kernel barely covers the pnd. Then the relative curvature expression ln[ ( )] /d Q d   
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has limiting value lim ln[ ( )] /
z

d Q d         . 

We will show next that the uniform kernel is not at all special. Indeed symmetry is not 

needed either for yield under a smoothed linear von Liebig production function to become 

more negatively skewed upon an increase in an exogenous factor. 

General Result for Smoothed Linear von Liebig Production 

As above, the production technology is modeled as being of von-Liebig type with linear 

additive smoothing component min[ , ]y w z    , or  

(2) ( ; ) min[ , ],y w z z w z          

where w  follows distribution ( )K w  with density ( )k w . For future reference we write the 

survival function as ( ) 1 ( )K z K z          and we note from an integration by parts 

that min[ , ] ( ) ( )
z

w z dK w z K w dw
  

 
   

 

 
       . Our interest is in mean, or 

aggregate, yield over the heterogeneity, i.e., 1 

(3) ( ; ) ( ; ) ( ) ( ) .
z

Q z y w z dK w K w dw
  

 
  

 

 
      

Applying Proposition 1 to the kernelized production relation we obtain  

(4) 
2 2 2

2 2

ln[ ( ; )] ( ) ( ) [ ( )] ln[ ( )]
, ;

[ ( )]
wd Q z K w k w k w d K w

w z
d dz K w dw

   



      

where ( )K w  is said to be logconcave (resp., logconvex) whenever ln[ ( )]K w  is concave (resp., 

convex) in w . Thus we have  

Proposition 2. For the kernel smoothed linear von Liebig production relation, an increase in 

                                                 
1 Although Hennessy (2009) also considered a production function of type (2) above, there 
both   and   were random. By contrast with the production function in (3), the yield 
distribution function was bivariate. The skewness to be considered here is upon aggregating 
across realizations of  . As we will discuss, aggregation has important implications for 
skewness. 
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the exogenous geographic factor reduces (resp., increases) yield skewness whenever kernel 

distribution ( )K w  is logconcave (resp., logconvex). 

 

Notice that symmetry on ( )k w  was not invoked in the analysis leading up to Proposition 2. 

We will show later that the logconcave distribution property bears no relation with symmetry 

of the form ( ) ( )k w k w   so that one assumption has no implications for the plausibility of the 

other. 

We will comment first, and briefly, on logconvexity of the distribution function as we 

believe it to be less plausible. In their extensive overview of the property and allied matters, 

Bagnoli and Bergstrom (2005) only identify one common distribution to possess a logconvex 

distribution. This is the mirror image Pareto distribution. To confirm why a logconvex 

distribution is implausible consider that it requires ratio ( ) / ( )k w K w  to be increasing. The 

denominator, being a distribution function, is increasing so the density function must be 

increasing everywhere on its support. Even absent an assumption on kernel density symmetry, 

this is very implausible and is contrary to the concept of smoothing because the density would 

collapse to zero just beyond its mode ( )k  .  

Regarding logconcavity, this is true whenever ( ) ( )wK w k w   2[ ( )]k w  and applies whenever 

density ( )k w  is concave. More generally, it applies whenever the density function is log-

concave, or 2( ) ( ) [ ( )]ww wk w k w k w  (An 1998). As such, it applies for the normal, uniform and 

beta distributions with interior mode (An 1998).2 Notice that the beta distribution can be highly 

skewed. The logconcave density property and the unimodal property are strongly related 

(Ibragimov 1956), where a restricted form of unimodality (strong unimodality) implies 

                                                 
2 The statistics literature on log-concave densities, distributions and survival functions is very 
large. See Dharmadhikari and Joag-dev (1988) for an extensive but dated review. 
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logconcave density. Kernel densities, and so kernel distributions, are typically assumed to be 

logconcave because they endow the smoothed function with analytically and intuitively 

appealing properties (Mukerjee 1988). The triweight kernel used elsewhere in this paper 

(Claassen and Just 2011) is logconcave, as is the Epanechnikov kernel that is optimal in 

minimizing density estimate mean square error (Epanechikov 1969) and under certain 

conditions when estimating regressions (Benedetti 1977).  

3. Empirical Methods  

In this section, we present the empirical GMM estimation method followed by a brief 

description of the LMM, M-LMM, and county-level OLS methods.  

GMM method 

Here we propose an empirical model in the generalized method of moment (GMM) framework 

that explicitly takes into account the possible cross moment correlations. Let ijy  be the crop 

yield of farmer j in county i, {1,..., }i n  , {1,..., }ij n , and let iX  be the 
1

 ( )
n

ii
N K N n


   

vector of exogenous input factors considered for each county. We define the mean, variance 

and skewness of crop yield in an individual county, 1 2 3, ,  and g g g , as the linear functions of 

covariates: 

(5) 

1 1

2 1

3 1

(          (mean)

( )          (variance)

( )           (skewness)

K

i k kik

K

i k kik

K

i k kik

g X ) X

g X X

g X X













 

 








  

Notice that, by definition, variance is computed by use of an estimate for mean, while 

skewness is computed by use of estimates for mean and variance. That is, the fit of   

parameters in the second moment equation depends on   parameters choices of the first 
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moment equation, while the fit of   parameters in the third moment equation depends on   

and   parameters choices for both the first and the second moments. Incorporating cross 

moment equation information will improve the efficiency of parameter estimates. In the 

proposed GMM method, a system of mean, variance, and skewness equations is estimated 

jointly in the GMM framework to account for potential cross-moment correlations. The 

moment conditions that we will use to carry out GMM estimation are  

(6)  

 

1

2

1 2

3 3/2
1 2 3

( )

( ) ( )

( ) / ( ) ( )

ij i

ij i i

ij i i i

E y g X

E y g X g X

E y g X g X g X


   

      
      

 

The corresponding sample moment conditions are3  

(7)  
 

1

21 1
1 21 1

3 3/2
1 2 3

( )

( ) / ( ) 1

( ) / ( ) ( )

i

ij i

n n

i ij i ii j

ij i i i

y g X

n n y g X g X

y g X g X g X

  
 

 
 
   
 
   

 

 
Parameter vector  0 1 0 1 0 1, ,..., , , ,..., , , ,...,k k k           can be estimated as    

arg min 'W   where W  is a weighting matrix. The iterated GMM estimator is employed in 

our study.4 In the first iteration, W  is assumed to be the identity matrix. But thereafter the 

iterated approach is applied where updated weights come from ( )V  , the parameter vector 

variance-covariance matrix in the previous iteration. Specifically, the GMM estimator 
                                                 
3 Note that the second moment is rescaled in order to speed up convergence.  
4 In the two GMM estimation methods, two-step feasible GMM applies the same procedure as 

the iterated GMM, in which the weighting matrix W  iteratively with   until the estimators 
satisfy pre-determined convergence criterion. Iterated GMM has slightly better finite-sample 
properties, although asymptotically the two methods are equivalent. See Hull (2005), Ch. 2 for 
a more detailed discussion. 
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proceeds as follows: 

Step 0: Take 0
3 3iW I  , an identity matrix for an individual county i , {1,..., }i n , to be the 

diagonal elements of the initial weighting matrix 0W  (off-diagonal entries are all zero). Then 

minimize the objective function 
0'W   to compute the GMM estimate  0 , which is a 

consistent but not efficient estimator.  

Step1: Take the GMM estimate to calculate  1 1

1
ˆ ˆ ˆ ˆ( 1) ( )( )in

i i i ij i ij ij
W n n e e e e 


    , where  

(8) 

1 1

2

1 1

3

1 1 1

/   

ˆ ( ) / 1  

( ) /

K K

ij k ki k kik k

K K

ij ij k ki k kik k

K K K

ij k ki k ki k kik k k

y X X

e y X X

y X X X

 

 

  

 

 

  

 
 

 
   
 
       

 
 

  

'

  

and 1

1
ˆ ˆin

i i ijj
e n e


  . The optimal matrix W  consists of the iW ’s as the diagonal elements. 

Then minimize 'W   to obtain  , which should be asymptotically efficient.  

Step 2. Iterate Step 1 until convergence, i.e., the iteration changes in the estimated parameters 

are less than a specified threshold. 

One thing worth mentioning is that in the estimation of the optimal weighting matrix W  

we take into account only the within county cross-moment correlation as in  


iW , not the across 

county moment correlations. The reason is that we have insufficient information to match 

between farms in different counties for calculating variance-covariance matrix. This implies 

that the resulting optimal weighting matrix is a block diagonal matrix in which the diagonal 

entries are variance-covariance for individual counties, ˆ
iW , and the entries outside the main 

diagonal are all zero.  

The variance of our GMM estimator   is  
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(9)     1

1
ˆ ˆ( ) ( ) ( )

n

i i ii
V W




         

where   is the iterated estimate of  , 
ˆ( ) [ ( ) / ] |i im

 
      , the gradient matrix of 

( )im  , and ˆ
iW  is the weighting matrix computed in Step 1 above.  

LMM, M-LMM, and regional OLS methods 

Given the notation in the GMM section above, the LMM method (Antle 1983) proceeds as 

follows: 

(i) Estimate the mean regression model  

(10) 11

K

ij k kik
y X 


    

to obtain the mean effect parameters ̂  and the associated error term 1 1
ˆ K

ij k kik
y X 


   

(ii) Estimate the variance and skewness parameters, ̂  and ̂ , from the regressions 

2
1 21

3
1 31

ˆ(11 1)    ( )

ˆ(11 2)    ( )

K

k kik

K

k kik

X

X

  

  




  

  




 

(iii) Deal with the heteroscedasticity issues in the estimation of eqns. (10) and (11) in two 

ways: (a) the Weighted Least Square (WLS) method (Antle 1983), and (b) the White 

heteroskedastic-consistent estimator for standard error estimation (Antle 2010). For eqn. (10), 

the weights for WLS are chosen as the fitted values in eqn. (11-1). But weights can be negative 

for some observations for eqn. (11). In this case, correction method (b) is feasible and easy to 

implement. 

Eqn. (11-2) of the LMM is modified to correct for the estimation biases we find in the 

Monte Carlo simulation,5 

 3/2
3

1 2 31
ˆ ˆ(11 2 ')    ( ) / ( , )

K

i k kik
f X X   


    

                                                 
5 We will discuss the Monte Carlo simulation in a later section. 
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where 2
ˆ( , )if X  is the fitted value of eqn. (11-1). So in the M-LMM method, eqns. (10), (11-1) 

and (11 2 ')  are estimated using least square to obtain parameter estimates and we calculate 

White standard errors to account for heteroscedasticity. 

A county-level OLS method is also used for model comparison and identifying initial 

values for the GMM method. First, using all yield observations in an individual county, we 

calculate sample mean, variance, and skewness. Then we regress the first three moments on 

county level explanatory variables. It is feasible in our case as our sample includes over 600 

counties for each crop considered. It will be shown that compared with the proposed GMM 

method, the regional OLS method is restricted and disadvantaged with limited geographic 

coverage, i.e., fewer sampled counties. 

4. Data 

Now we turn to the discussion of crop yield data and county level explanatory variables 

considered in this study. Crop insurance unit level yield data for corn and soybean in 13 states 

(IL, IN, IA, KS, MI, MN, MO, NE, ND, OH, OK, SD, and WI) and wheat yield in 11 states 

(all states listed above except IA and WI) over 1990-2009 are obtained from the Risk 

Management Agency (RMA) of the U.S. Department of Agriculture (USDA). The data contain 

up to 10 years yield history (likely non-consecutive) on each included unit, which has been 

insured under the federal crop insurance program over the sample period. The insured unit can 

comprise one or more fields on a farm. From the dataset, we restrict our sample to the units 

with 10 years of yield record.  

To investigate crop yield distribution, it is necessary to remove the systematic components 

of yield variation, which link to the characteristics of the production sites in both spatial and 

temporal dimensions (Claassen and Just 2010). Following Claassen and Just (2011), unit level 
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crop yields are de-trended in the following three steps:6   

(i) Estimate each county’s trend yield, ˆ cy , using a nonparametric local regression method.  

(ii) Transfer the county level trend yield to those of individual units, ˆuy , in a multiplicative 

model, ˆ ˆu u cy y , where u  is the unit-specific productivity measure.  

(iii) Obtaining the corresponding unit level random error ˆu uy y   , where y  is the unit level 

yield observation.  

To ensure positive yield and full utilization of all the available data across the whole 

sample period, we transfer all de-trended historical yield to the yield of 2009 by adding back 

the county-level trend yield of 2009 and adjusting for unit-specific productivity.7 Now we 

obtain the yield datasets with a large number of observations (over four million for each crop) 

that can be treated as being generated from the distribution of a particular year.  

The exogenous input factors ( X ) considered to be influencing factors of crop yield 

distribution include a variety of geographic and climate related factors including soil quality, 

growing season precipitation and temperature, county location, and irrigation.8 In what 

follows, we discuss the construction of these county-level independent variables and their 

expected effects on crop yield distribution. 

Soil quality 

County level average soil quality is represented by the proportion of land acreage under certain 

Land Capacity Classes (LCC) and sub-classes.9 Land capability classes and subclasses are 

determined based on the soil’s potential capacity to produce field crops or pasture. In the LCC 

classification, land belonging to Class I is the most productive with few land use limitations 
                                                 
6 Interested readers are referred to eqns. (1), (2’)-(4’) in Claassen and Just (2010). 
7 This is essentially the reverse of the de-trending process, i.e., normalizing to a particular year. 
8 The impact of irrigation will be discussed at a later juncture. 
9 Readers are referred to the National Soil Survey Handbook for more information, which is 
available at http://soils.usda.gov/technical/handbook/contents/part622.html.  
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and Classes II-IV are land with moderate to severe limitations but are still suitable to 

cultivation. Land in Classes V-VIII is unsuitable for agricultural production. Thus for 

individual counties, we focus on the LCC classes I to IV.  

We use the county level LCC data contained in the National Resource Inventory (NRI) 

dataset. For a given county the soil quality measure is constructed as the percentage of land 

acres classified as Classes I and II in the total acreage of Classes I-IV. Counties with high 

constructed soil quality measure represent good soil productivity are expected to have 

relatively high crop yield.  

Growing degree days  

Growing degree days (GDD) has been widely applied in the literature to measure the heat 

accumulation during a crop’s growing season (see, e.g., Deschȇnes and Greenstone 2007; 

Schlenker, Hanemann and Fisher 2006; Schlenker and Roberts 2009). GDD is defined as the 

sum of degrees in the range between lower and upper thresholds over a specific time period. 

The temperature thresholds are 8°C and 32°C for corn and soybeans, and 0°C and 25°C for 

wheat. April-September is chosen as the growing season for corn and soybeans, April-August 

for wheat. County-level GDD is calculated as the annual average growing degree days in 

growing season over the period of 1975-2005. U.S. county-level monthly average growing 

degree days developed in Schlenker and Roberts (2009) are employed for our calculation.10 

Overheating is found to be harmful to crop growth and yield production. Temperature 

above 34°C is considered to be overheated (Schlenker, Hanemann and Fisher 2006).11 In this 

study, we construct the variable GDD34 to capture the effect of overheating on crop yield 

                                                 
10 A detailed data description and original dataset can be downloaded at 
http://www.columbia.edu/~ws2162/dailyData/. 
11 Following the literature, the over-heat threshold is assumed to be the same for corn, 
soybeans, and wheat. 
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distribution. GDD34 is calculated as the county average growing degree days with temperature 

above 34°C over the period of 1975-2005.  

Precipitation 

The precipitation variable denoted by Prec is constructed to represent total amount of rainfall 

during each crops growing season. Similarly, it is averaged over the 31 year period for 

individual counties in the sample. The original dataset is also developed in Schlenker and 

Roberts (2009).  

Location 

The x and y coordinates of a county centroid (denoted by Location-X and Location-Y) are 

included to indicate the geographic location of each county. The county level spatial centroids 

are obtained from the US Census Bureau.12 Inclusion of location is a judgement call as  county 

geographic location tends to be strongly correlated with weather condition as counties located 

further east are likely associated with increasing precipitation and counties further north could 

be linked with decreasing growing degree days. On the other hand, we attempt to use the 

location variables to capture county level non-climate features such as distance to market, 

planting date choice, and infrastructure problems that aren’t fully captured by the climate 

variables. So the two location variables are used to test for the robustness of the parameter 

estimates.  

Irrigation is expected to have a significant impact on crop yield distributions. But it is well 

known that a farmer’s irrigation decision is endogenous and is affected by a number of factors 

including, for example, surface and/or underground water quality and availability, climate, and 

growing condition. More importantly it could potentially weaken the effects of the included 

climate variables on crop yield. Therefore we first conduct the empirical analysis on the 

                                                 
12 The county spatial data are available at 
ftp://ftp.igsb.uiowa.edu/gis_library/USA/us_counties.htm (accessed March 22, 2012). 
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irrigated and non-irrigated land separately and then combine the two data sets to investigate the 

effect of irrigation. 

4. Monte Carlo Simulation 

The simulation scheme is set up as follows. As discussed above, the mean, variance, and 

skewness functions, 1g , 2g , and 3g , of county i  in eqn. (5), are defined as functions of 

county-level exogenous input factors of iX .  For simplification, we consider only two 

exogenous factors, which are randomly sampled from normal distribution, i.e., 

1 ~ Normal(10,5)X  2 ~ Normal(1,1)X . The corresponding coefficients for the first three 

moment equations including the constant term are ( , , ),  {1,2,3}k k k k    . We generate 

random samples for farm j  of county i  as the following: 

(12) 1 2( ) ( ) ,   ~ Skewed Normal( , , ).ij i i ij ijy g X g X        

where the random error ij  is drawn from a skewed normal distribution with location, scale, 

and shape parameters ,  ,   and  , respectively.13 Thus we have 

(13) 

2

2 2

3 2 3/2

( ) 2 / ,  = / 1

( ) (1 2 / )

skew( ) 0.5(4 )( 2 / ) / (1 2 / )

ij

ij

ij

E

V

      

   

     

   
  


  

 

We solve for ( , , )    for county i  to satisfy the following conditions 

(14) 

3

( ) 0

( ) 1

skew( ) ( )

ij

ij

ij i

E

V

g X







 



 

 

                                                 
13 Note that given true parameters in generated iX ’s only those satisfying 31 ( ) 1ig X    are 

selected, which is a restriction of the skewed normal distribution and also ensure the solvability 
of eqn. (14). 
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By doing so, we generate the error terms ij  satisfying  

(15) ( ) 0ijE   , 2( ) 1ijE   , 3( ) 0ijE   , 4( ) 0ijE   , and 5( ) 0ijE   .  

Therefore the off-diagonal elements of the covariance matrix of the first three moments, which 

are functions of the quantities defined in eqn. (15), are not necessarily zero.14  

According to the simulation scheme described above, we generate random samples of ijy

for county i . The yield samples are then employed for the estimation of the LMM, M-LMM, 

OLS and GMM models. To compare the estimation results across models, three statistics are 

calculated including Monte Carlo (MC) relative biases, MC variance, and mean squared error 

(MSE). They are defined as: 

(a) Monte Carlo (MC) relative biases: 1

1
ˆ( )

M

m truem
M 


  , where M  is the number of 

simulations, 1000M   in our case; true  is the true parameters for generating the random 

samples, and ˆ
m  is the estimated parameters from the mth random sample. 

(b) MC variances: 1 2
ˆ ˆ ˆ ˆ ˆvar( ),  ( , ,..., )M       . 

(c) Mean squared error: 
2

1

1
ˆ( )

M

m truem
M 


  . 

Table 1 presents the simulation estimation and model comparison results for 10 counties

( 10)n   and 200 observations for each county ( 200)in  . The results for 100 counties 

( 100)n   and 200 observations for each county ( 200)in   are included in the Supplemental 

Materials. The results indicate that for the coefficients in the skewness equation, 0 , 1 , and 

2 , when compared with other methods, LMM generates significant biases. After 

normalization using fitted values of the second moment equation, The M-LMM method largely 

corrects the biases. The OLS and GMM methods further reduce the biases. For the mean and 

                                                 
14 The derivation of the variance covariance matrix is provided in the Supplemental Materials. 
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variance equations, LMM and M-LMM generate the same results as they are essentially the 

same method. The OLS and GMM methods generate slightly better results for some 

coefficients. The MC biases are comparable between the OLS and GMM methods, while OLS 

performs better in the large samples with more sampled counties.  

For the MC variances, after taking into account the cross-moment correlation the GMM 

method outperforms all other methods, especially LMM, on all coefficients. In the large 

samples, OLS generates comparable results in the skewness coefficients. It is not surprising 

given that the OLS method is based on aggregated county level moment information. We 

observe significant MSE reduction of the GMM method on all coefficients in the small sample 

over all other methods, especially the LMM on the coefficients of the skewness equation. Due 

to large biases, the LMM method has the largest MSE on the skewness parameters. M-LMM 

shows improvement over LMM after modifying the third moment equation, even in the large 

sample. 

5. Analysis of Results 

Table 2 presents the GMM estimation results for corn, soybeans, and wheat on non-irrigated 

land.15 For each crop, column I in Table 2 includes the estimated impact on crop yield 

moments of geographic and climate-related variables, while column II includes two location 

variables, Location-X and Location-Y. The purpose of doing so is to distinguish the effect of 

county location from those of other included exogenous factors and to test for robustness of 

main results. We don’t see consistent effects of county geographic location on the first three 

moments of yield distribution across crops, although all estimated coefficients are statistically 

significant at 1% level. As expected, soil quality (LCC) and growing season precipitation 

                                                 
15 To save space, not all estimation results of LMM, M-LMM, and OLS methods are presented. 
The complete set of estimates is available upon request.  
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(Prec) are found to have significant and positive effects on the mean yield across crops and 

model specifications. Overheating temperature during growing season (GDD34) damages the 

mean yield of corn, soybean, and wheat. In the variance equation, the results indicate that 

good-quality soils (LCC) tend to associate with relatively high yield variation. For the third 

moment of the crop yield distribution, better average soil quality in an individual county 

represented by higher LCC makes unit-level crop yields of corn, soybeans and wheat more 

negatively skewed. During the growing season more overheating days tend to make the crop 

yield distribution more positively or less negatively skewed. The estimates confirm the 

hypotheses described in the Propositions 1 and 2.  

GMM estimation results for crop yield on irrigated land are reported in Table 3. Across the 

three crops and model specifications, we don’t find consistent impact of all included variables 

on the first three moments of yield distribution. Especially for soybean and wheat, the majority 

of the estimated coefficients are not significant. This is not surprising given the fact that the 

crop yield data on irrigated land are very limited, which include only 53 counties for corn, 17 

for soybeans and 7 for wheat.  

To separate the impact of irrigation on crop yield distribution, we combine crop yield data 

for non-irrigated and irrigated land and report the GMM estimation results in Table 4. 

Irrigation is found to significantly increase the mean yield and doesn’t have a consistent impact 

on crop yield variation. For the skewness, after separating the irrigation effect, growing season 

precipitation (Prec) decreases crop yield skewness. Also the results show that irrigation makes 

corn and soybean, but not wheat, yield distributions more negatively skewed. 

It is readily surmised that the irrigation decision is endogenous and is largely determined by 

hydrological and institutional factors including surface and underground water availability, 

water right and government policies (see, e.g., Moore and Negri 1992, Schlenker, Hanemann 

and Fisher 2005). Therefore the estimated irrigation effect could be potentially biased. Finding 
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appropriate instrumental variables is challenging and will be addressed in future study. Table 5 

summarizes the results in regard to Proposition 2. 

6. Conclusion 

We hypothesize that crop yield distributions will become more negatively skewed when 

growing conditions become more benign. Making full use of a large farm level yield dataset 

for corn, soybean, and wheat, we quantify the impact of exogenous geographic and climate 

related factors including soil quality, growing season temperature and precipitation, location, 

and irrigation on the first three moments of yield distribution. In general, exogenous 

geographic and climate related factors having beneficial effects on crop production, such as 

better soils, less overheating damage, and more precipitation, are found to support our 

hypothesis. The novel empirical method optimally uses correlations between the first three 

moments and thus significantly improves estimation performance over existing methods.  
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Table 1. Simulation results for 10 counties and 200 observations for each county 

Coefficient LMM (I) M-LMM (II) OLS (III) GMM (IV) IV/I IV/II IV/III 

MC relative biases ( 310 ) 

Mean- 0  13.6028 13.6028 13.6028 9.1836 0.6750 0.6750 0.6750 

1  0.5460 0.5460 0.5460 0.1520 0.2780 0.2780 0.2780 

2  2.0243 2.0243 2.0243 1.1470 0.5670 0.5670 0.5670 

Variance- 0  19.5496 19.5496 19.6725 -2.9777 -0.1520 -0.1520 -0.1510 

1  2.5518 2.5518 3.0829 -2.9629 -1.1610 -1.1610 -0.9610 

2  5.1001 5.1001 6.8713 -5.2623 -1.0320 -1.0320 -0.7660 

Skewness- 0  -91.9585 73.5376 31.0560 -9.6676 0.1050 -0.1310 -0.3110 

1  280.2923 -12.1866 -6.3189 -10.1452 -0.0360 0.8320 1.6060 

2  518.5034 -33.2444 -16.7233 -23.4231 -0.0450 0.7050 1.4010 

MC variances ( 310 ) 

Mean- 0  0.1924 0.1924 0.1924 0.1674 0.8700 0.8700 0.8700 

1  0.0120 0.0120 0.0120 0.0093 0.7740 0.7740 0.7740 

2  0.2417 0.2417 0.2417 0.2232 0.9230 0.9230 0.9230 

Variance- 0  0.6862 0.6862 0.6918 0.4625 0.6740 0.6740 0.6680 

1  0.0519 0.0519 0.0522 0.0263 0.5070 0.5070 0.5040 

2  1.0144 1.0144 1.0253 0.7654 0.7550 0.7550 0.7470 

Skewness- 0  6.4216 3.0120 1.2613 1.1809 0.1840 0.3920 0.9360 

1  0.6340 0.1649 0.0767 0.0677 0.1070 0.4110 0.8840 

2  9.9877 1.7260 1.2310 1.1051 0.1110 0.6400 0.8980 

MSE ( 310 ) 

Mean- 0  2.1051 2.1051 2.1051 1.7546 0.8340 0.8340 0.8340 

1  0.1197 0.1197 0.1197 0.0924 0.7720 0.7720 0.7720 

2  2.4167 2.4167 2.4167 2.2293 0.9220 0.9220 0.9220 
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Variance- 0  7.2302 7.2302 7.2916 4.6246 0.6400 0.6400 0.6340 

1  0.5245 0.5245 0.5300 0.2712 0.5170 0.5170 0.5120 

2  10.1499 10.1499 10.2796 7.6663 0.7550 0.7550 0.7460 

Skewness- 0  72.5440 65.4679 13.5520 11.8788 0.1640 0.3350 0.8770 

1  84.8914 1.7946 0.8050 0.7790 0.0090 0.4340 0.9680 

2  368.5235 18.3328 12.5649 11.5779 0.0310 0.6320 0.9210 
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Table 2. GMM Estimation Results of Corn, Soybeans, and Wheat Yield Moments on Non-
irrigated Land (Standard errors are in the parentheses) 

 Corn Soybeans Wheat 
 I II I II I II 
Mean 
Constant 1.13c 

(0.003) 
0.27c 

(0.009) 
0.08c 

(0.0007) 
0.54c 

(0.003) 
0.12c 

(0.003) 
1.95c 

(0.006) 
LCC 0.04c 

(0.001) 
0.21c 

(0.001) 
0.04c 

(0.0003) 
0.06c 

(0.0003) 
0.20c 

(0.0005) 
0.13c 

(0.0005) 
GDD 0.17c 

(0.001) 
0.43c 

(0.004) 
0.07c 

(0.0004) 
-0.07c 

(0.001) 
0.001 

(0.001) 
-0.41c 

(0.003) 
GDD34 -0.38c 

(0.001) 
-0.33c 

(0.001) 
-0.05c 

(0.0002) 
-0.09c 

(0.0002) 
-0.03c 

(0.0002) 
-0.01c 

(0.0002) 
Prec 0.36c 

(0.002) 
0.47c 

(0.002) 
0.21c 

(0.0005) 
0.13c 

(0.0007) 
0.26c 

(0.002) 
-0.16c 

(0.002) 
Location-X  -0.20c 

(0.0009) 
 -0.10c 

(0.0003) 
 0.47c 

(0.0009) 
Location-Y  0.08c 

(0.002) 
 -0.16c 

(0.0008) 
 -0.16c 

(0.0006) 
Variance 
Constant -0.04c 

(0.001) 
-0.19c 

(0.0009) 
0.03c 

(0.00004) 
-0.01c 

(0.0002) 
-0.01c 

(0.0001) 
0.08c 

(0.0004) 
LCC 0.01c 

(0.0001) 
0.01c 

(0.0001) 
0.003c 

(0.00001) 
0.002c 

(0.00002) 
0.004c 

(0.00002) 
0.004c 

(0.00002) 
GDD 0.08c 

(0.0002) 
0.15c 

(0.0003) 
-0.01c 

(0.00001) 
0.004c 

(0.0001) 
0.0004c 
(0.0001) 

-0.03c 
(0.0002) 

GDD34 0.10c 
(0.0003) 

-0.01c 
(0.0002) 

0.005c 
(0.00001) 

0.005c 
(0.00001) 

0.002c 
(0.00001) 

0.002c 
(0.00001) 

Prec -0.07c 
(0.0004) 

-0.01c 
(0.0002) 

-0.002c 
(0.00003) 

0.002c 
(0.00005) 

0.03c 
(0.0001) 

0.02c 
(0.00016) 

Location-X  -0.004c 
(0.0001) 

 0.004c 
(0.00002) 

 -0.01c 
(0.00003) 

Location-Y  -0.02c 
(0.0002) 

 0.01c 
(0.0001) 

 -0.01c 
(0.00005) 

Skewness 
Constant 1.05c 

(0.04) 
8.28c 
(0.15) 

-2.89c 
(0.04) 

1.88c 
(0.14) 

-2.67c 
(0.10) 

-1.56c 
(0.17) 

LCC -0.14c 
(0.01) 

-0.33c 
(0.01) 

-0.48c 
(0.02) 

-0.02 
(0.02) 

-0.98c 
(0.01) 

-0.39c 
(0.01) 

GDD -1.60c 
(0.03) 

-2.18c 
(0.06) 

1.38c 
(0.03) 

-0.73c 
(0.06) 

1.03c 
(0.05) 

-0.90c 
(0.06) 

GDD34 0.52c 
(0.007) 

1.81c 
(0.01) 

0.06c 
(0.01) 

0.90c 
(0.01) 

0.12c 
(0.004) 

0.15c 
(0.004) 

Prec 1.31c 
(0.03) 

-4.50c 
(0.03) 

-0.19c 
(0.03) 

-0.98c 
(0.03) 

-0.80c 
(0.05) 

2.88c 
(0.07) 

Location-X  0.92c 
(0.02) 

 0.57c 
(0.01) 

 -2.03c 
(0.05) 

Location-Y  0.23c 
(0.04) 

 -0.57c 
(0.03) 

 0.06c 
(0.01) 

Note: a, b and c denote significance at 0.10, 0.05, and 0.01 levels, respectively. 
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Table 3. GMM Estimation Results of Corn, Soybeans, and Wheat Yield Moments on Irrigated 
Land (Standard errors are in the parentheses) 

 Corn Soybeans Wheat 
 I II I II I II 
Mean 
Constant 2.25c 

(0.02) 
5.60c 
(0.07) 

0.55c 
(0.02) 

-0.05 
(0.10) 

0.23b 
(0.11) 

-3.64 
(7.20) 

LCC 0.28c 
(0.003) 

0.36c 
(0.004) 

-0.002 
(0.003) 

0.01b 
(0.005) 

0.08 
(0.05) 

0.13 
(0.23) 

GDD -0.64c 
(0.02) 

-1.20c 
(0.02) 

0.16c 
(0.02) 

0.35c 
(0.03) 

0.09 
(0.11) 

1.58 
(2.73) 

GDD34 0.07c 
(0.002) 

0.09c 
(0.002) 

0.02c 
(0.002) 

0.04c 
(0.004) 

-0.02 
(0.03) 

-0.10 
(0.19) 

Prec 0.86c 
(0.001) 

-0.42c 
(0.03) 

-0.30c 
(0.01) 

-0.28c 
(0.04) 

-0.005 
(0.33) 

-0.54 
(1.29) 

Location-X  1.57c 
(0.03) 

 -0.19c 
(0.04) 

 -0.42 
(1.12) 

Location-Y  -0.30c 
(0.009) 

 0.17c 
(0.01) 

 0.66 
(1.10) 

Variance 
Constant -0.44c 

(0.007) 
1.23c 
(0.03) 

0.006c 
(0.004) 

-0.11c 
(0.02) 

-0.02 
(0.03) 

1.94 
(1.73) 

LCC -0.08c 
(0.002) 

-0.09c 
(0.002) 

0.004c 
(0.001) 

-0.001 
(0.001) 

-0.05c 
(0.02) 

0.02 
(0.06) 

GDD 0.29c 
(0.006) 

0.17c 
(0.008) 

0.01c 
(0.003) 

0.03c 
(0.006) 

-0.04 
(0.03) 

-0.81 
(0.66) 

GDD34 0.05c 
(0.001) 

0.01c 
(0.001) 

-0.0004 
(0.0005) 

-0.004c 
(0.001) 

0.01a 
(0.007) 

0.02 
(0.05) 

Prec -0.07c 
(0.005) 

-0.93c 
(0.02) 

-0.02c 
(0.003) 

0.02c 
(0.008) 

0.25c 
(0.09) 

0.34 
(0.31) 

Location-X  -0.75c 
(0.01) 

 -0.05c 
(0.008) 

 -0.03 
(0.27) 

Location-Y  -0.26c 
(0.005) 

 0.01c 
(0.003) 

 -0.44a 
(0.26) 

Skewness 
Constant 1.42c 

(0.27) 
4.48c 
(0.81) 

0.84 
(1.24) 

2.37 
(5.37) 

-6.31c 
(0.98) 

-32.95 
(66.45) 

LCC -0.26c 
(0.03) 

-0.71c 
(0.03) 

-0.03 
(0.15) 

-0.17 
(0.30) 

1.14b 
(0.52) 

2.84 
(2.29) 

GDD -2.02c 
(0.20) 

-4.53c 
(0.31) 

-1.99b 
(0.92) 

-2.36a 
(1.41) 

4.71c 
(1.10) 

13.84 
(25.71) 

GDD34 0.33c 
(0.03) 

0.41c 
(0.03) 

0.41c 
(0.14) 

0.23 
(0.25) 

-0.71c 
(0.23) 

-1.64 
(1.85) 

Prec 1.13c 
(0.14) 

3.63c 
(0.28) 

1.93b 
(0.89) 

2.09 
(2.21) 

-8.95c 
(3.14) 

13.35 
(13.35) 

Location-X  -0.64c 
(0.31) 

 0.70 
(2.21) 

 -7.70 
(10.02) 

Location-Y  -1.00c 
(0.10) 

 -0.83 
(0.68) 

 2.73 
(10.19) 

Note: a, b and c denote significance at 0.10, 0.05, and 0.01 levels, respectively. 
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Table 4. GMM Estimation Results of Corn, Soybeans, and Wheat Yield Moments on Non-
irrigated and Irrigated Land (Standard errors are in the parentheses) 

 Corn Soybeans Wheat 
 I II I II I II 
Mean 
Constant 1.10c 

(0.002) 
0.64c 
(0.01) 

0.08c 
(0.0007) 

0.54c 
(0.003) 

0.13c 
(0.003) 

1.84c 
(0.006) 

LCC 0.18c 
(0.0008) 

0.21c 
(0.0009) 

0.04c 
(0.0003) 

0.06b 
(0.0003) 

0.19c 
(0.0005) 

0.13c 
(0.0005) 

GDD 0.03c 
(0.001) 

0.21c 
(0.003) 

0.07c 
(0.0004) 

-0.07c 
(0.001) 

-0.0004 
(0.001) 

-0.37c 
(0.003) 

GDD34 -0.16c 
(0.0006) 

-0.20c 
(0.0007) 

-0.05c 
(0.0002) 

-0.09c 
(0.0002) 

-0.03c 
(0.0002) 

-0.01c 
(0.0002) 

Prec 0.46c 
(0.002) 

0.51c 
(0.002) 

0.21c 
(0.0005) 

0.13c 
(0.0007) 

0.26c 
(0.001) 

-0.18c 
(0.002) 

Location-X  -0.14c 
(0.0008) 

 -0.10c 
(0.0003) 

 0.47c 
(0.0009) 

Location-Y  0.04c 
(0.002) 

 -0.16c 
(0.0007) 

 -0.16c 
(0.0006) 

Irrigation 0.46c 

(0.0006) 
0.44c 

(0.0008) 
0.17c

(0.0004) 
0.13c 

(0.0004) 
0.19c 

(0.001) 
0.14c

(0.001) 
Variance 
Constant -0.16c 

(0.0003) 
-0.11c 

(0.0004) 
0.03c 

(0.00004) 
-0.01c 

(0.0002) 
-0.01c 

(0.0001) 
0.08c 

(0.0003) 
LCC 0.01c 

(0.00006) 
0.02c 

(0.0001) 
0.004c 

(0.00001) 
0.002 

(0.00002) 
0.004c 

(0.00002) 
0.004c 

(0.00002) 
GDD 0.12c 

(0.0002) 
0.12c 

(0.0002) 
-0.01c 

(0.00001) 
0.004c 

(0.00009) 
-0.0009c 

(0.00007) 
-0.03c 

(0.0001) 
GDD34 0.05c 

(0.0002) 
0.003c 

(0.0001) 
0.005c 

(0.000001) 
0.005c 

(0.00001) 
0.002c 

(0.00001) 
0.002c 

(0.00001) 
Prec -0.02c 

(0.0001) 
-0.04c 

(0.0001) 
-0.002c 

(0.00003) 
0.001c 

(0.00005) 
0.03c 

(0.00006) 
0.02c 

(0.0002) 
Location-X  -0.005c 

(0.0001) 
 0.004c 

(0.00002) 
 -0.009c 

(0.00003) 
Location-Y  -0.04c 

(0.0001) 
 0.01c 

(0.00005) 
 -0.01c 

(0.00005) 
Irrigation -0.03c 

(0.0002) 
-0.04c 

(0.0002) 
0.0007c

(0.00006) 
0.003c

(0.00006) 
0.03c 

(0.0003) 
0.03c

(0.0003) 
Skewness 
Constant 1.81c 

(0.04) 
0.36c 
(0.13) 

-3.20c 
(0.04) 

1.63c 
(0.14) 

-3.55c 
(0.10) 

-2.07c 
(0.17) 

LCC -0.63c 
(0.01) 

-0.93c 
(0.02) 

-0.38c 
(0.02) 

-0.05c 
(0.02) 

-0.98c 
(0.01) 

-0.39c 
(0.01) 

GDD -0.64c 
(0.02) 

1.00c 
(0.05) 

1.54c 
(0.03) 

-0.59c 
(0.06) 

1.35c 
(0.05) 

-1.00c 
(0.06) 

GDD34 0.10c 
(0.005) 

-0.07c 
(0.008) 

0.02b 
(0.01) 

0.85c 
(0.01) 

0.11c 
(0.004) 

0.16c 
(0.004) 

Prec -0.72c 
(0.03) 

-2.58c 
(0.03) 

-0.21c 
(0.03) 

-0.98c 
(0.03) 

-0.86c 
(0.05) 

3.44c 
(0.07) 

Location-X  0.05c 
(0.02) 

 0.57c 
(0.01) 

 -2.44c 
(0.05) 

Location-Y  1.00c

(0.03) 
 -0.55c 

(0.03) 
 0.10c 

(0.01) 
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Irrigation -1.05c 
(0.01) 

-1.27c

(0.02) 
-0.59c

(0.03) 
-0.73c 
(0.02) 

0.05c 

(0.01) 
0.19c

(0.01) 

Note: a, b and c denote significance at 0.10, 0.05, and 0.01 levels, respectively. 

 

 
Table 5. Effects of Geographic Factors on Yield Skewness; ‘Y’ if as hypothesized and 

significant at 1% level, ‘N’ otherwise 

 Corn Soybeans Wheat 
 I II I II I II 
Table 2 
LCC Y Y Y Y Y Y 
GDD Y Y N Y N Y 
GDD34 Y Y Y Y Y Y 
Precipitation N Y Y Y Y N 
Table 3       
LCC Y Y N N N N 
GDD Y Y N N N N 
GDD34 Y Y Y N N N 
Table 4       
LCC Y Y Y Y Y Y 
GDD Y N N Y N Y 
GDD34 Y N N Y Y Y 
Precipitation Y Y Y Y Y N 
Irrigation Y Y Y Y N N 
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Figure 1. Effect of smoothing kernel location on relative curvature of smoothed 
production function. 
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Appendix A: Proof of Proposition 1 
 
It is known from van Zwet (1964) that an increasing and concave transformation of a random 

variable makes it more negatively skewed. We will use this observation to compare the 

distributions of 0y  and 1y . Let p  solve ( )pp F  , i.e., it is the pth quantile. As ( ; ) 0Q z    

it follows that the pth quantile for 0y  is given by 0 0( ; )p py Q z   so that inversion in the first 

argument provides 1
0 0( ; )p pQ y z . We can perform the same quantile inversion for 1

py   

1( ; )pQ z  so that 1 1
1 0 0 0( ; ) ( ; )p p pQ y z Q y z    and 1

1 0 0 1( ( ; ); )p py Q Q y z z . Because 

( ; ) 0Q z    ensures that yield quantiles follow that of  , we may drop quantile notation and 

just write the transformation of random variables as 1
1 0 0 1 0 0 1( ( ; ); ) ( ; , )y Q Q y z z J y z z    

We seek to identify conditions under which 0 0 1( ; , )J y z z  is concave in its first argument. 

Write 1
0 0( ; )Q y z  and 1( ; )u Q z   so that 0 1 0/ ( ; )( / )du dy Q z d dy    . Now 0/d dy   

0 01 / ( / ) 1 / ( ; )dy d Q z    and therefore  

(A.1) 1

0 0

( ; )
0.

( ; )

du Q z

dy Q z
 






 

In addition, 

(A.2) 

2

0 1 1 02 2
0 0 0 0

1 1 0
2

0

1
( ; ) ( ; ) ( ; ) ( ; )

( ) [ ( ; )]

( ; ) ln[ ( ; )] ln[ ( ; )]
.

[ ( ; )]

d u d d
Q z Q z Q z Q z

d y Q z dy dy

Q z d Q z d Q z

Q z d d

   


  



    


  
  

 
  

 

   
 

 

As the term outside the parentheses is strictly positive, the curvature of 0 0 1( ; , )J y z z  in 0y  is 

determined by the sign of the term in brackets, i.e., by the monotonicity of ln[ ( ; )] /d Q z d    

in z . The proposition follows from (A.1) and (A.2).  
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Appendix B: Derivation of the variance covariance matrix for the simulation studies 

Given the simulation setup in Eqn. (12), we have the three moments equations for county i  as  

(B-1) 

 

1
1 1

1 2
2 1

1 3
3 31

( 1)

( )

i

i

i

n

i i ijj

n

i i ijj

n

i i ij ij

m n

m n

m n g X
















 

  


 





 

Let  1 2 3( ) ( ) ( ) ( ) 'i i i im m m m     , the variance covariance matrix for ( )im   is 

11 12 13

12 22 23

13 23 33

( ( ))i

V V V

V m V V V

V V V

 
    
  

, where 

 
 

 
 

1
11

1 2 1 4
22

1 3 1 6 2
33 3

1 2 1 3 1
12 3

1 3 1 4
13 3

1 2 3 1 5
23 3

( ) ( ) 1

( ) ( ) ( )

cov( , 1) ( ) ( )

cov , ( ) ( )

cov , ( ) ( ) (

i

i ij i ij

i ij i ij i

i ij ij i ij i i

i ij ij i i ij

i ij ij i i ij i

V n

V n V n E

V n V n E g X

V n n E n g X

V n g X n E

V n g X n E E

 

 

  

  

   



 

 

  

 

 



  

  

   

  

      3 1 5
3) ( ) ( )j i ij in E g X 

 

The quantities ( )c
ijE  , {3, 4, 5}c , can be readily derived from the moment generating 

function 2 2( ) 2exp( / 2) ( )M t t t t      (  is the cumulative distribution function of 

standard normal) by taking the c th derivation and evaluating at 0t  , i.e., 

( )
0( ) ( ) / |c c

ij tE M t t    . 
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Appendix C: Simulation Results for 100 counties and 200 observations of each county 
 

Coefficient LMM (I) M-LMM (II) OLS (III) GMM (IV) IV/I IV/II IV/III 

MC relative biases ( 310 ) 

Mean- 0  -10.6082 -10.6082 -10.6082 -6.5096 0.6136 0.6136 0.6136 

1  0.7328 0.7328 0.7328 1.4521 1.9816 1.9816 1.9816 

2  -4.4400 -4.4400 -4.4400 -4.5129 1.0164 1.0164 1.0164 

Variance- 0  8.3610 8.3610 8.1697 -13.9225 -1.6652 -1.6652 -1.7042 

1  1.3901 1.3901 1.4507 -7.3202 -5.2659 -5.2659 -5.0461 

2  6.5200 6.5200 6.8661 -6.3594 -0.9754 -0.9754 -0.9262 

Skewness- 0  1302.2075 -38.5102 -19.4708 35.1772 0.027 -0.9134 -1.8067 

1  -530.5507 3.1587 3.9932 8.0105 -0.0151 2.536 2.0061 

2  -329.5575 -6.0307 -11.1404 -23.2649 0.0706 3.8578 2.0883 

MC variances ( 310 ) 

Mean- 0  0.5615 0.5615 0.5615 0.4205 0.7488 0.7488 0.7488 

1  0.0096 0.0096 0.0096 0.0080 0.8375 0.8375 0.8375 

2  0.1645 0.1645 0.1645 0.1323 0.8042 0.8042 0.8042 

Variance- 0  4.9340 4.9340 4.9579 1.5520 0.3146 0.3146 0.3130 

1  0.0892 0.0892 0.0897 0.0465 0.5208 0.5208 0.5179 

2  1.2670 1.2670 1.2728 0.5169 0.4080 0.4080 0.4061 

Skewness- 0  142.5465 3.0059 1.8747 2.1859 0.0153 0.7272 1.166 

1  2.4663 0.0331 0.0255 0.0316 0.0128 0.9559 1.2404 

2  26.1962 0.6299 0.4574 0.5386 0.0206 0.8550 1.1773 

MSE ( 310 ) 

Mean- 0  0.6735 0.6735 0.6735 0.4624 0.6866 0.6866 0.6866 

1  0.0101 0.0101 0.0101 0.0101 1.0013 1.0013 1.0013 

2  0.1842 0.1842 0.1841 0.1525 0.8287 0.8287 0.8287 
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Variance- 0  4.9989 4.9989 5.0197 1.7443 0.3489 0.3489 0.3475 

1  0.0910 0.0910 0.0917 0.1000 1.0984 1.0984 1.0903 

2  1.3083 1.3083 1.3186 0.5569 0.4256 0.4256 0.4223 

Skewness- 0  1838.1483 4.4859 2.2519 3.4212 0.0019 0.7627 1.5192 

1  283.9479 0.0430 0.0414 0.0957 0.0003 2.2260 2.3124 

2  134.7781 0.6657 0.5811 1.0793 0.0080 1.6214 1.8573 

 
 


