Cost-Benefit Analysis of the Highway Infrastructure Investment under the American Recovery and Reinvestment Act

Daegoon Lee
Agricultural and Resource Economics, University of Tennessee

Seong-Hoon Cho*
Agricultural and Resource Economics, University of Tennessee

Roland K. Roberts
Agricultural and Resource Economics, University of Tennessee

Dayton M. Lambert
Agricultural and Resource Economics, University of Tennessee

Copyright 2012 by Lee, Cho, Roberts, and Lambert. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

* Corresponding author: University of Tennessee, 2621 Morgan Circle, 314-D Morgan Hall, Knoxville, TN 37996-4518, Phone: +1-865-974-7408, Fax: +1-865-974-9492, email: scho9@utk.edu.
Cost-Benefit Analysis of the Highway Infrastructure Investment under the American Recovery and Reinvestment Act

Daegoon Lee, Seong-Hoon Cho, Roland K. Roberts, and Dayton M. Lambert
Department of Agricultural & Resource Economics, University of Tennessee

Introduction
The American Recovery and Reinvestment Act (ARRA):
• The priority of the ARRA has given to ready-to-go (referred to as “shovel-ready”) projects that could start immediately.
• One of the most common shovel-ready projects was the transportation spending component.
• $27.5 billion on highway infrastructure investment out of the $48.1 billion designated for the contracts/grants/loans for transportation.

Expected accomplishment:
• The highway infrastructure investment is intended to increase demand for highway system capacity.
• The investment is expected to increase highway usage differently by state based on its purpose and the scale of investment.
• The different level of anticipated increase of highway usage is expected to increase highway usage differently by state.

Objective
The costs and benefits of highway infrastructure investment under the ARRA, focusing on the social costs of air pollution, water pollution, noise, land use impact, traffic congestion, and the benefit of increased consumer welfare from greater highway usage with the highway investment.

Empirical Model
Highway demand equation is developed at the state level over the period of 1994-2008
\[Q_i = \beta X_{it} + \alpha_i + u_{it}; \]
where \(Q \): Road usage per capita in miles.
\(X \): Price of road usage per mile (sum of cost of travel time, gas price, and depreciation of cars), per capita income, per capita length of road, % of licensed drivers.
\(\alpha \): unobserved effect, \(\beta \): coefficient parameter, \(u \): error

Cost & Benefit
• The benefit is captured by gain of consumer surplus by the upward shift of demand curve due to ARRA highway investment (shaded area) for each state.
• The cost is measured by additional indirect costs (e.g., costs for removing air pollution and traffic congestion costs) that are converted from additional road usage due to the ARRA highway investment.

Net Benefit Distribution

Results/Conclusion
• It is found that increased highway usage under the ARRA investment is estimated to cause $12.7 billion of cost of removing negative externalities (i.e., air pollution, water pollution, noise, etc.) and $50.9 billion of additional consumer surplus, which result in $38.5 billion net gain (or $0.012 net gain per mile).
• States of California, Texas, Florida, Georgia, Tennessee, Ohio, Pennsylvania, Michigan, Alabama, North Carolina, Indiana, and Missouri are among the recipients of the most beneficiary of the ARRA highway investment ($3.37 billion-$1.09 billion).
• These estimates offer direct and relevant information to the question in regards to improving welfare of increasing demand for highway system capacity, which is one of the main goals of the ARRA highway investment.