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Abstract

We propose a flexible nonparametric density estimator for panel

data. One possible areas of application is estimation of crop yield dis-

tributions whose data tend to be short panels from many geographical

units. Taking into account the panel structure of the data can likely

improve the efficiency of the estimation when the crop distributions

share some common futures over time and cross-sectionally. We apply

this method to estimate annual average crop yields of 99 Iowa counties.

The results demonstrate the usefulness of the proposed method to es-

timate simultaneously densities from a large number of cross-sectional

units.

1 Introduction

Distributions of crop yield are of fundamental importance to farmers, pol-

icy makers and agricultural economists owing to the central role they play

in the crop insurance markets and commodity prices. There exists a large

body of literature on crop yields, falling into two broad categories: paramet-

ric methods and nonparametric methods. The former postulates parametric
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families for crop yield distributions. Common choices include, among others,

the normal, log-normal, gamma, and beta families. Parametric estimations

are asymptotically efficient when they are correctly specified, but run the

risk of substantial biases under incorrect distributional assumptions. Free

from rigid distributional assumptions, nonparametric methods allow flexible

functional forms guided by data driven principles. The kernel, series and

spline methods are commonly employed. Although consistent, nonpara-

metric methods are generally less efficient than parametric methods, and

therefore call for larger sample sizes. Successful implementation of nonpara-

metric estimation depends crucially on the choice of smoothing parameters,

which balances the goodness-of-fit and simplicity of modeling, trading off

between bias and variation.

This study proposes a novel nonparametric estimator for crop yield dis-

tributions. Recognizing the similarity of crop distributions across regions

and the relatively short length of individual time series, we opt to model

county level crop yield distributions simultaneously using a panel data ap-

proach. A main contribution of this study is to propose a nonparametric

density estimator that handles a large number of densities simultaneously.

2 Literature

There is a large literature on the estimation of crop yield distributions. For

recent work on this important topic, see, e.g., Claassen and Just (2011),

Koundouri and Kourogenis (2011), Woodard and Sherrick (2011), and ref-

erences therein. The statistical methods employed in these studies can be

categorized into two general groups: parametric methods and nonparametric

methods (for simplicity, we view semiparametric methods as nonparametric

in this discussion owing to that they share the common properties of infinite

number of nuisance parameters asymptotically).

Parametric methods assume known functional forms (up to a finite num-

ber of unknown parameters) for crop yield distributions. The main benefits

of parametric approach includes the simplicity of estimation and inference,

and asymptotic efficiency when the parametric distributional assumptions
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are correct. Popular parametric distributions entertained in the literature

include the normal, log-normal, Beta, Gamma,and their generalizations,

among others. In the absence of theoretical guidance, choice of parametric

distributions is oftentimes based on convenience and other practical consid-

erations. Consequently, assumed functional forms do not necessarily agree

with unknown crop yield distributions and estimation results can be severely

biased.

Nonparametric methods offer a flexible alternative. Instead of prescrib-

ing a specific distribution, nonparametric estimations let data determine a

proper functional form and use data-driven methods to control the balance

between fidelity to data and complexity of the model. Common methods

of nonparametric distribution/density estimation include the kernel density

estimation and series density estimation. The former is a ‘local’ average es-

timation while the latter is a ‘global’ one, using a basis function expansion

to approximate an unknown distribution. Another possibility is the local

maximum likelihood estimator, which combines the parametric maximum

likelihood estimation and kernel density estimation. Although flexible, non-

parametric estimations are generally less efficient than parametric methods

(provided they are correctly specified) and thus require larger sample sizes.

One advantage of optimal series density estimator over kernel based

methods is its automatic adaptiveness to the unknown smoothness of the

underlying densities. This family of estimator suffers, however, the draw-

back of likely negative estimates. One remedy to this drawback is the the

Exponential Series Estimator (ESE), which approximates the logarithm of

an unknown density with a series estimator. Transforming the approxima-

tion back to its original scale results in a density estimator. Unlike the series

estimator, the series estimator is strictly positive.

Most of existing nonparametric density estimators assume independently

and identically distributed data. There is a small statistical literature on

density estimation of inter-temporally dependent data. In this paper, we

propose a novel nonparametric density estimator that combines the strength

of exponential series estimator and the penalized spline method. The main

contribution of this approach is that it provides a natural framework to
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handle simultaneously data from multiple distributions. This is particularly

useful for the estimation of crop yield distributions, whose data typically

consist of short panels of a large number of geographic units.

3 Nonparametric Panel Density Estimations

In this section, we present a nonparametric density estimation for panel

data.

3.1 The estimator

To fix idea, consider for now one single random variable x defined on a

bounded support X . Let gj , j = 1, ..., J , be a series of real-valued linearly

independent functions defined on X . The Exponential Series Estimator

(ESE) takes the form f(x) = exp (c0 + c1g1(x) + · · ·+ cJgJ(x)), where c0 is

a constant that ensures f integrates to unity. This estimator has an appeal-

ing information theoretic interpretation and can be viewed as a maximum

entropy density estimation subject to known moment conditions (Jaynes,

1957). Allowing the number of moment conditions (corresponding to the

set of basis functions) to increase with sample size at a proper rate renders

this density estimator a nonparametric one. Barron and Sheu (1991) estab-

lishes the large sample properties of this estimator, considering the power

series, trigonometric and spline basis functions.

In this study, we adopt the spline basis functions because of their flexi-

bility and numerical stability (compared to global power series). Splines are

essentially piecewise polynomials constructed to have continuous derivatives

up to certain order. For instance, an sth-degree spline parameterization of

the ESE is given by

f(x) = exp(

s∑
j=0

αjx
j +

K∑
j=1

βj(x− zj)s+), (1)
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with

α0 = log

∫
X

exp(−
s∑
j=1

αjx
j −

K∑
j=1

βj(x− zj)s+)dx,

where (x)+ = max(0, x), and min(X ) ≤ z1 < · · · < zK ≤ max(X ) are spline

knots. The global future of the density is shaped by the global polynomials in

the exponent, while the splines terms modify the polynomials curve locally

and smoothly. Given the order of the spline, the large is the number of

knots (i.e., local polynomials), the more flexible the density is. Usual choice

of s is 1,2, or 3, corresponding to the liner, quadratic and cubic splines.

Thanks to the lower order of global polynomials, these splines do not suffer

from oscillations typically associated with higher order polynomials. For a

systematic treatment of spline estimations, see, e.g., Ruppert, et al. (2003).

Like the kernel density estimation, the ESE depends crucially on the

degree of smoothing. For spline-based estimation, it is known that the

smoothing depends on the degree of polynomial, the number and locations

of knots. Conventionally, there exists two approaches to conduct spline es-

timation. The smoothing spline approach uses the same number of knots

as the sample size, and uses a penalty to shrink spline coefficients towards

zero. In contrast, the regression spline approach is economic in terms of

knot selection; usually a small number of knots are selected and their co-

efficients are not penalized. These two methods have their own merits and

limitations. The smoothing spline estimation can be computationally ex-

pensive, especially when sample size is large. As for the regression spline,

the selection of a ‘significant’ set of spline functions from a large candidate

set can be rather difficult, especially in multivariate case.

The penalized spline estimation provides a third alternative that com-

bines the strength of the smoothing spline and regression spline. Like the

smoothing spline, this approach entails penalizing spline coefficients. On

the other hand, the number of knots is smaller than the sample size but

usually larger than that selected by the regression spline estimation. Rup-

pert et al. (2003) demonstrate some theoretical and practical advantages of

this approach. In particular, they show that with a modestly large number

of splines, the degree of smoothing is largely controlled by the smoothing
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parameter and little affected by the degree of splines or the number and loca-

tions of the knots. Consequently, model selection is reduced to the selection

of smoothing parameters, simplifying the process considerably.

SupposeX1, . . . , Xn is an iid sample from an unknown distribution whose

density f we are to estimate. Given the spline basis function in (1), we

denote the log-likelihood of the ith observation by li(θ), where θ = (α, β)

resides in a compact parameter space Θ. Our density estimation is given by

the following optimization problem:

max
θ∈Θ

n∑
i=1

li(θ)− λθTWθ,

where W is a semi-positive definite weight matrix, and the smoothing pa-

rameter λ control the overall penalty on model complicity. This objective

function strives for a balance between the goodness-of-fit and simplicity.

Since the objective function is strictly convex in θ, there exists an unique

solution to this optimization problem.

In practice, one has to specify the smoothing parameter. A commonly

used method is the cross-validation, which can be computationally expensive

especially for nonlinear models as is in our case. Alternatively, one can

use a quasi-Bayesian approach, treating spline coefficients as a Gaussian

process. This approach has an appealing mixed effect model interpretation,

in which the spline coefficients are models as conditional means of random

effects. See Gu and Qiu (2003) for the selection of smoothing parameters in

nonlinear spline estimations. Wand (2002) presents a mixed effects model

interpretation of penalized spline estimations. We adopt this approach in

this study.

3.2 Extension to panel data

In this sequence, we present an extension to the spline ESE method for panel

data. Let fu be the density of xu, u = 1, . . . , N . In order to accommodate

simultaneous estimation of multiple densities, we propose a random effect

7



estimator. Our random effect estimator takes the form

fu(x) = exp(

s∑
j=0

(αj + aj,u)xj +

K∑
j=1

(βj + bj,u)(x− zj)s+)

= f(x) exp(
s∑
j=0

aj,ux
j +

K∑
j=1

bj,u(x− zj)s+), (2)

where for identification, we assume
∑N

u=1 aj,u = 0 and
∑N

u=1 bj,u = 0 for

each j. Thus all densities share a common baseline f as given in (1), while

deviation from the baseline density is captured by a multiplicative ‘individ-

ual effect’.

As is discussed above, we use the mixed effects model approach to select

the smoothing parameter. This approach entails the following assumptions:

αj,u ∼ N(0, σ2
a), βj ∼ N(0, σ2

b ), βj,u ∼ N(0, σ2
c,u), (3)

for j = 1, . . . , J and u = 1, . . . , N . We stress that although these assump-

tions appear to be similar, they reflect different kind of considerations. The

first assumption concerns about the standard random effects of the global

polynomial coefficients, which are not penalized in the spline estimation.

The second assumption concerns about the common spline coefficients across

all units. They are modeled as a Gaussian process whose variance is con-

trolled by the smoothing parameter. The third coefficient captures deviation

of individual spline coefficients from the common one. Note that these as-

sumptions can be modified to accommodate alternative specifications. For

instance, we can set σ2
c,1 = · · · = σ2

c,N such that individual deviations in the

spline coefficients share a common variance, which simplifies the computa-

tion considerably.
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4 Simultaneous Estimation of Crop Yield Distri-

butions

In this section, we apply the proposed methods to estimating a large number

of crop yield distributions simultaneously. This application is mainly illus-

trative. We look at the county level average corn yields of Iowa, the most

important corn production state. Our data cover a sample period from 1926

through 2010 and include 99 counties in Iowa.

Figure 1 plots the mean and median annual crop yields across all counties

in Iowa. One can see that these two series track each other closely. There is

a clearly increasing trend during this period. To account for the time trend

and heterogeneity across counties, we estimate a simple model with a linear

time trend and a set of county dummies. For the rest of this section, our

estimations are based on the residuals from this regression.1

Figure 2 plots the histogram of the crop yields with the normal distri-

bution (of the same mean and variance) super-imposed. The distribution of

crop yields across all counties deviates from the normal distribution consid-

erably; the bulk of the distribution is more concentrated than the normal

and right-skewed with an extended left tail. This overall shape is commonly

observed in the crop yield literature. We also examine the distributions at

the county level. As one can image, deviations from the normal distribution

are more pronounced at the county level for many counties. To save space,

the results are not reported.

We next proceed to estimate the county level distributions simultane-

ously using model (2). We set s = 2 such that our estimator nests the

normal distribution as a special case (it is equivalent to the normal distri-

bution when all spline coefficients are zero; this can be achieved by setting

the smoothing parameter to infinity). We use 10 spline basis functions, i.e.,

K = 10. We experimented with larger number of knots; the final results are

1In the data pre-processing stage, we experimented with more complicated meth-
ods that account for inter-temporal correlation, spatial correlation and heteroskedasticity
across counties and over time. We note that these alternatives do not lead to significantly
different final density estimates based on the residuals. We therefore opt to use the simple
linear model in the first stage.
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Figure 1: Historical annual crop yields of Iowa (solid: mean; dash: median)

almost identical to those from K = 10. Finally the smoothing parameter is

selected according to the mixed effects model approach discussed above. Al-

though our estimator has an analytical form, its coefficients cannot be solved

analytically because of its nonlinearity. We use a Gauss-Jordan nonlinear

optimization algorithm to solve for the problem.

We consider three estimators in our experiment. The first model is

the ‘pooled’ model which ignores the panel structure of the data. This

is obtained by setting σ2
a = 0 and σ2

c,j = 0 for u = 1, . . . , N . The second

model is the most general one, in which we allow functional deviations for

each county from a common baseline. This corresponds to the smoothing

assumption given in (3). Lastly we consider an intermediate case where all

individual deviations share a common variance such that σ2
j,1 = · · · = σ2

j,N .

We denote these models by Model One, Two and Three respectively.

Figure 3 plots the pooled estimate, which tracks the histogram in Figure

2 closely. Figure 4 reports the panel estimate which allows individual curves
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Figure 2: Histogram of crop yields with normal distribution super-imposed.

deviate from a common baseline. We observe significant variations across

the counties (after detrending and demeaning in the first stage estimation).

Lastly, Figure 5 reports the ‘homogeneous’ panel estimates, which assumes

a common variance of spline coefficients across counties. It is seen that the

variations across counties are subdued, but still quite considerable.

We hope the above examples illustrate the usefulness of the proposed

method. We note that model (2) is flexible enough to accommodate other

modifications or extensions. For instance, we can further impose restrictions

on the structure of covariance among the units in our analysis to improve ef-

ficiency. We can use Bayesian method or Monte Carlo method for inference;

the later is supposed to be more accurate, but at the expense of computation

time. Since the estimations are conducted within the general framework of

maximum likelihood estimation, one can use the likelihood ratio ratio for

specification testing. Alternatively, one can use the information criterion,

such as the AIC and BIC, for model selection.
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Figure 3: Estimated density: Model One (pooled estimation)

5 Concluding remarks

In this study, we propose a flexible nonparametric density estimator for

panel data. We apply this method to estimate annual average crop yields

of Iowa counties. The reported results demonstrate the usefulness of the

proposed method to estimate simultaneously densities from a large number

of cross-sectional units. One possible areas of application is estimation of

crop yield distributions whose data tend to be short panels from many ge-

ographical units. Taking into account the panel structure of the data can

likely improve the efficiency of the estimation when the crop distributions

share some common futures over time and cross-sectionally.
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Figure 4: Estimated density: Model Two (panel model)
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