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Abstract 
  
This article examines the cost of reducing CO2 emissions in a sample of recently built dry-
grind corn ethanol plants. The analysis estimates a translog minimum value function that 
represents both the minimum cost and the minimum CO2 emissions for given levels of 
ethanol production. The results indicate that the average plant is able to reduce GHG 
emissions by 36 percent relative to the level under cost minimization, but production costs 
are 22 percent higher. The reallocations by which these emissions reductions are achieved 
are primarily the substitution of wet for dry distillers grains, with the corresponding 
reduction in the use of natural gas and electricity. To move from least cost to least 
emissions allocations, ethanol plants would on average produce 25 % more of wet 
byproduct and 47% less of dry byproduct. Comparing results across observations, the 
estimated shadow cost of emission abatement ranges from $86 to $190 per ton of CO2, 
with average value of $124 per ton. This implied shadow cost of abatement can be used as a 
bench mark for pollution trading and serves to assess the potential response to biofeul 
regulations.  
 
Key words: GHG abatement, shadow price of abatement, corn ethanol 
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1. Introduction  
 

A common approach to measuring environmental efficiency when desirable and 
undesirable outputs are produced jointly is to treat the undesirable output as another 
variable into the production model, either as another input or as a weakly disposable bad 
output1. Such analysis is frequently based on a primal representation of the technology 
using Input- and output-oriented distance functions. 

 
In this article we followed different route to measure the environmental efficiency of an 

industry based on a minimum value function estimated from data obtained from a sample 
of corn ethanol plants in the Midwest US.  CO2 emissions in ethanol plants are not directly 
measured, but are estimated from inputs used and outputs produced. Because CO2 
emissions are a linear function of outputs and inputs, the minimum value function for 
emissions has the same algebraic structure and parameters as the minimum value function 
for net cost, defined here as the cost of inputs minus the revenue from byproducts.  In the 
case of emissions, emissions coefficients for the inputs and outputs are substituted for the 
prices of outputs and inputs.  Given observations on firm behavior, it is possible to estimate 
the minimum cost function, which then also provides an estimate of the minimum GHG 
function. Our article exploits the relationship between the linearity of the materials balance 
equation and that of the minimum cost function to allow us to calculate the cost forgone to 
achieve the maximum decrease in GHG emissions. Empirically, we estimate the minimum 
value function with a translog specification, using plant-level data from a sample of recently 
constructed ethanol plants in the Midwest.  

  
The earliest study to incorporate undesirable outputs in efficiency measurement was 

Pittman (1983) who developed an adjusted Tornqvist productivity index in which 
environmental effects are treated as additional undesirable outputs whose disposability is 
costly.  Färe et al. (1989) used Pittman’s data to evaluate environmental performance of US 
fossil fuel-fired electric utilities using a nonparametric hyperbolic distance function. 
Extending this, Färe et al. (1993) used a parametric mathematical programming technique 
based on translog output distance function to calculate an enhanced hyperbolic efficiency 
measure. Several empirical applications and extensions followed these seminal works.  
Later a directional distance function was developed that treats desirable and undesirable 
outputs asymmetrically (Chambers, Chung, and Färe 1996; Chung, Färe, and Grosskopf 
1997; Färe et al. 2005; Ball et al. 2004; Cuesta, Lovell, and Zofio 2009).  These directional 
output or input distance functions were estimated either using deterministic (parametric or 
nonparametric) or stochastic (exclusively parametric) techniques, but they do not consider 

                                                           
1 Strong disposability implies that it is free of charge to dispose of unwanted inputs or 
outputs, weak disposability implies expensive disposal.  
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pollution abatement based on emission content of the inputs and outputs considered in the 
production process. 

 
One of the advantages of our modeling approach is allowing an industry to choose 

optimal combination inputs and byproducts that minimize bad output based on the 
materials flow coefficients of a particular input, instead of using market price information. 
In addition, this technique does not need an extra pollution variable in the production 
process. Our approach shares some methodological similarity with recent measures of 
environmental efficiency based on the material balance concept (Coelli, Lauwers, and Van 
Huylenbroeck 2007; Welch and Barnum 2010; Lauwers 2009; Sesmero, Perrin, and Fulginiti 
2010). However these studies were implemented with data envelopment analysis (DEA), a 
technique which is not able to accommodate measurement errors in input and output 
without bootstrapping. 

 
The objective of this article specifically is to examine the potential for corn ethanol 

plants to reduce GHG emissions by reallocation among inputs and byproducts, and the cost 
of such reductions.  The tradeoff between these two goals describes the opportunity cost of 
reducing CO2 emissions - two points on the supply curve for emissions reductions. The 
results of our model provide valuable information to the ethanol industry in its efforts to 
reduce emissions to comply with current and potential regulations. The 2007 US Energy 
Indecency and Security Act (EISA) required 20 to 60 percent life cycle GHG emissions 
reductions relative to gasoline for biofuels to qualify in meeting mandated levels of 
renewable fuels. The legislation requires a reduction of 20 percent for corn-ethanol, 50 
percent for other advanced biofuels and 60 percent for cellulosic ethanol. The low carbon 
fuel standard (LCFS) of California also requires a 10 percent reduction in the carbon content 
of California’s transportation fuels by 2020.  The above regulations require that the GHG 
from corn ethanol have to be assessed on a full life cycle basis including emissions from 
energy consumed at the ethanol plants, which we examine here.  

 
In the next section, we develop the theoretical and analytical techniques to examine the 

efficiency measure of the ethanol plant. The fundamental theory is based on the minimum 
value function for cost and GHG. In section 3, we present data and econometric estimation 
procedure. The empirical results of our application and implication of this article  is 
elucidated in section 4.  Summary and concluding remarks are then provided in section 5. 
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2. Theoretical Model 

 Net ethanol cost is defined here as the cost of three inputs minus the revenues from 
the two by products.  The minimum cost function allows us, using Shephard's lemma, to 
obtain the optimal level of inputs given quantities of ethanol produced (e), input prices 
facing the firm (W), byproduct prices facing the firm (P), and the level of fixed inputs (Z).  
The mimimum plant-level net ethanol cost function we therefore define as: 
 

}),,,(|{min),,,(
,

TZYXePYWXZPWeC
yx

N             (1)                            

where : e is ethanol output measured in gallons; X is a vector of inputs of corn in bushels, 
natural gas in MBTU, electricity in KWH; and  Y is a vector of ethanol byproducts, dry 
distillers grain (DDG) in tons  of dry matter and  modified wet distillers grain (WDG) in tons 
of dry matter.  W and P are vectors of strictly positive prices for factor inputs and byproduct 
respectively, Z is the quantity of other fixed inputs (in $).  W and P are exogenous to ethanol 
producers. T is the firm's production possibilities set and is assumed to be a nonempty, 
compact, and convex set. Under the assumptions made on T, ),,,( ZPWeC N  is assumed to be 

twice-continuously differentiable, homogenous of degree one in variable input and 
byproduct  prices and in fixed input quantities, concave  in prices, and convex in quantities 
(Diewert 1971; Diewert & Wales 1987).  

 
By applying Shepherds lemma, the n vector of constant output factor and byproduct 

demand functions are derived from the specified cost function by simply differentiating 
with respect to input prices and by product prices, respectively.  
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 ( 2)                                   

The above conditional factor and by product functions are homogenous of degree zero in 
factor and by product prices respectively.  
 

Given the way CO2 emissions are calculated by regulators, there is a linear relationship 
between emissions and observable input use and output. Specifically, CO2 emissions are 
linearly related to the quantity of ethanol and two byproducts produced.  We can therefore 
define the minimum achievable GHG emissions, for a given level of ethanol output, as   

 

}),,,(|min{),,,( TZYXebYaXZbaeGHGM                   (3) 
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Where a and b  are the vectors of GHG emission coefficients per unit of factor input X 
and by products Y, respectively.  It is obvious that this minimum function is the same as the 
cost minimum function in (1) above, but with GHG coefficients substituted for prices as 
arguments of the function. Estimation of the minimum cost function then provides an 
estimate of the minimum GHG function.   Again invoking Shephard's lemma, evaluating the 

derivatives of the MGHG  function at emissions coefficients yields GHG minimizing allocation 
of inputs and byproduct respectively: 

 

)),,(,( ZbaeX
a

GHG g
i
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M
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


 and )),,(,( ZbaeY

b

GHG g
i

i

M





                             (4) 

GHGM is achieved by allowing firm to choose optimum combination of inputs and 
byproduct sets that minimize GHG.  The emission coefficients a and b   reinforce the explicit 
link between production technology and environmental outcomes. This technical approach 
is perceived as a material-balance principle which is the tenet of the law on the 
conservation of matter/energy. This law is an essential biophysical condition stating that the 
flow of materials taken from the environment for economic activities generates a flow of 
materials from the economy back into the environment that is of equal weight. Theoretical 
and methodological approach of environmental efficiency measure based on the material-
balance principle is extensively discussed by (Coelli, Lauwers and Van Huylenbroeck 2007; 
Lauwers 2009; Welch and Barnum 2009). 

 
We illustrated graphically on Figure 1, the correspondence between the GHG and cost 

minimization outcome for unit isoquant for the case of two inputs.  The isoquant represents 
a gallon of ethanol produced, the X and Y-axis represent the BTU and KWH input of natural 
gas and electricity respectively.  Point C on the unit isoquant represents a cost minimizing 
point, the tangent line at that point represents the iso-cost line, and the line crossing point 
C represents the all combinations of inputs with GHG emissions equal to those at point C.  
Likewise we can identify the allocation that results in the plant’s minimum GHG emissions, 
point G, and the isocost line associated with that allocation.  
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Equations 5 and 6 represent the isocost and iso GHG lines that pass through point C.  Both 
are calculated using cost minimizing allocation of the three inputs and two byproducts. 
 

CCC PYWXZpweC ),,,(                                                                     (5)   

GHGC = aXC + bY C                                                                     (6) 

 Equation 7 and 8 are computed using the GHG minimizing optimal allocation of inputs and 
byproducts. These equations represent the iso cost and iso GHG line that pass through point 
G.   
 

   ggg PYWXC                                                          (7) 

   
ggg bYaXZbaeGHG ),,,(                                         (8)   

 
The iso-GHG line that passes through point C identifies a greater quantity than the 
corresponding line that pass through point G which indicates that producing at cost 
minimizing goal would lead plant to produce more GHG than a plant that produces at point 
G.   

The minimum function above can help us to identify Discrete Shadow Price (DSP) per 
gallon of ethanol and Discrete Abatement (DA) of GHG emissions reduction per gallon of 
ethanol respectively. 

 
 

Iso GHG line with cost minimizing objective 

Iso cost line with GHG minimizing objective 

Iso cost line with cost minimizing objective 
Iso GHG line with GHG minimizing objective 

G 

C 

 Elect, KWH 

 N.gas, MBTU 
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                                             (9) 
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                                              (10)                      

The ratio of equation 9 over 10 provides an estimate of the discrete cost per ton of GHG 
abatement or shadow price of emissions.  
 

Efficiency is measured at some particular allocation point.   Each plant has efficiency 
measurements, measured either at their actual allocation, at their minimum cost allocation, 
or at their minimum GHG allocation.  In this article we measured Cost Efficiency (CE) as the 
ratio of minimum cost over the cost when plants were producing at GHG minimizing point.  
Likewise Environmental Efficiency (EE) is measured as the ratio of minimum achievable CO2 
at GHG minimizing point over GHG at the cost minimizing point. If EE is >1 a particular firm 
is not environmentally efficient since the cost minimizing firm is not minimizing the level of 
emission in the production process. If   EE is <1 a particular plant is environmentally 
efficient.  

 
 The above arguments allow us to evaluate whether the particular plant is economically 

and environmentally efficient using our estimated cost and GHG function. A plant is 
environmentally efficient when it chooses the minimum CO2 per gallon of ethanol.  But the 
plant will not likely be cost efficient when it is environmentally efficient.   Obviously based 
on figure 1, moving along the isoquant from point C to G results in an increase in 
environmental efficiency, but decrease in cost efficiency.   
 

Empirically, we estimate the minimum value function with a translog specification for 3 
inputs and 2 byproducts represented in equation 11 using the translog cost (Christensen, 
Jorgenson and Lau 1971; 1973). 

 

RRRV o  5.0ln                               (11) 

The derivative of the translog cost with respect to input and byproduct prices yields the cost 
share of input and byproducts: 
 

 zeRzPwes
r

V
zepwr lnln)),,(,(|

ln

ln
),(  




                         (12)    

Where i=1…n and n=5, and  }ln,ln,ln,{ln zepwR   and },{ pwr  .  
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Where o  is an intercept,   1X7 first order coefficient parameters and   is 7X7 second 

order coefficient parameters. 
 

3. The data and estimation procedure  

The article uses data obtained from a survey of seven dry-grind ethanol plants from 
North-central Midwest states (Perrin, Fretes, and Sesmero 2009). The observations are 
quarterly based operating data during 2006 to 2007. The period surveyed began in the third 
quarter of 2006 and lasted until the fourth quarter of 2007 (not all plants were observed in 
all quarters) yielding 34 quarterly observations with a minimum of 3 and maximum of 7 
quarters of observation per plant. The seven plants produced an average  of 53.1 million 
gallons of denatured ethanol per year, with a range from 42.5 to 88.1 million gallons per 
year. For this article we calculated actual GHG emissions for each observation using 
emission coefficients obtained from the Biofuel Energy Systems Simulator (BESS; 
www.bess.unl.edu) model that was developed to compare life cycle GHG emissions from 
ethanol production relative to gasoline as a motor fuel, while accounting for the dynamic 
interactions of corn production, ethanol-plant operation, and byproduct feeding to livestock 
(Liska et al. 2009). Byproducts from ethanol plants are given a credit for replacing corn as 
feed in livestock production2.  

 

The econometric procedure of we followed is joint estimation of the cost function and 
the cost share equations using the Zellner's Iterative Seemingly Unrelated Regression 
(ITSUR) approach.   Homogeneity and symmetry restriction were maintained3. We stacked 
the GHG and cost function together while estimating econometrically. After symmetry and 
homegenity restrictions, with three inputs, two byproducts, one output and a fixed variable 
we have 36 parameters to be estimated.  In the short run, given the installed technologies, 
we assumed that there is no substitution possibility of corn for natural gas and electricity. 
We further assumed own price, output constant demand elasticity for corn is zero. These 
assumptions leave us to estimate a total of 33 parameters.   

                                                           
2
 All GHG emissions from the burning of fossil fuels used directly in crop production, grain 

transportation, biorefinery energy use, and byproduct transport are included in the BESS 
model. All upstream GHG emissions with production of fossil fuels, fertilizer inputs, and 
electricity used in the production life cycle are also included (Liska et.al 2009). 
3 Symmetry and equality restrictions imposed across equations to ensure uniqueness of 
estimated parameters which occur in more than one equation. Equality restriction implies 
any one parameter appearing in several equations has the same estimated value, even 
though the associated asymptotic t statistics may differ. 

http://www.bess.unl.edu/
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4. Empirical results and discussion 

Table 1 in the appendix displays the mean value of observed data per quarter used for 
our translog estimation.   Table 2 presents the parameter estimates of equation 11. These 
parameter estimates were used to compute the minimum achievable cost and GHG, 
optimal level of input and byproducts as well as   the shadow price for each plant.  The 
regularity property of the cost function4;monotonicity and curvature were maintained. 
Table 3 contains the level and percent change input and byproducts per gallon of ethanol 
under cost and GHG minimizing objective respectively. Whereas table 4 provides the change 
in the level of GHG as a result of input and byproduct adjustment made when a plant 
producing at GHG compared to cost minimizing point. The estimated minimum level of GHG 
and cost per gallon of ethanol at GHG and cost minimizing point is also reported in table 5.  
The shadow value of GHG and the cost and environmental efficiency measures are 
presented on table 6 through 8 respectively.  Table 9 shows the Allen partial price elasticity 
of inputs and byproducts evaluated at mean. 

 
At cost minimization point, the average optimal input quantities of natural gas, 

electricity and corn feed stock per gallon of ethanol were 0.05 BTU,  1.71 KWH and 0.29 
bushel respectively.  The average optimal DDG and WDG output levels were 4.9 and 1.8 lb 
per gallon of ethanol.  Whilst at GHG minimization point, the average optimum allocation 
was to produce 47% less of dry and 25% more of wet byproduct, with a reduction of natural 
gas and electricity use by 77% and 65 % respectively, albeit corn feedstock use rose 47%.  
Moving from cost to GHG minimizing point, the average fraction of dried byproduct (the 
ratio of DDG to the total byproduct produced) falls from 0.78 to 0.58 whilst the extra 
natural gas used to dry byproduct fall from 0.0513 to 0.018 MBTU/gal.  Looking at the other 
way around, Perrin, Fretes and Sesmero  (2009) estimated an additional 
0.00933MMBTU/gal natural gas to dry one ton of byproduct, dry matter basis, from 55% 
moisture (MWDGS) to 10% moisture (DDGS.)  It is eminent that ethanol-plant energy use 
and associated GHG emissions are affected by fraction of total byproduct dried.   

 
As shown on table 4, moving from cost minimization to GHG minimization, GHG from 

natural gas and electricity would fall nearly by 30 and 13 thousand tons of CO2 equivalent 
GHG emission respectively. The aggregate GHG offset allowance from byproducts falls by 
nearly 6 thousand tons of CO2 equivalent. However on aggregate the average plant cut 
overall emissions by nearly 25 thousand ton of CO2 equivalent when they were producing 
at GHG rather than cost minimizing objective.   

                                                           
4 All estimated shares were monotonic everywhere except eleven data points whereas the 
curvature properties satisfied at each data observation.  Concavity of the cost function is 
satisfied if the hessian matrix is negative semidefinite and  for strict quasi-concavity the nxn 
matrix of substitution elasticities must be negative semidefinite at each observation.   
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The average GHG per gallon of ethanol measured across all observations at cost 
minimizing allocations was 10.2lb whereas at GHG minimizing point was 6.7 lb.  This 
suggests that moving from cost to GHG minimizing goal, on average the plant potentially 
reduced 3.52 lb GHG per gallon of ethanol as portrayed in table 5.  The average costs at 
these two allocations from the sample were approximately $1.01/gal and $1.24/gal 
respectively. The results showed also considerable heterogeneity in the level of GHG as well 
as abatement cost across the plants.  

 
The average shadow prices per plant per quarter ranges from $86 to $190 per ton with 

average value of $124, table 6.  We also found the shadow price as small as $27 and $34 per 
ton for two plans in certain quarter which is an indication of the potential room to abate 
GHG emissions with least cost for given level of ethanol. The standard deviation within a 
plant showed the variation of the shadow price across quarters which off course as a result 
of different level of input demand and byproducts supply which intern a result of variation 
with respect to price of inputs and byproducts. Using the same data but with a non-
parametric approach,  Sesmero, Perrin , and Fulginiti (2010 )found shadow prices of 
reducing CO2 from profit maximizing to GHG minimizing levels was $1,726 per ton.   

 
Recently the price of the variable inputs and byproducts considered in this study has 

changed substantially compared to the surveyed year as shown on table 1, so does any 
given estimate of average shadow price can quickly changes.  To capture this price changes, 
we run sensitivity analysis to see how the average shadow price changes with updated 
prices by evaluating at different inputs and byproducts price using the parameters shown 
on table 2. When evaluating at the mean price of the 2006/07 survey  data, the mean 
shadow price was $119 per ton however when we updated  only the price of corn to the 
year 2012 value, the shadow price increased to $161 per ton, this price fall to $103 when 
updated  only the price of natural gas as depicted on table 8.  We should note here that the 
price of corn is doubled whereas the price of natural gas fall by nearly 20 percent compared 
to the price during the 2006/07 survey. When we further updated both the price of corn 
and natural gas at the same time, we found $161 per ton. The mean shadow prices reached 
to $173 per ton when we evaluated it after updated all input and byproduct prices. A note 
here that the emission coefficients of all inputs and byproducts has not changed from what 
it was at the surveyed year.  The shadow price of GHG basically depends on the ratio of 
price and emission coefficient of inputs and byproducts considered, so any changes on the 
price of inputs, byproducts and emission coefficients would lead to a change in the input 
demand and byproduct mix used which eventually determine the average shadow price. 

 
Measured across plants the average environmental efficiency (EE) score is 0.64, showing 

that on average ethanol plant would be able to produce their current ethanol output with 
an input bundle and byproduct combination that contains 36 % less of GHG.  To do so, on 
average the total cost of ethanol production would rise by 22 percent.  As shown on Table 
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7, to cut emissions, for example by nearly 30 percent,   some plants would raise their cost 
by 25% albeit for the same level of emission reduction some would raise the cost as low as 
13%.  Our results also indicated some plants could potentially cut their emission level by as 
much as 50%.   When we updated all prices of input and byproduct to the year 2012 value, 
on average plan could reduce emission by 57 percent while to do so cost of ethanol 
production would rise by 46 percent as depicted on table 8. 

 
Whether distillers grains are dried or sold wet is the key factor that determines the 

ability of a corn ethanol plant to reduce GHG emission since eliminating the need for drying 
of DDGS for corn-ethanol plants can have a significant positive effect on the level of natural 
gas use.   Using BESS model Bremer et.al (2011) showed that Midwest corn-ethanol-
livestock life cycle GHG reduction relative to gasoline  was 46 to 41% when DDGS was fed to 
feedlot cattle for 20 to 40% diet inclusion while feeding MDGS to feedlot cattle reduced 
GHG emissions from the corn-ethanol-cattle system by 53 to 50%. 

 
We presented the Allen partial price elasticities calculated from the translog cost 

function in table 9.  The elasticity estimates are calculated at the mean of the prices, and 
input and byproduct cost share. The diagonal or own price elasticities for all inputs and by 
products are negative which indicates curvature properties actually hold for the price 
estimation. Own price elasticities for natural gas and electricity were inelastic but the cross 
price elasticities of natural gas and electricity revealed complementarity as opposed to 
substitution between them. However, the two byproducts showed substitution in the 
production process which we anticipated given the nature of byproducts production 
process. 
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5. Conclusion and policy implication 

This study develops an analytical framework to explore the tradeoff between 
environmental efficiency and cost efficiency among corn ethanol plants.  The model and 
estimation techniques presented are applicable to a broad range of industries. The study 
also shows a departure from the conventional techniques that treat undesirable output as 
an extra pollution variable within a production model. 

 
Our result indicates that the average plant is able to reduce GHG emissions by 36 

percent relative to the level under cost minimization, but that production costs are 22 
percent higher than the minimum possible. The reallocations responsible for these 
emissions reductions are primarily the substitution of wet for dry distillers grains, with the 
corresponding reduction in the use of natural gas and electricity. Our findings revealed that 
on average ethanol plants would produce 25 % more of wet byproduct and 47% less of dry 
byproduct.  

 
Comparing results across observations, the estimated shadow price for emissions 

reduction ranges from $86 to $190 per ton of CO2 with average value of $124 per ton. The 
study also found that there was considerable heterogeneity among the corn ethanol plants 
in both the levels of emissions reduced and abatement cost per gallon of ethanol.  The 
variation of GHG reductions and abatement costs per gallon of ethanol across plant results 
from different relative prices and variations in plant configurations even though all plants 
were constructed at approximately the same time and share the same basic technology, 
whilst the heterogeneity reflects the presence of potential room for the plant improvement 
in reducing GHG. 

 
When abatement programs based on market incentives exist, as is proposed by 

California’s LCFS, the implied shadow price of GHG can be used as a bench mark for 
pollution trading and serve to assess the effectiveness of existing regulation. Imposing a 
new regulatory requirement over biofuel would likely cause a shift in ethanol markets that 
favors plants that mitigate GHG.  

 
With regard to corn ethanol plants our findings would provide valuable information to the 
industry in its efforts to comply with upcoming regulations, and to policy makers who must 
consider the CO2 abatement costs of the corn ethanol system. The analysis presented here 
shows the level GHG reduction and hence the shadow prices among ethanol plant are 
considerably dependent on the value emission coefficient of inputs and by products 
obtained from BESS.   
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I. Table of Results 
 

Table 1. Descriptive Statistics of Variables used in Estimation: all are per quarter basis5  

Variables Unit 

Mean 
price 

2006-2007 

aMean 
price 
2012 

Units of 
input & 

byproduct 

Mean quantity 
of input & 
byproduct 

Emission 
coefficient 

Corn $/Bu 3.014 6.13 Bu/gal 0.349 0.00668 

N.gas $/MBTU 7.292 5.96 MBTU/gal 0.026 0.06302 

Electricity $/KWH 0.044 0.061 KWH/gal 0.570 0.00074 

DDG $/ton 93.69 202.29 lb/gal 3.438 -0.4198 

WDG $/ton 60.24 83.12 lb/gal 2.071 -0.4079 

Other cost million $ 3.576  $/gal 0.262 - 

Ethanol $/gal 2.051  Mill gallon 13.64 0.032 
Total cost million $ 14.15  

   Total GHG tons 44,628  
   Note:a All prices are weighted average price of the seven studied states  for month of 

January and February. Natural gas and electricity prices represent average industrial price 
from US Energy Information Administrative Agency.  Corn price is obtained from 
USDA/NASS quick stat. The price of DDG is a 10% moisture basis whereas WDGS is a 
weighted average of 55-60% and 60-70 % moisture basis, and both data is from USDA 
Agricultural Marketing services. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
5 Among factor inputs  Corn, natural gas, and electricity accounts about 83 % of total 
operating variable cost , whereas  labor, denaturant, chemicals, and other processing costs 
takes the reminders.  Further detail about the data and survey methodology can be 
obtained from Perrin et.al (2007) and Sesemero (2010) respectively. 



17 

 

Table 2.Parameter Estimates of the Translog Function 

Parameter Value Parameter Value 

C  
0.160 

(0.092) DW  
0.063*** 
(0.017) 

N  
0.144 

(0.093) WW  
  -0.080*** 

(0.020) 

E  
   0.171*** 

(0.026) CY  
  0.276*** 

(0.030) 

D  
-0.337** 
(0.112) 

NY  0.012 
(0.025) 

W  
0.862*** 
(0.116) 

EY  0.020** 
(0.006) 

Y  
2.005* 
(0.834) 

DY  0.093* 
(0.037) 

Z  
0.126 

(0.707) 
WY    -0.402*** 

(0.042) 

CD  
-0.031** 
(0.010) CZ  

-0.015 
(0.034) 

CW  
0.031** 
(0.010) 

NZ  0.048 
(0.040) 

NN  
0.047*** 
(0.013) 

EZ  -0.005 
(0.011) 

NE  
- 0.031*** 

(0.005) 
DZ     0.144*** 

(0.032) 

ND  
-0.006 
(0.012) 

WZ    0.115** 
(0.035) 

NW  
-0.010 
(0.013) 

YY  -0.131 
(0.234) 

EE  
0.030 

(0.002) 
YZ  0.346 

(0.289) 

ED  
0.004 

(0.004) 
ZZ  -0.725** 

(0.279) 

EW  
-0.003 
(0.004) 

O     10.851*** 
(1.409) 

DD  
-0.030 
(0.022)   

Note: Legend: *, **  & ***  significant at  1, 5 and  10%   respectively. The standard error is 
in the bracket. Whereas C=Corn, N=Natural gas, E=Electricity, D=DDG, W=WDG, Z=other 
cost, Y=ethanol output  
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Table 3.Average Level of Input and Byproducts per gallon of Ethanol Under two Objectives 

Objective 
Corn, 
Bu/gal 

N. gas, 
MBTU/gal 

Electricity 
KWH/gal 

DDG, 
lb/gal 

WDG, 
lb/gal 

Ethanol, 
mill gal 

Cost minimizing 0.291 0.0518 1.708 4.89 1.76 13.64 

GHG minimizing 0.429 0.0183 0.391 2.59 2.20 13.64 

% change from cost to 
GHG minimization 47% -65% -77% -47% 25% -36% 

 

Table 4. Average GHG, ton of C02 equivalent, by inputs and byproduct under two 
objectives 

Objective Corn N.gas Electricity DDG WDG Total 

Cost minimizing 26,535 45,222 17,337 14,001 4,881 70,212 

GHG minimizing 39,102 15,667 3,973 7,416 6,112 45,215 

 
 
Table 5.GHG and Cost Reduction per gallon of Ethanol by Plant per quarter 

Ethanol 
plant, Mil 
gal/quarter 

Cost 
minimizing 

lb/gal 

GHG 
minimizing, 

lb/gal 

Difference 
from Cost to 
GHG,   lb/gal 

Cost 
minimizing 

$/gal 

GHG 
minimizing 

$/gal 

Difference 
from Cost to 
GHG, $/gal 

11.93 9.97 6.93 3.04 1.17 1.46 0.29 

11.97 9.92 6.69 3.23 1.08 1.25 0.17 

13.09 9.63 6.75 2.88 1.05 1.19 0.14 

13.14 11.49 6.80 4.69 1.10 1.44 0.34 

13.15 9.27 6.77 2.51 0.87 1.06 0.18 

13.34 10.04 6.65 3.39 0.82 1.01 0.19 

22.03 11.82 5.91 5.91 1.04 1.42 0.37 

Average 10.20 6.68 3.52 1.01 1.24 0.23 

The last column “Difference (Cost to GHG), $/gal” is in absolute value    

 
Table 6.Shadow Price ($/ton) CO2 equivalent by Plant per quarter 

Plant Ethanol,  
Mill gallon  

Mean, 
$/ton 

Std Dev, 
$/ton 

Min, 
$/ton 

Max, 
$/ton 

1 11.93 190 20 172 217 
2 11.97 86 49 27 128 
3 13.09 90 34 34 120 
4 13.14 146 21 125 175 
5 13.15 145 48 84 189 
6 13.34 106 32 66 152 

7 22.03 126 6 119 131 

Average 13.64 124 46 27 217 
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Table 7.Cost and Environmental Efficiency Measure per quarter 

Plant Ethanol, 
mil gal 

Cost 
efficiency 

Environmental 
efficiency 

1 11.93 1.25 0.69 
2 11.97 1.14 0.68 
3 13.09 1.13 0.70 
4 13.14 1.31 0.59 
5 13.15 1.22 0.73 
6 13.34 1.22 0.66 

7 22.03 1.36 0.50 

Average 13.64 1.22 0.64 
 

 Table 8.Sensitivity of average GHG shadow price to updated (2012) prices 

  

2006-07 
survey 
prices 

only corn 
price 
updated 

only N.gas 
price 
updated 

Corn &N.gas 
price 
updated 

all 
prices 
updated 

Shadow price, $/ton 119 161 103 167 173 
Environmental 
efficiency 0.66 0.45 0.60 0.41 0.43 

Cost efficiency 1.20 1.35 1.23 1.45 1.46 
 

Table 9.Allen Partial Price Elasticity Evaluated at Mean Prices and Shares for the Translog 
Net Cost Function 

 
Price of 

Quantity of Corn N.gas Electricity DDG WDG 

Corn 
   

-0.258 -0.016 
N.gas 

 
-0.507 -0.017 -0.237 -0.081 

Electricity 
 

-0.089 -0.503 -0.157 -0.093 
DDG 0.703 0.337 0.090 -1.358 0.229 

WDG 1.425 0.170 0.017 0.955 -2.567 
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Appendix  

 
I.The price elasticity of demand for factors of production: 
 

1.Own price elasticities of input are calculated as 
i

iiii

ii
S

SS 


2
   

2.Cross price elasticities among inputs 
i

jiij

ij
S

SS



  

3.Cross price elasticities between inputs and by products 
x

i

ijy

jij
S

S


 

 
 
II. The price elasticity of demand for by products: 
 

2.1 Own price elasticities between by product 1


i

ii
iii

S
S




 

2.2 Cross price elasticities between by products  
i

ij

jij
S

S


 

 

2.3 Cross price elasticities between by products and input  
y

i

ijx

jij
S

S


 

 
  represents the second order parameters  from the translog estimation. iS  represent  the 

mean predicted share of inputs and byproducts. x

jS  and y

jS  used to differentiate the share 

of input from  byproduct respectively while calculating  cross price elasticity . 

 


