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Hardaker, Pandey and Patten: Farm Planning under Uncertainty

Reviews
Farm Planning under Uncertainty: A Review of
Alternative Programming Models

J Brian Hardaker, Sushil Pandey and Louise H Patten*

The compiexity of modelling risk in farming systems is
explained and the artistic nature of the task noted. A brief
outline is presented of an appropriate conceptual frame-
work, drawing attention to the merits of stochastic efficiency
criteria for analysis of systems when nisk preferences of
individual farmers are unavailable. A distinction is drawn
between planning problems with and without embedded
risk, The merits of ‘utility efficient’ (UE) programming are
explained. Extensions of programming models, including
UE formulations, to embedded risk using discrete stochastic
programming are reviewed. The paper concludes with a
discussion of the importance of correctly understanding the
way risk impacts upon the target farming system, and then of
formulating a programming model appropriate to the case.

Introduction

All planning, including planning farming systems,
involves uncertainty. Plans have their outcomes in
the future and we can never be absolutely sure what
the future will bring. Uncertainty is important
because it affects the consequences of decisions in
ways that decision makers are not indifferent about.
Such uncertainty in consequences is called risk,
and most people are averse to risk. In complex,
non-linear systems, such as farming systems, un-
certainty generally works both to reduce the ex-
pected value of consequences — downside risk —
and to create deviations in consequences from their
expected values —pure risk (Quiggin and Anderson
1990). Both types of risk may need to be accounted
for when planning such systems.

Yet risk and uncertainty, by their very nature, are
very difficult to deal with. Because uncertainty is
widespread in its origins and pervasive in its im-
pacts, it cannot be fully accommodated in any
planning model. The analyst must always simplify,
so that modelling becomes an artistic process,
depending on the perceptions of reality of the
analyst and on his or her ability to convert those
perceptions into an ‘appropriate’ planning model.

This paper is motivated by the belief that it is timely
to re-examine the kinds of mathematical program-
ming (MP) models under risk in the light of ad-
vances in model formulation, available algorithms
and computing facilities. Therefore, this paper is
more expository than novel, with the aim of clari-
fying the issues and the options available to ana-
lysts.

Conceptual Background

What follows is based on the proposition that the
subjective expected utility (SEU) hypothesis pro-
vides the best operational basis for structuring
risky choice.! The SEU hypothesis involves
disaggregating risky decision problems into sepa-
rate assessments of the decision maker’s beliefs
about the uncertainty, captured via subjective prob-
abilities, and his or her preferences for conse-
quences, captured via a utility function, with the
two parts then recombined to select as optimal the
decision which yields the highest expected utility.

The implications for modelling decisions about
farming systems seem clear; the individual farm-
er’s beliefs and preferences are vital inputs to the
planning process. But in practice things are not that
simple. Experience shows that there may be con-
siderable problems of elicitation, especially of utili-
ties. Also, in many planning studies it may be far
from obvious whose beliefs and preferences are
relevant. The analysis may be being performed to
generate recommendations for numbers of farmers
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! It must be admitted that the SEU hypothesis has come under
increasing criticism on the grounds of accumulating evidence of
frequent breakdown of the so-called independence axiom (see,
for example, Machina 1981). Yet it seems that no better opera-
tional framework has yet found wide acceptance.
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(constituting a ‘target group’ or ‘recommendation
domain’), each of whom may be supposed to have
different beliefs and preferences. Such will often
be the case in less developed countries where
agriculture is typically composed of many small
farm units, each alone too small to justify the
expense of an individual planning study.

Approaches to such difficulties may start with the
adoption of ‘public’ probabilities, that are based on
the best available data or expert opinions. Such
probabilitics may be viewed as the beliefs towards
which farmers’ opinions may be expected to con-
verge as extension programs are developed to in-
form them of such things as new technologies,
improved market opportunities, betier outlook in-
formation ec.

So far as farmers’ preferences are concerned, no
such convergence may be expected, regardless of
extension efforts. However, something may be
known, or may be able to be inferred, about the
range of risk attitudes among the target population
of farmers. In this case, the methods of stochastic
efficiency analysis provide a means of partitioning
decision strategies into efficient and dominated
sets. Any individual farmer whose risk averse
behaviour is consistent with the assumptions made
will find his or her optimal strategy among the
efficient set. The task for the analyst is to make this
set as small as possible without excluding from the
set any strategies that would actually be preferred
by an appreciable number of farmers in the target
population. This is usually done by setting bounds
on the degree of risk aversion anticipated, using the
method of stochastic dominance analysis with re-
spect to a function, also known as generalised
stochastic efficiency analysis (Meyer 1977a, b).
Clearly, it is desirable to incorporate the same
principles into MP models of farming systems.

Structuring Risk Problems

The modelling of any risky farming system must
start with an understanding of the way uncertainty
impacts on that system. An outline decision tree
provides a good means for capturing in a simple
diagram the principal kinds of decision that the
farmer must make and the main sources of uncer-
tainty impinging on those choices. As noted, the
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focus should be on representing the essential fea-
tures of the system rather than on the impossible
task of reflecting all the detail and complexity of the
real system.

Outline decision trees for two basic cases are illus-
trated in Figure 1. In this figure the convention is
followed of representing decisions with multiple
options by decision fans, shown with small squares
for their nodes, and uncertain events with many
possible outcomes by event fans, represented with
small circles as their nodes. At each node, the tree
is continued for only one of the many possible
branches.

The first case shown in the figure is based on the
assumption thatitis realistic to model the system as
if all decisions are made initially and then the
uncertainty unfolds subsequently in terms of risky
consequences of the choice taken, i.e. non-embed-
ded risk. In the second case some embedded risk is
recognised, in that the decisions are segregated into
those taken initially and those taken at a later stage
when some uncertainty has unfolded. The second
stage decisions will be conditioned by both the
initial choices and the revealed uncertain outcomes.
The final outcomes of the whole process are re-
garded as still uncertain, represented by the right-
most event fan.

Mostreal decisions about farming systems have the
characteristics of the second case, rather than the
first. Indeed, farm decision making involves a
continuous sequence through time of decisions and
events, involving many stages, not just two as
shown in the figure. Yet many MP studies of
farming systems have either ignored risk, or have
treated itasnotembedded. Thereasonsarenothard
to find. Any accounting for risk in MP models
complicates the task, and accounting for embedded
risk is especially difficult. For the non-embedded
case, it is appropriate to regard the uncertainty as
being confined to the objective function coeffi-
cients, while for the case of embedded risk, both
objective function and constraint coefficients may
be stochastic. Inthisreview, we classify the models
which account for risks in the objective function
coefficientsasrisk programming models. Stochastic
programming models, on the other hand, capture
risks in the input-output coefficients and the level
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Figure 1: Outline Decision Trees
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of constraining variables.
Risk Programming Approaches

To provide a basis for what follows, the notation for
the standard linear programming (LP) model is
introduced first, then some of the more widely used
risk programming models are briefly reviewed.

Linear programming
In a risk programming context, LP can be used to

represent the maximisation of expected profit, as
follows:

maximise E=cx-f
subject to
Ax<b
and x>0,
where E is expected profit;
c is an n by 1 vector of activity
expected net revenues;

x is an n by 1 vector of activity levels;

f is fixed costs;

A is an m by n matrix of technical
coefficients; and

bis an m by 1 vector of resource stocks.

Define ¢ = p'C, where
pisan s by 1 vector of state probabilities; and
C is an s by n matrix of activity net revenues by
state (row) and activity (column).

This formulation differs from the conventional one
in that fixed costs are recognised (although their
level does not affect the solution in this linear case)
and by the explicitaccounting for risk inactivity net
revenues across possible states of nature. The
matrix C may be based on historical data, corrected
for inflation and trends, or may be partially or
wholly subjective. In either case, there is no reason
why the (subjective) probabilities, p, should neces-
sarily be equal for all states.

In the above LP model the stochastic nature of the
activity net revenues is recognised, but risk aver-
sionon the part of the farmerisignored. Perhaps the
best-known extension of the model to account for
risk aversion is quadratic risk programming (QRP).

12

Quadratic risk programming
The QRP model may be formulated as follows:

maximise E=c'x-f
subject to
Ax<b
x'Qx =V, V parametric
andx >0

where Q is an n by n activity net revenue
variance-covariance matrix; and
V is the variance of the net income of the
farm plan,

Note that Q = (p'F)'(p'F), where F=C - uc', i.e. an
s by n matrix of deviations of activity net revenues
from respective means, with u defined as an s by 1
vector of ones.

The formulation above generates the so-called (E,
V)-efficient set of solutions. Itis equivalent to the
more usual formulation where variance is mini-
mised subject to a parametric constraint on ex-
pected income but is preferred on grounds of con-
sistency with what follows. In computation, how-
ever, it is usually easier to minimise the quadratic
function for variance subject to a parametric con-
straint on expected income.

QRP is easy to use given access to a suitable
computer program. However, the generated (E,
V)-efficient set is stochastically efficient only un-
der the strong assumptions that either the distribu-
tion of total net revenue is normal, or the farmer’s
utility function is quadratic (Levy and Hanoch
1970). The quadratic utility function has the unfor-
tunate properties of not being everywhere increas-
ing and of implying increasing risk aversion, so is
generally notregarded as acceptable. Approximate
normality in the distribution of total net revenue
may be reasonable, but the question is really an
empirical one and the form of distribution will vary
from case to case. Moreover, conventional statis-
tical tests of the adequacy of the normal approxima-
tion are not appropriate in the assumed presence of
non-linear utility for income - the issue is whether
the deviations from the normal distribution matter
to the decision maker, not whether they satisfy
some arbitrary statistical criterion.
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In the days when quadratic programming computer
codes were less available and less reliable than they
are today, many efforts were made to find LP
approximations to the QRP formulation. By far the
most successful was Hazell’s MOTAD program-
ming (Hazell 1971).

MOTAD programming
The MOTAD model is:
maximise E=cx-f
subject to
Ax<b
Dx + Iy >u0

P'y <M, M parametric
andx,y>0

where I is an s by s identity matrix;

y is an s by 1 vector of activity levels
measuring negative income
deviations by state; and

M is mean absolute deviation of total net
revenue.

Anoutline of the matrix for MOTAD programming
isshowninFigure2. Inthe diagram, Misasterisked
to indicate that it is a parameterised variable. The
same convention is followed in the subsequent
diagrams. As for QRP, altemative formulations
exist that generate the same solution set.

Although rationalisations of MOTAD program-
ming have been proposed in terms of the ‘reasona-
bleness’ of a focus of concern on negative rather
than positive deviations of income, in fact the
approach can be justified in terms of the SEU
hypothesis only in terms of it being an approxima-
tion to QRP. The (E, M)-efficient frontier approxi-
mates the (E, V) frontier but, as noted, the latter is
generally not stochastically efficient and therefore
the (E, M) frontier is even less likely to contain the
utility-maximising solution for a given farmer.
Though undoubtedly valuable at the time it was
developed, it is surprising in these circumstances
that MOTAD programming is still so widely used.
A development of the MOTAD model by Tauer
(1983) known as target MOTAD appears to have
considerably more merit.

Target MOTAD
This model may be formulated as:
maximise E=c'x-f
subject to
Ax<b
Cx+Iy>uT
p'y <D, D parametric
andx,y>0

where T is target level of total net revenue; and
D is expected deviation from target.

The formulation generates the (E, D)-efficient set
of solutions fora given value of T. Anoutline of the
matrix is given in Figure 3. The similarities with,
and differences from, the standard MOTAD model
arc apparent.

Target MOTAD has the important advantage that
the solutions are second-degree stochastically domi-
nant, meaning that they are stochastically efficient
for risk-averse decision makers. However, the
approach has the disadvantage that values of both
T and D have to be specified. It is possible, but
messy, to generate the full solution set for all
possible valuesof these two parameters (McCamley
and Kliebenstein 1987). Even if both T and D are
specified, the Target MOTAD generates only a
subset of the stochastically efficient solutions for
risk averse decision makers. Moreover, no means
is provided within the model of discriminating
amongst the large range of stochastically efficient
solutions that in most cases would thereby be
gencrated.

Mean-Gini programming

The mean-Gini approach suggested by Yitzhaki
(1982), and illustrated in a farm planning context
by Okunev and Dillon (1988), can be formulated
as:
maximise E=cx-f
subject to
Ax<b
Bx -Iy* + 1y =u0
q'y* +q'y =G, G parametric
andx,y*,y >0

13
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X y
MAX C
A <| b
D I >0
P < | M7

Figure 2: Outline of MOTAD Matrix
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X y
MAX C
A < | b
C | > [T
P < |D*

Figure 3: Outline of Target
MOTAD Matrix
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where B is an h by n matrix of net revenue
differences for n activities and all h
possible discrete pairs of states,
h=s(s - 1)/2;

y* and y- are h by 1 vectors of total positive
and negative net revenue differences
summed across activities for each
discrete pair of states;

qis an h by 1 vector of probabilities of these

+ pairs, found as the product of the
probabilities of the corresponding two
states; and

G is the total Gini difference.

An outline for this form of model is given in Figure
4.

The mean-Gini programming approach is general
in the sense that it is applicable to any monotonic
concave utility function and probability distribu-
tion. Because (E, G)-efficient sets are always sec-
ond-degree stochastically efficient (though the re-
verse is not always true), the method is superior to
quadratic risk programming and MOTAD. The
main advantage of the approach is that it is rela-
tively easy to use, being based on only E and G as
opposed to E, T and D in the Target MOTAD case.

X y* y~
MAX C
q q = |G”
A < |b
B —| | = |0

Figure 4: Outline of Mean-Gini Matrix
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A possible limitation is that some stochastically
efficient solutions that would be preferred by
strongly risk-averse decision makers may be ex-
cluded from the efficient set. However, this limita-
tion may not be serious and may in fact be an
advantage if decision makers are only weakly risk
averse (Buccola and Subaci 1984).

As with target MOTAD, mean-Gini programming
will generate a large set of solutions. To narrow
down the range of solutions evidently requires
some knowledge of the attitude(s) to risk of the
farmer(s). One extreme possibility exists if an
individual farmer is identified whose utility func-
tion can be elicited. In this case direct utility
maximisation is appropriate.

Utility maximisation

Lambert and McCarl (1985) have illustrated MP
models involving direct maximisation of expected
utility. The implied generally nonlinear program-
ming model is of the form:

maximise E[U] = pU(z)
subject to
Ax<b
Cx-Iz=uf
andx>0

where U(.) is a monotonic concave utility
function;
zis an s by 1 vector of net incomes by state;
and
U(z) is an s by 1 vector of utilities of net
income by state,

Because U(.) is monotonic and conicave, nonlinear
algorithms such as MINOS (Murtagh and Saunders
1977) will find the global optimum. Altematively,
approximation on U(.) by linear segmentation is
straightforward (Duloy and Norton 1975). A method
of progressive improvement of the linear approxi-
mation can be used by adding additional linear
segments in the region of the initially determined
values of z.

As discussed above, it will often be inappropriate
or impossible to elicit an individual farmer’s utility
function for direct incorporation into a utility max-

imising risk programming model. Patten, Hardaker
and Pannell (1988) have proposed a means of
generating a set of solutions of wider interest when
less than complete information is available about
farmers’ risk attitudes. They called their approach

utility efficient (UE) programming,
Utility-efficient programming

The method proposed by Patien et al. depends on
the definition of a separable utility function of the
form U = G(z) + B{H(z)} where variation in the
parameter B can be interpreted as variation in risk
preference.

The UE programming model takes the form:

maximise E[U] = p'G(z) + B{p'H(z)}, B parametric
subject to
Ax<b
Cx-lz=uf
andx>0

An outline of the matrix for this formulation is
given in Figure 5.

Patten et al. emphasised the so-called ‘sumex’
function,

U= “exp(-gZ) -8 (exp('hz)}: Bi g, h 2 0:

which has a number of desirable properties. The
function implies decreasing risk aversion as z in-
creases, in accord with expecied ‘normal’ behav-
iour. In addition, as B is varied the coefficient of
absolute risk aversion also varies, ranging from g
when B is zero to close to h when B is large. They
illustrated UE programming using linear segmen-
tation of the utility function, permitting solution
using parametric linear programming. However,
the model can also be solved using a nonlinear
algorithm. Moreover, although software such as
MINOS does not include a parametric option, it is
possible to use the software to generate a large
number of solutions for a range of values of B with
little trouble, approximating the full set obtainable
by parametric programming.

Although not mentioned by Patten et al., another
form of UE programming could make use of the
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MAX

Figure 5: Outline of UE Matrix

IA
o

negative exponential utility function of the para-
metric form:

U =exp[-{(1 - B)g + Bh}z], B parametric,

which may be supposed to generate a set of solu-
tions very similar to, if not identical with, those
identified as efficient using the concept of stochastic
dominance with respecttoa function (Meyer 1977b),
with bounds set on the coefficient of absolute risk
aversion of g and h.

18

Patten et al. derived efficient farm plans assuming
a sumex utility function which was approximated
by linear segments to facilitate the application of a
linear programming algorithm. For illustrative pur-
poses the same problem was solved for both the
negative exponential and the sumex utility func-
tions using a nonlinear programming algorithm. In
each case, a range of solutions was obtained by
setting g and h at the assumed lower and upper
bounds of the coefficient of absolute risk aversion,
then solving for the relevant range of values of B.
Both specifications produced very similar results.
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Further empirical studies with more realistic exam-
ples will be needed to establish the generality of this
observation.

Stochastic Programming Approaches

Various approaches to the solution of problems
with embedded risk have been proposed. In meth-
ods such as chance-constrained programming, risk
in the constraints is dealt with indirectly by setting
a probability with which the constraints, individu-
ally or collectively, must be satisfied. However,
such methods are less than ideal because the choice
of the critical level of probability is itself a part of
the decision problem, with associated payoffs and
risks. To sweep this part away by means of an
arbitrary judgment seems unsatisfactory.

Except for a few special cases, the best approach to
problems with embedded risk appears to be via
discrete stochastic programming (DSP) (Cocks
1968, Rac 1971a,b). A DSP model for the simplest
two-stage problem may be formulated as:

maximise E[U] =p'U(z,)
subject to
Ax <b

171 = "1

Lx +A. x <b

1 2 n~— "2t
Cz:xzx' Illz2l
andx,x, 20, t=1,.,s,

=f2t

where subscripts 1 and 2 indicate first- and second-
stage activities, respectively, and the subscript t
indicates the state of nature; and L, is a set of s
matrices linking first- and second-stage activities®.

The matrix layout for a two-stage problem with
only two states is given in Figure 6. The figure
indicates the capacity for the overall matrix of a
DSP problem to become very large, especially if
more stages and many states are to be accommo-
dated. However, the computational capacity of
modemn computer MP software is considerable,
making it technically possible to solve large prob-
lems. Nevertheless, the so-called ‘curse of
dimensionality’ is a very real consideration since
large problems, even if computable, imply mini-
mally a time-consuming and tedious data handling
task. On the positive side, use of computer software
such as spreadsheets adapted for data input or

computerised matrix generators can help. Moreo-
ver, the later stages in large problems can be abridged
since they need be present only in sufficient detail
to assure the ‘correct’ first-stage decision. Actual
later stage decisions can be resolved by running
further models incorporating the outcomes of un-
certain events as they unfold (Kaiser and Apland
1989). The problem for the analyst, of course, is to
know what degree of abridgment is acceptable at
any stage for a given model.

A major advantage of DSP is that the sequential
nature of a decision problem can be represented in
the model. Due to this feature, risks in both the
constraints and the input-output coefficients can be
modelled. These are often more important sources
of risks in farming. Whether or not a farmer is risk
averse, the downside risk that is embedded in most
farming systems can be captured atleast in approxi-
mate fashion in DSP. Because in embedded risk
cases the later stage decisions are not only depend-
enton the earlier decisions but also on the cutcome
of random events, DSP generates an optimal strat-
egy, with recommended levels of some activities
being conditional on uncertain outcomes that be-
come known only with the passage of time,

Although the ‘curse of dimensionality’ can be
tackled to a certain extent by the judicious formu-
lation of the problem, DSP models often require
more data and analyst’s time than some of the
models described earlier. The extra insights that
can be discerned from DSP need to be weighed
against these costs.

Inspection of Figure 6 in comparison with earlier
matrix layouts reveals that several of the risk pro-
gramming models already discussed can be viewed
as special cases of DSP. In particular, it is evident
that methods such as target MOTAD and UE pro-
gramming extend readily to the full DSP case with
embedded risk.

Overview and Prospect

Given the extra complexity of accounting for risk

? Note that ¢, coefficients on first-stage decision variables are
omitted here for simplicity and on the grounds that net returns
along each act-event sequence can always be summed to give
terminal payoffs, as is normal in decision tree analysis.
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X4 X 21 X 22 Zp4 Zpp
MAX P 1G(zZ21)| |P2G(2,)
+ +
P1H(z29)| |PoH(Z55)

A <| by

L1 Aoy < b2y
Co2q -121 = | fat

L2 A2 < |b2g
Coo oo | =]t

Figure 6: Outline of UE-DSP Matrix (nonlinear)
(Two states only)
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and risk aversion in MP models, the first issue to
consider is whether risk matters in planning farm-
ing systems. Clearly, downside risk may be impor-
tant in some cases, and should be accounted for.
Too often, it seems, deterministic models are con-
structed using overly optimistic, single-valued, tech-
nical or economic planning coefficients. The phe-
nomenon is not confined to MP studies; there is
abundant evidence of widespread over-estimation
in the formulation and appraisal of rural develop-
ment projects (World Bank 1988). The causes
appear to include use of modal or ‘normal’ values
asmeasures of central tendency of skewed distribu-
tions, rather than the expected values, and the
general failure to account for downside risk associ-
ated with departures from the means.

Risk aversion may be less important than is com-
monly thought. For example, there is accumulating
evidence about the levels of risk aversion in various
farming communities. Certainly, farmers gener-
ally, and particularly poor farmers in LDCs, are risk
averse, but not as markedly so as some literature
has suggested. Poor farmers cannot afford not to
take some risks since risks are everywhere. Moreo-
ver, they are highly constrained by their limited
resources in what they can do. Although the
importance of risk aversion will vary from situation
to situation, Hardaker and Ghodake (1984) found
little difference in predictive power for small-scale
farmers in the semi-arid tropics of India between
QRP models that accounted for the (measured) risk
aversion and expected income maximising models.
However, where risk aversion is present and ex-
pected to be important, it clearly needs to be cor-
rectly accounted for in an MP model. If a utility
function is available, the model should be formu-
lated to maximise expected utility. Where no such
individual utility function can be used, it will be
best to employ a parametric MP model that will
generate the smallest possible subset of efficient
solutions, while minimising the chance that the
solution most preferred by any individual farmer is
excluded. While target MOTAD and mean-Gini
methods may do this job, UE programming appears
to have most to offer, especially if something is
known about the relevant form of utility function
and range of risk aversion.

It is essential in designing MP models to judge

whether important risks are embedded or non-
embedded. Where embedded risk is present, rec-
ognising its impact via DSP will generally give
much better solutions, irrespective of whether the
utility function is linear or non-linear. Most farm-
ing systems tend to have embedded risk and, hence,
efforts at modelling such risks via appropriate DSP
formulations can be rewarding. Moreover, the
methods for accounting for risk aversion discussed
in relation to risk programming extend directly to
the DSP case.

The expanding power of computers and the in-
creasing availability and power of MP software
appear to open the door for much bigger and better
models of farming systems, including models ac-
counting for risk and risk aversion. Of course,
bigger models may not be better. In planning
farming systems we are still a long way from the
situation that prevails in the formulation of animal
feeds where the output of a well-developed MP
model can confidently be used as a plan of action.
Farming systems, partly because of their human
sub-systems, are not and will never be amenable to
such treatment. Rather models of farming systems
must be viewed as aids to decision making. The
value of modelling comes first from the systems
analysis implied in developing the model. It is
necessary to find out many features of the real
system before a plausible model can be built. But
once built, it has to be recognised that the model is
at best a caricature of the real system. The value in
solving the model comes from understanding the
cause and effect relationships at work within the
model and then from noting the similarities and
differences between these modelled features and
reality,

It follows that the value of a model in use depends
on the skill with which it has been constructed. The
challenge is to build better, more useful models.
Because model building is an artistic process, as
discussed in the introduction, it is not surprising
that some people do the job better than others, and
that there i1s much to be learnt from experience.
When some planning coefficients are uncertain, as
will almost always be the case in practice, analysts
need to take special care to represent that uncer-
tainty in an appropriate fashion in their models.
The model formulations used should be such as to
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produce the most useful results for the situation
under investigation. Some ways of approaching
this task have been reviewed above, but some
unresolved issues remain. The challenge for the
future in accounting for risk in modelling farming
systems lies in (a) correctly accounting for embed-
ded risk, and (b) finding the best way of generating
smaller and yet mere relevant stochastically effi-
cient solution sets.
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