

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

The Impact of Climate Variability on the Production Efficiency and Incomes of Kansas Farms

Amin W. Mugera¹ and Yacob A. Zereyesus²

¹Contact Author, Institute of Agriculture & School of Agriculture and Resource Economics (M089), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009.

Phone: 61-8-6488-3427, Fax: 61-8-6488-1098, Email: amin.mugera@uwa.edu.au

²Department of Agricultural Economics, 342 Waters Hall, Kansas State University, Manhattan, Kansas 66506.

Poster prepared for presentation at the Agricultural & Applied Economics Association's 2012 AAEA Annual Meeting, Seattle, Washington, August 12-14, 2012

Copyright 2010 by Amin W. Mugera and Yacob A. Zereyesus. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Amin W. Mugera¹ and Yacob A. Zereyesus²

¹University of Western Australia, Crawley, Western Australia; ²Kansas State University, Manhattan, Kansas

Introduction:

Agriculture in the United States is highly dependent on climate. Climate change and variability are significant forces that influence farm operations and management decisions, and ultimately rural livelihoods. Consequently, there is a need for increased understanding of the economic impact of climate change and climate variability at the farm sector level.

Most economic analyses of climate change impacts and mitigation have focused on aggregate costs and benefits (Hertel, 2010). Empirical analyses of the impact of climate change and climate variability on the production efficiency and incomes at the farm level are still rare.

Objective:

The purpose of this study is:

- To investigate the impact of climate variability on the production efficiency of farms in Kansas. The effects of temperature and precipitation are modeled under different stochastic production frontier specifications.
- To investigate the impact of climate variability on total farm income, crop income and livestock income using a fixed effects panel regression model.

Methods

1. Theoretical Stochastic Production Frontier Model

$$y_{it} = f(X_{it}, t; \beta) \exp\{v_{it}\} \exp\{-u_{it}\}$$

$$u_{it} = \alpha + \delta Z_{it} + \varepsilon_{it}$$

Note: Our approach assume that climate variability affects the technical efficiency of farms, and therefore, farm incomes. Farmers are able to adapt in response to change in climate variability by, for example, altering planting dates, changing crop mix or fertilizer use. Technical efficiency and farm income also vary by farm size and specialization.

2. Empirical Stochastic Production Frontier Model

$$\ln y = \ln f(x, \beta) = \beta_0 + \sum_{i=1}^n \beta_i \ln x_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \beta_{ij} \ln x_i \ln x_j, \text{ with } \beta_{ij} = \beta_j$$

$$u_{it} = \alpha + \beta_i^T x_{it} + \theta_i^T f_i(w_{it}) + \varepsilon_{it}$$

Note: The dependent variable is value of farm products, X_i are inputs (capital, labor, purchased inputs). Time and precipitation also enters the model multiplicatively. The inefficiency model includes climate variables (W_{it}) and variables that determine technical efficiency (X_{it}).

3. Fixed Effect Model

$$y_{it} = \alpha_i + \gamma_i + X_{it}^T \beta + \sum_i \theta_i f_i(w_{it}) + u_{it}$$

Note: The dependent variable is farm revenue, α_i is the farm full effects, γ_i is time effects, X_{it} is a vector of observed determinants of farm income that are time varying, W_{it} are annual climate variables that vary by season and u_{it} is the error

Data Sources

- Output and inputs: 1 output (value of farm production) and 3 inputs (capital, labour and purchased inputs) for 583 farms for the period 1993 to 2005. All variables are measured in real dollar values with year 2005 as the base year. This data comes from the Kansas Farm Management Association database.
- Climate variables: annual temperature and precipitation for 4 seasons (Summer, Autumn, Winter and Spring). This data is obtained from the National Oceanic and Atmospheric Administration (NOAA) website.

Empirical Results: Stochastic Frontier Model

Table 1. Estimated Stochastic Frontier Models

	Error Components Frontier	Efficiency Effects Frontier		
	Model 1	Model 2	Model 3	Model 4
a_{-C}		-1.285	-4.985***	-6.429***
a_{-K}	0.619***	0.750***	0.573***	0.556***
a_{-L}	-0.030	-0.105	0.041	0.064
a_{-P}	0.788***	0.716***	0.852***	0.851***
a_{-R}	-0.018	0.213***	0.325***	0.319***
a_{-T}		0.039	0.029	0.030
b_{-K_K}	0.127***	0.120***	0.092***	0.096***
b_{-K_L}	0.019	0.023	0.044	0.044
b_{-K_P}	-0.141***	-0.142***	-0.106***	-0.109***
b_{-K_R}	-0.006**	-0.002	0.000	0.000
b_{-K_T}		-0.007***	-0.007***	-0.007***
b_{-L_L}	-0.026	-0.030	-0.027	-0.026
b_{-L_P}	-0.005	-0.004	-0.037*	-0.039*
b_{-L_R}	0.002	0.000	0.001	0.001
b_{-L_T}		0.003	0.000	0.000
b_{-P_P}	0.114***	0.116***	0.077***	0.081***
b_{-P_R}	0.006***	0.002	0.000	0.000
b_{-P_T}		0.007***	0.011***	0.010***
b_{-R_R}	0.003***	-0.007***	-0.010***	-0.010***
b_{-R_T}		-0.003***	-0.004***	-0.004***
b_{-T_T}		0.006***	0.006***	0.007***
Z_{-1_win}			0.552*	-0.504
Z_{-1_sp}			0.949*	0.883
Z_{-1_sum}			-1.302**	0.739
Z_{-1_fall}			0.493**	-0.103
Z_{-p_win}			5.021*	1.104
Z_{-p_sp}			4.260*	-0.259
Z_{-p_sum}			-11.106**	-0.566
Z_{-p_fall}			3.871**	0.476
Z_{-p_win}			-0.166*	-0.545***
Z_{-p_sp}			-0.080*	-0.043*
Z_{-p_sum}			0.148**	0.065*
Z_{-p_fall}			-0.056**	-0.050*
$Z_{-t_p_sum}$				0.047*
$Z_{-t_p_fall}$				-0.003
Z_{-t2_win}				-0.017*
Z_{-t2_sp}				-0.001
Z_{-t2_sum}				2.858*
Z_{-t2_fall}				0.081*
Z_{-p2_win}				-0.208
Z_{-p2_sp}				0.125*
Z_{-p2_sum}				0.390
Z_{-p2_fall}				0.419
$signSq$	0.101***	0.099***	0.220***	0.242***
$signna$	0.547***	0.562***	0.846***	0.861***

Note: K is capital, L is labor, P is purchased inputs, R is mean precipitation T is time.

Dependent variable is value of farm products from crop and livestock

Climate variability variables are temperature (t) and precipitation (p) for Winter (win), Summer (sum), Spring (sp) and Fall (fall).

Model 1 and 2 are Error Component Models; Model 2 differs from Model 1 by inclusion of precipitation as an input.

Model 3 and 4 are Efficiency Effects Models. Model 4 differs from 3 by inclusion of quadratic terms of weather variables.

Likelihood ratio test rejects Model 1 for Model 2 and Model 4 for Model 3.

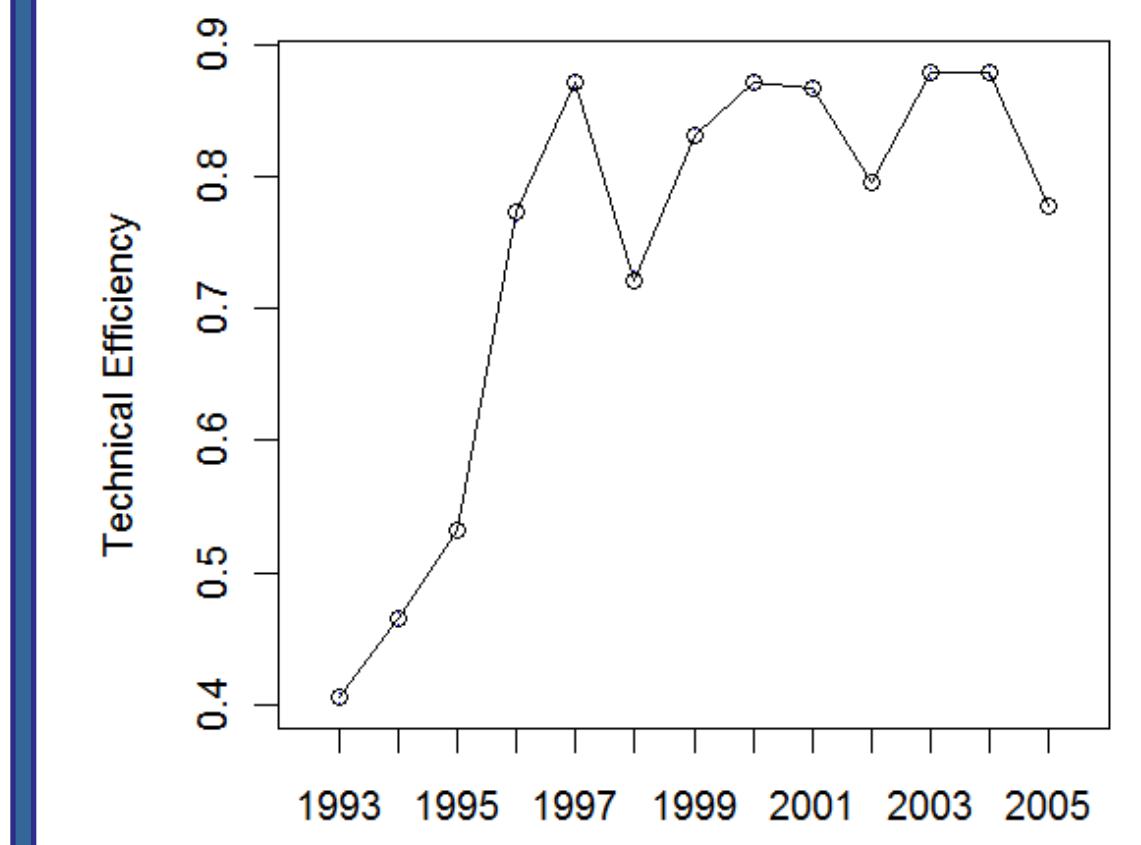
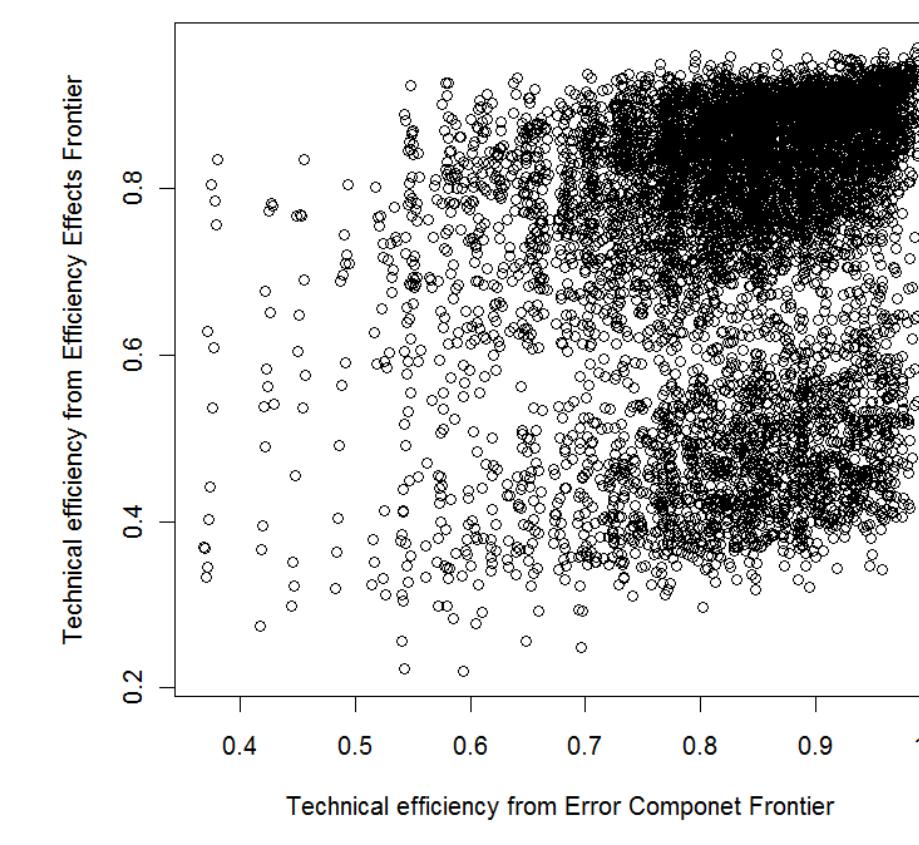



Figure 1. Technical Efficiency (Model 3)

Note: The unfilled circles represent technical efficiencies from the two models that do not match.

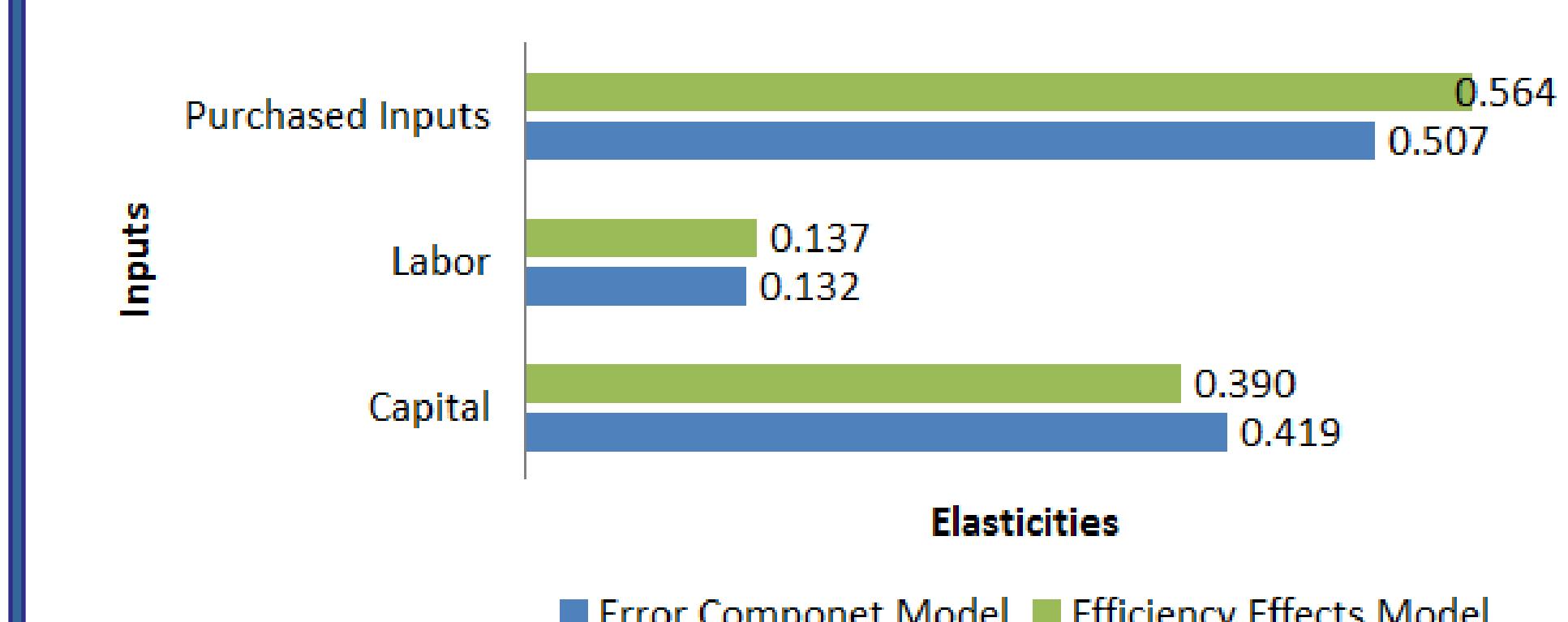


Figure 3. Partial input elasticities from the Efficiency Effects and Error Component Frontiers (Model 2 and 3)

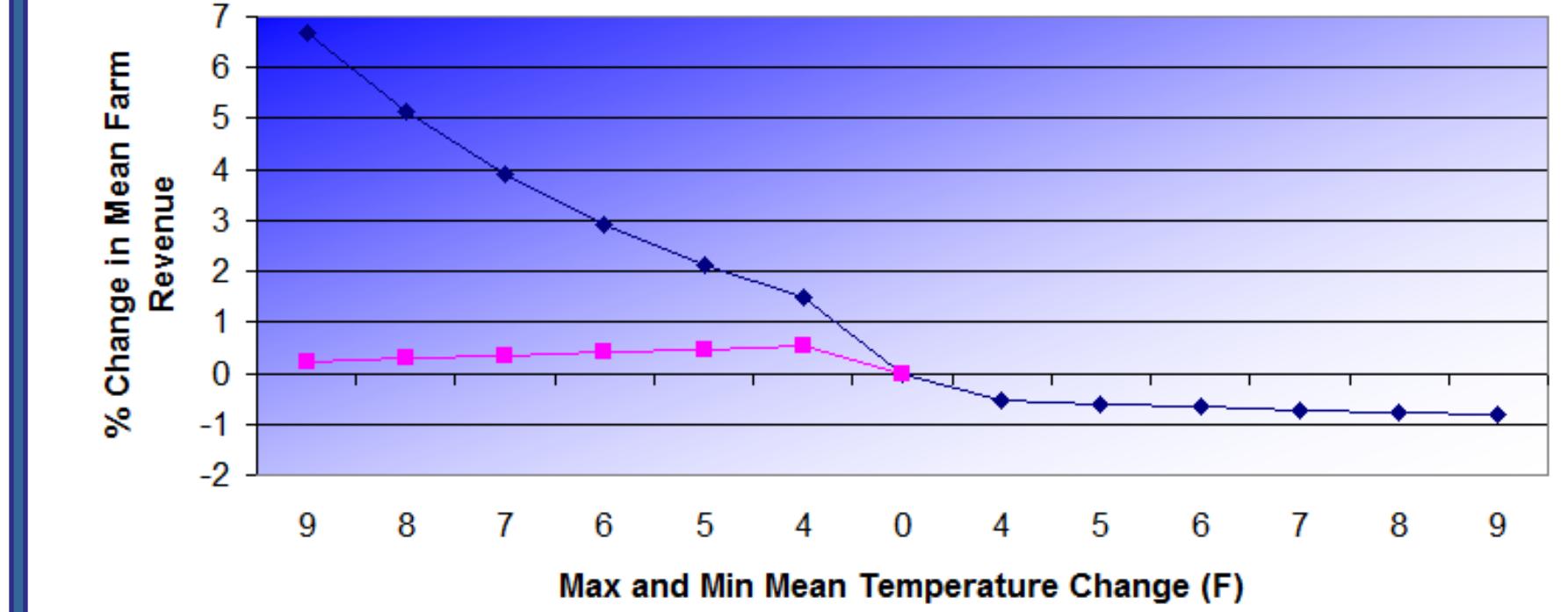


Figure 4. Change in farm revenue (% from mean) of mixed enterprises due to changes in maximum and minimum mean temperatures

Note: Temperature changes based on 30 years predictions of the Canadian and Hardely Climate Change models.

The red line shows the combined effects of increase in both maximum and minimum mean temperatures from the base scenario

Summary & Conclusion:

Climate variability significantly affects mean output elasticities with respect to inputs, returns to scale, and technical efficiencies. Purchased inputs are more sensitive to climate variability than capital and labor.

Based on 30 years climate projections from the Canadian and Hardely climate change models, farm incomes will increase with a modest increase in mean maximum temperatures and decrease with a modest increase in mean minimum temperatures, *ceteris paribus*. The combined effects is a modest decline in average farm incomes within a range of 0.2 to 0.5 percent.

Overall impact of temperature variability on farm incomes will be quite modest in the medium term.

References:

- Antle, J. M., and Capalbo, S.M. 2010. "Adaptation of Agriculture and Food Systems to Climate Change: An Economic and Policy Perspective." *Applied Economic Perspectives and Policy* 32: 386-416.
- Déschenes, Olivier and Michael Greenstone (2007). "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather". *American Economic Review*, 97(1): 354-85.
- Hertel, T.W., and Rosch, S. D. 2010. "Climate Change, Agriculture, and Poverty." *Applied Economic Perspectives and Policy* , 355-385.
- Mendelsohn, R., Nordhaus, W.D., and Shaw D. 1994. "The impact of global warming on agriculture: a Ricardian analysis," *American Economic Review* 84 : 753-761.