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ABSTRACT 
 
This paper employs a two-stage residential sorting model3 to examine climate change 
impacts on residential location choices in the US. The estimated coefficients are used to 
simulate population changes and US migration patterns across regions under hypothetical 
changes in climate. The main dataset used for estimation is the Integrated Public Use 
Microdata Sample (IPUMS), which provides demographic characteristics of 
approximately 2.4 million households located in 283 Metropolitan Statistical Areas 
(MSAs) of the US in the year 2000. Projected climate data (i.e. extreme temperatures) 
used for simulation are obtained from the North American Regional Climate Change 
Assessment Program (NARCCAP). In the estimation component, a two-stage random 
utility sorting model (RUM) is employed. The first-stage discrete choice model employs 
a multinomial logit specification to recover heterogeneous parameters associated with 
MSA specific variables, migration costs, along with the mean indirect utility of each 
MSA. In particular, the interaction terms of temperature extremes and individual-specific 
characteristics, such as one’s birth region, age and educational attainment, are used to 
recover valuations of temperature extremes for different classes of people with 
potentially different preferences. The second stage of this model decomposes the mean 
indirect utility obtained from the first stage into its MSA-specific attributes controlling 
for unobservables using region fixed effects. Migration costs are statistically significant. 
If migration costs are high, individuals are less likely to relocate for the sake of moderate 
changes in weather extremes. In the simulation component, the estimated coefficients are 
used to simulate population changes across regions in the US under hypothetical changes 
in extreme temperatures. We find that extreme temperature and extreme precipitation 
reduce utility, and people’s preferences for temperature extremes are heterogeneous. The 
climate of one’s place of birth and demographic characteristics such as age and 
educational attainment, are significant factors that lead to preference heterogeneity. In 
addition, we find that population share in the Southern region and California drop, while 
population share in Northeastern region increases under hypothetical changes in climate.  
 
 

                                                 
2 Qin Fan is the corresponding author at: Department of Agricultural Economics and Rural Sociology, The 
Pennsylvania State University, 309 Armsby Building, University Park, PA, 16801, USA. Email address: 
quf101@psu.edu  
3 Sorting model is based on the logic of sorting households into local jurisdictions where they maximize 
utility and obtain a desired level of public goods. 
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1. Introduction 
 

The Intergovernmental Panel on Climate Change (IPCC) projected that average 

surface air temperature has increased by Co74.0 since 1900 and the sea level will rise by 
0.6-1.6m by 2100 (IPCC, 2010). Projected climate change will directly reduce extreme 
cold days, but increase extreme heat days. Extreme events such as tornado, drought, and 
flood will occur with a higher probability each year as a result of climate change (IPCC, 
2011). It has been recognized that there is a significant economic loss associated with 
temperature extremes. For example, extreme heat and the natural disasters that result 
from it (e.g. drought and tornado occurrences) lead to large economic costs in different 
sectors such as transportation, agriculture, energy, and public health. In contrast, the 
aggregate effect of extreme cold on public health is found to have higher costs and long-
lasting impacts than effects of extreme heat. Deschenes and Moretti’s (2007) find that the 
mortality rate attributable to extreme cold roughly amounts to 1.3% of average annual 
deaths in the U.S. over their sample period, while an increase in mortality rate 
attributable to extreme heat is much lower and the impact is short-lived. 

Impacts of changes in weather extremes, such as extreme temperatures and extreme 
events have not been well examined in previous literature. For example, most previous 
studies examine climate change impacts on location choice in terms of mean temperature 
(e.g. Timmins, 2007), but few studies estimate people’s valuation of climate change in 
terms of weather extremes. The empirical results on people’s valuations of climate 
change in terms of weather extremes can provide evidence for analyzing the cost 
effectiveness of relevant climate change policies, particularly those aimed at reducing 
economic costs from the negative impacts of climate extremes. More efforts are needed, 
therefore, to study the impacts of temperature extremes that reflect climate variability and 
extreme events that have low-probability but can cause substantially large damages.  

Heterogeneity in regional impacts is a key component in studying the effect of 
weather extremes on residential location choices, since climate change impacts are 
heterogeneous across both regions and individuals. Warm regions in the U.S. may be 
negatively affected by an increase in extreme heat days under climate change, while cold 
regions may benefit from reduced extreme cold days. Factors such as different climates 
of individuals’ birth places, one’s age and mobility choices may lead to preference 
heterogeneity. For example, people born in cold regions are potentially more sensitive to 
extreme heat, while those born in hot regions are potentially more sensitive to extreme 
cold. Older individuals after retirement may relocate for the sake of nice amenity and 
pleasant weather, and it is possible that they are more sensitive to temperature extremes 
than young people. Highly educated people (e.g. college graduates) are more mobile, and 
they have more options to move than those without college degrees. Changes in 
temperature extremes may have a greater impact on highly mobile people. 

To better address these issues, this paper presents an analysis on how climate change 
affects where people choose to live in terms of weather extremes. In this paper, we allow 
for preference heterogeneity across individuals focusing on factors such as the climate of 
one’s birth place, an individual’s age and education level. This paper employs an 
empirical Tiebout sorting model that has been widely used to analyze the demand for 
public goods across space. The equilibrium sorting model used in this paper models the 
way households sort into local jurisdictions to maximize utility and obtain an optimal 
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level of local public goods given prices and the location choices of other households. 
There are two main types of sorting models: (1) pure characteristics, which requires all 
households to have the same ordering of preference across locations (homogenous 
preference within communities with the same ordering of preference); and (2) random 
utility sorting (RUM), which allows preferences for attributes to vary distinctly across 
households. We employ the latter model in this paper as we believe preference 
heterogeneity is likely to be important in understanding the impacts of climate change. 
For a further discussion of sorting model, see Kuminoff (2009).   

In order to understand the relationship between climate change impacts, migration, 
and household location choice, this paper incorporates migration costs while examining 
the tradeoff between the gains from local amenities and the loss in real income associated 
with migration. After incorporating migration costs, the true value of climate amenities is 
expected to be higher than what has been shown in the case where free mobility is 
assumed. Intuitively, if migration costs are high, people are not willing to migrate for the 
sake of a moderate change in amenable climate. An individual’s valuation of climate (e.g. 
willingness to pay to reduce frequency of temperature extremes and number of tornado 
watches) must be higher when migration is costly in order to give individuals more 
incentive to move. In this sense, the results from conventional hedonic model with free 
mobility may be misleading when migration costs are significantly high. In addition, we 
simulate population changes across five regions in the US under changes in extreme 
temperatures projected in the year 2065, based on estimated coefficients and projected 
temperatures. We find that population share in the Northeastern region increases as 
extreme cold days decrease under climate change.  

This paper tests the hypothesis that changes in climate extremes (i.e. extreme 
temperatures, extreme precipitation, and tornado frequencies) negatively affect an 
individual’s location choice on where to live. We also estimate the magnitude of these 
impacts by allowing for preference heterogeneity and migration costs. Changes in 
population shares across regions in the US are predicted under changes in extreme 
temperatures.  

Results suggest that climate change in terms of extremes have negative impacts on 
household location choice. In addition, we find that individuals’ preferences are 
heterogeneous. People born in relatively cold regions (e.g. Northeast and West) are more 
sensitive to extreme heat than people born in warmer regions (e.g. South), while those 
born in California are more sensitive to extreme cold than people born in other regions. 
Besides the climate of one’s birth place, demographic characteristics also contribute to 
preference heterogeneity. People over 65 years old after retirement generally favor 
pleasant amenity, and therefore are more sensitive to extreme temperatures than younger 
people. Weather extremes have larger impacts on the location decisions of individuals 
with higher education levels (i.e. college graduates). One reason might be that college 
graduates may have more options to move and are therefore more mobile than those 
without college degrees.  
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2. Literature Review 
 

The traditional framework of non-market valuation has its roots in the early 
theoretical papers, which estimate marginal valuation without considering spatial 
relationships (e.g. Rosen, 1974). In the 1990s, Anselin (1988) incorporated spatial effects 
(e.g. spatial dependence, spatial autocorrelation, and spatial heterogeneity) into the 
hedonic model. Although the first-stage hedonic model that estimates marginal 
willingness to pay (MWTP) for public goods has been widely used and spatial effects are 
captured to some extent in the hedonic framework (Brown, 1980; Smith, 1985; Irwin, 
2002), there are several limitations. Since the first stage of the hedonic model estimates 
an aggregate preference instead of each individual household, it is impossible to estimate 
the difference in valuations across households. Besides that, there is a strong assumption 
in the hedonic model that mobility is costless, which is not the case in reality. In addition, 
there are econometric challenges to identify demand functions in the second-stage 
hedonic model. Therefore, it is difficult to estimate non-marginal valuation through the 
hedonic model.  

Residential sorting models, which were developed over recent years based on the 
logic of Tiebot sorting, have the potential to overcome several of the limitations 
discussed above (Epple, et. al. 2001; Walsh, 2006; Timmins, 2007; Bayer et. al. 2009). 
The Tiebout sorting model assumes that households sort into local jurisdictions where 
they maximize utility based on housing property, utility characteristics, and local 
attributes. Empirically, this model is often categorized into pure characteristics and 
random utility model (RUM). The former assumes that all households have the same 
ordering of communities, while the latter allows household preferences to vary distinctly 
over each household and space (Klaiber, 2010). Therefore, the horizontal sorting model 
may be preferred when preference heterogeneity and potentially different rankings of 
commodities are desired. Besides the advantages in capturing preference heterogeneity, 
the RUM sorting model can relax the assumption of free mobility and can incorporate 
migration variables that are left out of hedonic models. To allow for migration costs, 
Bayer et al. (2009) use a sorting model to estimate MWTP for air quality by using 
dummy variables that indicate whether an individual moves out of one’s birth place. In 
this paper, we use a RUM model that incorporates heterogeneous preferences towards 
changes in climate by allowing for migration costs. In terms of estimating non-marginal 
value, sorting models can simulate the welfare effects of non-marginal changes in 
attributes, which is challenging in the hedonic framework (Timmins, 2007).  

Another important motivation of our research is that most previous studies examine 
climate change impacts on location choices in terms of mean temperature and mean 
precipitation (Timmins, 2007). Although there are some studies that examine impacts of 
climate change in terms of weather extremes on agricultural output (Deschenes and 
Greenstone, 2007) and public health (Deschenes and Moretti, 2007), there are few studies 
that examine impacts of climate extremes on migration and household location choice. 
The study conducted by Poston et al. (2009) is one of the few examples. In this study, 
authors examine the effects of climate on three migration variables (in-migration, out-
migration, and net-migration) by incorporating eleven climate variables including 
extreme heat days and extreme cold days. They use factor analysis to define a new 
variable TEMPERATURE as a climate factor, which accounts for the variance in these 
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eleven correlated climate variables. They find that this climate factor is positively 
correlated with in-migration and net-migration rates and is negatively correlated with out-
migration rate. This study, however, does not consider preference heterogeneity and 
migration costs in migration decisions. Ignoring this heterogeneity may lead to 
incomplete or at worst invalid inference. Huhtala (2000) use both the parametric and non-
parametric methods to verify the importance of incorporating heterogeneity in valuation 
analyses of public goods. He finds that ignoring heterogeneity leads to a biased WTP 
estimates, and the bias tends to be significantly large in parametric estimation. In our 
paper, we not only examine climate change impacts on household location choice in 
terms of weather extremes, but also consider preference heterogeneity that is critical for 
assessing the potential responses of different groups of people to changes in extreme 
temperatures.   

 
3. Theoretical Model  
 

A two-stage random utility sorting model is used to estimate the valuation of weather 
extremes controlling for migration costs. A sorting model captures the process by which 
households sort into different jurisdictions as they seek to maximize utility and obtain an 
optimal level of public goods. The first-stage discrete choice model employs a 
multinomial logit specification to recover heterogeneous parameters associated with 
MSA specific variables, migration costs, along with the mean indirect utility of each 
MSA common across households. In particular, the interaction terms of temperature 
extremes and individual-specific characteristics, such as one’s birth region, age and 
educational attainment are used to recover valuations of temperature extremes for 
different classes of people with potentially different preferences. The economic variable 
(i.e. service wage rate) is interacted with one’s educational attainment (i.e. college degree) 
to examine the preference difference towards service wage rates between college 
graduates and those without college degrees. A dummy variable that indicates whether an 
individual migrates out of his/her birth region is used to recover long-term psychological 
costs of moving away from family roots. Immigrants are excluded in this study. MSA 
fixed effects are incorporated in this stage to recover the mean indirect utility—quality of 
life—for each MSA. In the second stage, we decompose the mean indirect utility 
recovered from the first stage into MSA specific attributes, such as economic activities, 
entertainment, natural amenities, and climate extremes including temperature extremes, 
precipitation extreme, number of tornado watches, and so on.  

Following the methodology of Bayer et al. (2009), we use a simple version of this 
model to develop our theoretical framework. The head of the household i is assumed to 
be the decision maker who chooses a specific location j to live along with the 
consumption of utility characteristics and housing property. Each location j is 
characterized by local attributes such as economic activities, entertainment, natural 
amenities, and climate. Each decision maker chooses location j to maximize utility 
subject to a linear in income budget constraint. When migration costs are incorporated, 
there is an additional term entered into the utility function that includes psychological 
costs of moving away from one’s place of birth. People move to a location where they 
achieve maximum utility and a desired level of public goods. A locational equilibrium is 
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achieved if nobody has an incentive to move given prices and the location decision of all 
others. The general function is defined as:  

{ } ijijiijjii
jXiHiC

IHCtsMZHCU =+ ρ..),,,(max
,,

                      (1) 

where iC  represents commodity demanded by individual i, iH  represents the quantity of 

housing services demanded by individual i, jZ  represents MSA specific attributes, ijM  

represents whether a specific location j is out of individual i’s place of birth, 

jρ represents housing price index for each location j. ijI  is an individual i’ income in 

location j which we predict using an income regression described in the Section 5.2. 
 
4. Data 
 
 The main dataset used for the empirical analysis is obtained from Integrated 
Public Use Microdata Sample (IPUMS), which comprise a 5% microdata sample from 
the 2000 US Population Census. There were 2,417,253 households who lived in the 283 
Metropolitan Statistical Areas (MSAs) of the U.S. in this sample. Assuming the head of 
household is the decision maker, we focus on his/her demographic factors. The main 
dataset contains housing attributes (Appendix A) and demographic characteristics of head 
of household (Appendix B). The IPUMS dataset also provides information on the birth 
state of each head of household, which allows us to create a migration dummy variable 
that indicates whether location j is out of the head of household i’s birth region. The 
dataset is used in the first-stage sorting model, which requires a two-dimension matrix for 
each variable: the row dimension has 2,417,253 observations that represent households, 
while the column dimension has 283 observations that represent MSAs.  

MSA-specific amenity and disamenity data that are used in the second-stage sorting 
model are obtained from a variety of sources. We have 283 observations, one for each of 
the 283 MSAs. Wage rates by sector are obtained from the U.S. Bureau of Labor 
Statistics. Total establishments of arts, entertainment and recreation, and water area at the 
MSA level are obtained from the U.S. Census. (Descriptive statistics are presented in 
Appendix E). Climate data that includes snowfall, and number of tornado watches are 
acquired from National Climate Data Center (NCDC). In particular, downscaled 
temperature and precipitation data (1/8 degree spatial resolution) are used to calculate 
extreme heat days (annual number of days with daily maximum temperature above 90F), 
extreme cold days (annual number of days with daily minimum temperature below 32F), 
and extreme precipitation day (annual number of days with daily maximum precipitation 
over 1 inch) (Maurer et al., 2002) 4. We use ArcGIS to intersect gridded data with each 
MSA, and calculate the arithmetic mean value of exceedance days for each MSA (the 
map is shown in Appendix D).  

The projected temperature data is obtained from North American Regional 
Climate Change Assessment Program (NARCCAP). We obtain the projected data from 
runs of the Canadian Regional Climate Model (CRCM), and we count the mean extreme 
days in the projected 5-year period (2061-2065). Both extreme heat days (mean annual 
number of days with daily maximum temperature above 90F) and extreme cold days 

                                                 
4 Gridded data on temperature and precipitation extremes were provided by Rob Nicolas from Department 
of GeoSicence at the Pennsylvania State University.  
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(mean annual number of days with daily minimum temperature below 32F) are counted 
from daily maximum and minimum temperature data. This temperature data (1/2 degree 
spatial resolution) is interacted with polygons that represent MSAs on the ArcGIS map. 
The arithmetic mean values of the projected extreme temperatures for each MSA are 
calculated. We divide the U.S. into five regions (i.e. California, South, Northeast, 
Midwest, and West). The division of these five regions matches economic regions from 
the U.S. Census with the U.S. Department of Agriculture (USDA) Plant Hardiness Zones, 
which are directly connected to different climates (Appendix F). Summary statistics that 
describe the projected extreme data by region are shown in Appendix F. 

 
5. Empirical Model 
 
5.1 Two-Stage Sorting Model 
   We follow the model framework by Bayer et. al. (2009), and add the interaction 
terms of each individual’s characteristics and weather extremes (both extreme heat days 
and extreme cold days), along with the interaction term of college graduates and MSA-
specific service wage rate in the utility function. The utility function for household i in 
location j is defined as: 

ijjijMmjWiEDUw
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s.t. budget constraint: ijiji IHC =+ ρ          (2) 

where iC represents the numeraire good consumed by an individual i, iH represents the 

quantity of housing services, jZ  denotes local attributes including economic activities, 

entertainment, natural amenities, extreme temperatures, extreme precipitation, and 
number of tornado watches;  i

qHH  represents demographic factors of the head of 

household i, and q represents different types—birth region, age, and educational 

attainment. jT  includes both extreme cold days (annual number of days with minimum 

daily temperature below 32F) and extreme hot days (annual number of days with 
maximum daily temperature above 90F) in a specific MSA j; iEDU  represents whether 

the head of household i is college graduates; jW represents service wage rate in MSA j; 

ijM  is a dummy variable which indicates whether a specific MSA is out of one’s birth 

region. Five regions are defined as shown in Appendix F. jξ captures the MSA-specific 

unobservables; 
ij

η represents an individual-specific idiosyncratic component of utility 

that is assumed to be independent of mobility costs and MSA-specific characteristics. We 
assume that this idiosyncratic error term is independently and identically distributed type 
I extreme value, and the multinomial logit model is used in the first stage of our model.  
 In appendix G, we derive both the first-stage and second-stage equations along 
with the calculation of the coefficient of housing price index. Equation (3) is the linear in 
log random utility model (RUM) derived for the first-stage sorting model. (Also see 
equation G.7 in appendix G):  
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where ijÎ  is the predicted income for each household head i possibly living in each of the 

283 MSAs j; The details on how to obtain ijÎ is shown in the section 5.2; jΘ  is the MSA 

fixed effects (i.e. coefficients of alternative specific constants), which is interpreted as the 
mean indirect utility for each MSA; ijη is the idiosyncratic error term. Previous studies 

have demonstrated the importance of including alternative (location) specific constants to 
recover mean indirect utility that captures unobservables (Bayer et al., 2009; Bayer and 
Timmins, 2007; Klaiber and Phaneuf, 2010). An inclusion of unobservables controls for 
location-specific omitted variables. It also contributes to a clean identification of 
heterogeneous parameters in the first stage of sorting model. This term jΘ includes both 

MSA-specific observables and unobservable jξ as shown in equation (4). These 

observables include housing price indexjρ , MSA-specific attributes jZ  (e.g. wage rates 

by sector, entertainment, and natural amenity, etc.), and climate extremes jCLIMATE  

that include extreme heat days, extreme cold days, extreme precipitation, and number of 
tornado watches.  Other variables are the same as those listed below equation (2). 
 According to the logic of the sorting model, individuals choose their locations 
where they maximize utility defined in equation (3). Assuming the idiosyncratic error 
term ijη  is independently and identically distributed (IID) type I extreme value, a 

multinomial logit specification is used to calculate the probability that household i 
chooses location j. The probability of choosing location j by individual i is: 
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The first-stage sorting model is estimated by maximizing the log likelihood function:                     
                               ))ln(lnln( kjVVPYll ikij

j i
ij ≠∀>= ∑ ∑                                       (6) 

We recover MSA fixed effects (the coefficients of MSA specific constants) in the first 
stage sorting model. The MSA fixed effects can be interpreted as the mean indirect utility 
of residing in each MSA. From equation G.9 in appendix G, we derive the second stage 
sorting model, which is also shown in equation (4). As we believe the importance of 
MSA-specific unobservables that are observed by decision makers, but are not observed 
by researches (e.g. economic activity and high infrastructure), housing price index for 
each MSA is endogenous as it is likely to be correlated with these unobservables entered 
into the error termjξ . Following the methodology of Bayer et al. (2009), we move the 

housing price index jρ to the left hand side and include it in the dependent variable.   

                               jjCLIMATEcjZxjhj ξββρβ ++=+Θ lnlnˆ                                   (7) 

where jΘ̂  is the coefficient of MSA specific constants obtained from the first-stage 

sorting model; jξ represents the MSA-specific unobservables that are omitted and are 

included in the error term; other variables are listed below equation (4).  
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In the second stage sorting model, this indirect utility is decomposed into its 
MSA-specific attributes including climate extremes that are of our interest, and 
unobservablesjξ .  

 
5.2. Predicted Income 
 

Bayer et al. (2009) argue that income estimation should be used to generate 

predicted incomeijÎ  that is included in the first-stage sorting model as shown in equation 

(3). This is because a person’s income is likely to vary across location. In order to obtain 

income for every individual possibly living in each of the 283 MSAs (i.e.ijÎ ) rather than 

the observed income of each individual living in his/her residential location (i.e. iI ), we 

need to use income regression to predict income ijÎ .  

Following the methodology of Bayer et al. (2009), we estimate the following 
income equation: 

ijijCOLLGRAD

ijSOMECOLLiHSGRADiijHSDROP

iAGEijMALEijWHITEji

COLLGRAD

SOMECOLLHSGRADHSDROP

AGEMALEWHITEI

εα
ααα

αααα

++

++⋅+

>⋅+⋅+⋅+= >

,

,,

60,, 60ln

(8) 
where iI  represents income of the each household decision maker, iWHITE  represents 

whether the head of the household is white or not (white = 1, non-white = 0), iMALE  
represents the gender of the household decision maker (MALE = 1, FEMALE = 0), 

60>AGE represents whether the head of the household is older than 60 years old, 

iHSDROP represents education level--high school dropout, iHSGRAD represents high 

school graduate, iSOMECOLL  represents college degree (less than four years), 

iCOLLGRAD represents college graduate (four years or more). iHSDROP is left out and 

is included in the constant term in the regression. (See Table B.2 in Appendix B).  
Regression results from Table B.2 in Appendix B show that people less than 60 

years old earn more than those over 60 years old. Males earn more than females. Whites 
have relatively higher incomes. People with higher education levels have higher incomes. 
This regression is used to predict an average income in each location for each individual 
in our sample. The mean value of predicted income is approximately $45,071. This 
estimated income is close to median income from the U.S. Census in the year 2000, 
where the median income of female household decision maker (no husband present) is 
$28,116, and male household decision maker (no wife present) is $42,129 (DeNavas-
Walt et al., 2000).  

 
5.3. Housing price index 
 

A hedonic housing price model is used to obtain the housing price index (denoted 
as jρ ) for each MSA that is included in the second stage sorting model as shown in 

equation (7). The hedonic housing price model is defined as: 
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where ijP  is the housing price (only houses that are owned); ijX  are housing attributes 

(Table A.1 in Appendix A); j represents each of the 283 metropolitan statistical areas 
(MSAs) of the U.S.; jρln is an MSA fixed effects. We control for a bundle of housing 

attributes, such as the acreage of the house, the number of rooms of the property, the year 
then the house was built, etc.  
 These MSA fixed effects provide a consistent measurement of the estimated price 
of a homogeneous unit of housing services in a particular MSA, which serves as a 
housing price index for each MSA.  The housing price index for each MSA is obtained 
through the hedonic housing price regression. By netting out the implicit values of 
housing attributes, housing price indices are comparable across MSAs. We take the 
exponential of the MSA fixed-effects from the results shown in Table A.2 of appendix A, 
and obtain the mean housing price index for each MSA, which is approximately $16,531. 
The scattered graph in Figure A (Appendix A) shows that California has a relatively high 
price index, which is consistent with our expectation.  
 
5.4. Predictions of Population Changes  
 
 We use extreme temperature data (both extreme heat days and extreme cold days), 
respectively, in the base year 2000 and the projected 5-year period (2061-2065) to predict 
population changes between the year 2000 and 2065 under changes in climate. Due to the 
instability of a single-year projected data, we use the mean of five-year projected data 
from the year 2061 to 2065 instead of a single-year projected data. The projected data is 
from runs of the Canadian Regional Climate Model (CRCM), which is consistent with 
IPCC business-as-usual A2 scenario. The following probability equation based on 
multinomial logit specification is used to predict changes in population shares across 
regions under changes in extreme temperatures:  
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where jtjttjtzjthjt CLIMATEZ ξββρβ +++−=Θ lnln  

where i represents household i, j represents MSA j, t respectively represents respectively 

the starting point where t = 2000, and the ending point where t = 2065. jtT  represents 

both extreme heat days and extreme cold days in MSA j. Other variables are the same as 
those described below equations (3) and (4).  

In the simulation, housing price index jtρ , income measure ijtÎ , and wage rates 
j

tW  are assumed to change exogenously with a fixed yearly increase rate 2% (Maurer, 

2008). We assume that new generation replaces the old generation, and demographic 
components in 2065 stay the same with those in the year 2000. In my future research, I 
will endogenize labor supply and wage rates in a computable general equilibrium (CGE) 
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model. In addition, a few assumptions will be relaxed by using sensitivity analysis of 
changing educational attainment i

tEDU  and migration costsijtM .   

 The probability of choosing MSA j is aggregated to regional level—Northeast, 
Midwest, South, West, and California by adding up the weighted probabilities of 
choosing MSA j that belongs to region r.  
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where r represents one of the five regions in the U.S.; j represents one of the 283 MSAs; t 
respectively represents starting point in the year 2000 and ending point in the year 2065; rP is the 

probability that region r is chosen; jP  is the probability that MSA j is chosen; ijtP is the 

probability that the head of household i chooses MSA j as shown in equation (10); N is 

total number of individuals in the data sample;
rt

jt
jt pop

pop
weight = , which represents the 

weight of each MSA j within region r based on population size in the year t; jtpop is the 

total population in MSA j in the time period t, and rtpop is the total population in region r 

in the time period t.  
 
6. Empirical Results 
 
6.1. Results from Two-Stage Sorting Model 
 

Table 1 shows the parameter estimates from the first stage sorting model. Marginal 
utility of income is 1.00. This coefficient is used to calculate the coefficient of housing 
price index jρ . (See equation G.11 in Appendix G). Results from the same table show 

that people over 65 years old are more averse to extreme temperatures than younger 
people. College graduates are expected to be more mobile and have more options to 
move than people without college degrees. Highly mobile individuals are the more averse 
to temperature extremes than people that are less mobile. People born in cold regions (e.g. 
Northeast) are more sensitive to extreme heat than those born in the warm regions (e.g. 
South), while those born in California are more sensitive to extreme cold than people 
born in other regions. One reason may be that people find the weather that is similar to 
their hometowns more amenable. The migration dummy variable that indicates whether 
location j is out of an individual i’s region is significant. The coefficient of this variable 
recovers migration costs in terms of utility. Specifically, there is a significant utility cost 
associated with leaving one’s birth region, which is -2.0926. The mean indirect utility 
recovered from the 1st stage sorting model in terms of the coefficients of MSA specific 
constants are displayed in the scatter plot in Appendix C (selected MSAs). The mean 
indirect utility of residing in Los Angeles ranks top one, which indicates that quality of 
life in Los Angeles ranks the highest, and this utility comprises all of the MSA-specific 
attributes in Los Angeles that are common to all households. 
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Table 1: Parameter Estimates from First-Stage Sorting Model 
Dependent variable: location choice (1 or 0) (multinomial logit) 

Variable Variable Description Coefficient 

Ln(predicted income) Marginal Utility of Income 1.0000*** 

(0.0053) 

Collgrad*Service_wage College graduates*service wage 1.4378*** 

(0.0144) 

M_Macro_Region Migration dummy variable which 
indicates whether a specific MSA j 
is out of an individual i’s birth 
macro region 

-2.0926*** 

(0.0016)  

 

Age_65_Hot Age dummy variable which 
indicates whether a household head 
i is older than 65 years old (1 if 
>=65, 0 if <65)* Extreme Hot 
(mean number of days with 
maximum temp 90 degrees F or 
more/10) 

-0.0076*** 

(0.0005) 

 

   

Age_65_Cold Age dummy variable which 
indicates whether a household head 
i is older than 65 years old (1 if 
>=65, 0 if <65)* Extreme Cold 
(mean number of days with 
maximum temp 32 degrees F or 
less/10) 

-0.0316*** 

(0.0004)  

 

   

Collgrad_Hot Education dummy variable which 
indicates whether a household head 
i has four-year college degree or 
above (1 if college graduates, 0 
otherwise)*Extreme Hot 

-0.0268*** 

(0.0007)  

 

   

Collgrad_Cold Education dummy 
variable*Extreme Cold 

-0.0305*** 

(0.0005)  

 

Northeast*Hot Whether a household head i was 
born in the Northeast macro-region 
(1 if yes)*Extreme Hot 

-0.0286*** 

(0.0004)  

 

South*Hot Whether a household head i was -0.0175*** 
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born in the South macro-region (1 
if yes)*Extreme Hot 

(0.0003)  

 

West*Hot Whether a household head i was 
born in the West macro-region (1 if 
yes)*Extreme Hot 

-0.0494*** 

(0.0006)  

 

CA*Hot Whether a household head i was 
born in California 

-0.0311*** 

(0.0007) 

CA*Cold Whether a household head i was 
born in California (1 if 
yes)*Extreme Cold 

-0.0289*** 

(0.0006)  

The size of matrices: 2,417,253 households(row)*283 MSAs(columns) 

Notes: MSA fixed effects, which are interpreted as the mean indirect utility for each of the 283 MSAs, are not listed in 
this table. A scatter plot is shown in Appendix C. Midwest is left out as a reference while interacting birth region with 
extreme heat days. 
 

In the second stage sorting model, the mean indirect utility for each MSA is added 
to an additional term computing the housing price index for each MSA to form the 
dependent variable. (See equation (7) in section 5).  The second-stage results in column 
(1) of Table 2 show that extreme cold is negatively significant, which is consistent with 
our expectation. The aggregate effects from both extreme heat and extreme cold are 
negative after we combine coefficients from both 1st and 2nd stages (Table 3). Wage rates 
by sector (tax inclusive) are used to measure the impacts of job opportunities. Service 
wage rate is positively significant, and job opportunity tends to be a significant driver in 
people’s location decisions. The coefficient of precipitation extreme is negatively 
significant, which suggests that precipitation negatively affects household location choice. 
The area of the body of water is positively significant. One explanation is that people 
prefer to live near a body of water, such as lake, river, and ocean. Total establishments of 
arts, entertainment, and recreation per square mile are positively significant, and people 
generally value entertainment and recreation.  

The first column in Table 2 reports OLS estimation results using robust standard 
errors. We do not use IV regression in our paper, since the main variables (i.e. 
temperature extremes) that we are interested in are exogenous. In order to address the 
unobservable effects across locations, a region fixed-effects model is used in the second 
stage.  
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Table 2 Parameter Estimates from Second-Stage Sorting Model 
 
Dependent variable: mean indirect utility from 1st stage of model version (1) in Table 3 + hβ log(price) , 

where 3942.0)071,45/767,17(*1)/( === ijijIh IHρββ  

Variables OLS 

(robust standard error) 

(1) 

Regional fixed effects (5 macro 
regions) 

(2) 

Extreme Hot 
(mean number of days with maximum 
temp 90 degrees F or more/10) 

-0.0140 

(0.0229) 

-0.0278 

(0.0211) 

   

Extreme Cold 
(mean number of days with minimum 
temp 32 degrees F or less/10) 

-0.0375* 

(0.0185) 

-0.0278* 

(0.0101) 

   

Ln(Construction wage) ($000s) 0.0749 

(0.4090) 

0.03500 

(0.4772) 

Ln(Production wage) ($000s) -0.0830 

(0.1964) 

0.1270 

(0.2378) 

Ln(Service wage)  ($000s) 2.9635*** 

(0.7418) 

2.6279*** 

(0.4778) 

Annual days of precipitation with daily 
maximum over 1 inch 

-0.0438* 

(0.0164) 

-0.0298* 

(0.0178) 

Annual snowfall 
(inches) 

-0.00079 

(0.0024) 

0.0035 

(0.0029) 

Annual # of tornado watches -0.0136 

(0.0139) 

-0.0019 

(0.0114) 

Water area (square miles) (00s) 0.0420** 

(0.0167) 

0.0362*** 

(0.0113) 

Total establishments of arts, 
entertainment, and recreation per square 
mile 

0.5736** 

(0.2895) 

0.6592** 

(0.113) 

R-square 0.3329 0.4147 

Observations: 283 
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The marginal willingness to pay (MWTP) to reduce additional extreme day is 
calculated by multiplying the regression coefficients (the ratio of coefficients of extreme 
temp and income, which is called WTP elasticity) by mean household income $45,071. 
One example is shown in Appendix H. Since extreme temperature days are scaled in 10 
days, MWTP to reduce one extreme temperature day is then divided by 10.  
 
Table 3 Estimated Marginal Willingness to Pay (MWTP) for Temperature Extremes 

OLS (robust std. err.) 
(1) 

Region fixed effects 
(2) 

Measures 
Extreme 

heat 
Extreme 

cold 

Extreme 
precipitation 

(daily 
precipitation 
over 1 inch) 

Extreme heat Extreme cold 

Extreme 
precipitation 

(daily 
precipitation 
over 1 inch) 

       
Coefficients 
of extreme 

weather 
-0.0376 -0.0512 -0.0438 -0.0514 -0.0415 -0.0298 

       
MWTP to 

reduce 
additional 
extreme 

weather day 
($) 

$169 $231 $1,970 $232 $187 $1,340 

Notes: The marginal willingness to pay (MWTP) to reduce one extreme day is calculated by multiplying 
the regression coefficients (the ratio of coefficients of extreme temp and income, which is called WTP 
elasticity) by mean household income $45,071. One example is shown in Appendix H. Since extreme heat 
days and extreme cold days are scaled in 10 days, MWTP to reduce one extreme temperature day is then 
divided by 10. 
 
 
6.2 Prediction in Population Shares  
  
 The aggregated probability by region based on equation (10) in section 5 
represents the predicted population share in one of the five regions. Column (5)-(7) of 
Table 4 shows changes in predicted population shares across five macro-regions by 
comparing population shares calculated between the base scenario without climate 
change and the one with climate change. Column (1) of Table 4 presents the base 
scenario. Three climate change scenarios are listed in column (2)-(4). These three 
scenarios, respectively, represent the scenario that changes only the extreme cold matrix, 
the one that changes only the extreme heat matrix, and the one with changes in both 
extreme cold and extreme heat matrices.  
 
 
 
 
 
 



Paper Submitted to AAEA Conference-2012                                                                   May 29, 2012 

 17 

Table 4 Changes in Predicted Population Shares by region in Response to Changes in Temperature 
Extremes 

 
Probability of choosing a specific macro-region by 
different scenarios 

Probability Change by comparing the 
projected probability (2061-2065) and 
probability from the  empirical model 
(2000) 

Regions 
Base 
scenario 
(2000) 

Only 
change 
extreme 
cold 
matrix 
(2061-
2065) 

Only change 
extreme heat 
matrix 
(2061-2065) 

Change 
both 
extreme 
cold and 
extreme 
heat 
matrices 
(2061-
2065) 

Only change 
extreme cold 
matrix (2061-
2065) 

Only change 
extreme heat 
matrix 
(2061-2065) 

Change 
both 
extreme 
cold and 
extreme 
heat 
matrices 
(2061-
2065) 

 (1) (2) (3) (4) (5) (6) (7) 

Northeast 0.2674 0.3175 0.2679 0.3186 0.0501 0.0005 0.0512 
Midwest 0.1491 0.1753 0.1477 0.174 0.0262 -0.0014 0.0249 
South 0.3315 0.3015 0.3309 0.3007 -0.030 -0.0006 -0.0308 

West 0.0799 0.0704 0.0882 0.0771 0.0095 0.0083 -0.0028 

California 0.1718 0.1348 0.1653 0.1294 -0.0370 -0.0065 -0.0424 

 
 Results from Table 4 show that population share decreases in South and 
California, while population share increases in Northeast under changes in climate 
extremes. My next-step research is to input the wage responses to changes in population 
shares back into the probability equation (10) to re-predict changes in population shares. 
Wage responses will be predicted from a computable general equilibrium (CGE) model. 
Population shares are likely to increase in California and Southern region due to a higher 
wage rates in these regions.  
 

7. Conclusion 
 

 This paper uses a RUM sorting model that incorporates migration costs and 
allows for preference heterogeneity in temperature extremes. Results show that people 
born in different regions have different preferences towards temperature extremes. For 
example, people born in cold regions such as the Northeast and West are more averse to 
extreme heat than people born in warm regions such as South, while people born in 
California find extreme cold less amenable. This makes sense in terms of people’s 
preferences for climates that are similar to their places of birth. Besides the climate of an 
individual’s place of birth, other demographic characteristics also have significant 
impacts on individuals’ location decisions. We find that highly educated people (e.g. 
college graduates) are more averse to extreme temperature than individuals without 
college degrees. This finding potentially reflects that college graduates have more job 
opportunities than those without college degrees, and these highly educated individuals 
become more mobile than people with low education levels. People over 65 years old are 
more averse to extreme temperatures. One reason might be that older people after 
retirement relocate to new places for the sake of pleasant amenities, and it is possible that 
extreme temperatures have higher impacts on their location decisions. We find that 
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migration costs are significant. If migration costs are high, people are not willing to 
relocate to the place for the sake of a moderate change in climate.   
 Besides climate, other factors such as wage rates, natural amenities (e.g. water 
area), arts and entertainment are significant factors in household location choice. Service 
wage rates are positively significant in one’s location choice. In particular, college 
graduates have stronger preferences for higher service wages. College graduates may 
have a higher probability to pursue a business job with higher wages, and business jobs 
are categorized into the service sector. Water area as an index of natural amenity is 
positively related to household location choice. The total establishments of arts, 
entertainment, and recreation per square mile as a measurement of abundance in 
recreational opportunities have a positive effect on residential location choice.  

One contribution of this paper is that it captures preference heterogeneity, which 
allows us to better understand climate change impacts on migration and household 
location choice by considering preference heterogeneity across individuals. This paper 
shows that it is not the case that all individuals have homogenous preferences, and they 
do not have the same preferences for weather extremes. In contrast, our results show that 
highly mobile people are more averse to extreme temperatures. People over 65 years old 
are more averse to extreme temperatures. Individuals born in cold regions are more 
sensitive to extreme heat, while those born in warm regions are more sensitive to extreme 
cold.  

In addition, we find that population shares in the Southern region and California 
drop, while population share in the Northeastern region gains under simulations in the 
climate change scenario. In the future research, we will bring wage responses to changes 
in regional labor supply caused by climate change-induced migration, however, 
population shares in California and Southern region are likely to rise due to higher wage 
rates. In the next step, we will input climate change-induced migration (the change in 
total population and population by education type) predicted from the empirical model 
into the computable general equilibrium (CGE) model. This CGE model will produce 
economic parameters (e.g. wage rates) in response to this population changes. Wage rates 
produced by the CGE model will be input back into the empirical RUM. Iterations will 
continue between the CGE and empirical RUM models until a locational equilibrium is 
achieved in the RUM sorting model.  
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Appendix A 

 
Table A.1 Data Summary for Hedonic Housing Price Regression 

 Mean Description 
acre_9 0.1417 Acreage of property 1-9 acreages 
acre_10 0.02629 Acreage of property 10+ acreages 
room2 0.0127 2 rooms in dwelling 
room3 0.0412 3 rooms in dwelling 
room4 0.0850 4 rooms in dwelling 
room5 0.2026 5 rooms in dwelling 
room6 0.2350 6 rooms in dwelling 
room7 0.1739 7 rooms in dwelling 
room8 0.1243 8 rooms in dwelling 
room9 0.1230 9 rooms in dwelling 
bed2 0.0386 1 bedroom dwelling 
bed3 0.2054 2 bedroom dwelling 
bed4 0.4880 3 bedroom dwelling 
bed5 0.2131 4 bedroom dwelling 
bed6 0.0479 5 or more bedroom dwelling 
unit2 0.0011 Boat, tent, van, other 
unit3 0.7819 1 family house, detached 
unit4 0.0633 1 family house, attached 
unit5 0.0199 2 family building 
unit6 0.0112 3-4 family building 
unit7 0.0084 5-9 family building 
unit8 0.0064 10-19 family building 
unit9 0.0072 20-49 family building 
unit10 0.0127 50+ family building 
Noplumb 0.0037 Dwelling does not contain complete kitchen facilities 
Nokitch 0.0027 Dwelling does not contain complete plumbing facilities 
yr1 0.0239 0-1 year-old dwelling 
yr2 0.0794 2-5 year-old dwelling 
yr3 0.0793 6-10 year-old dwelling 
yr4 0.1548 11-20 year-old dwelling 
yr5 0.1690 21-30 year-old dwelling 
yr6 0.1375 31-40 year-old dwelling 
yr7 01474 41-60 year-old dwelling 
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The following Table A.2 shows results from hedonic housing price regression. 
 

Table A.2 Results from Hedonic Housing Price Regression 
Dependent Variable: log(housing price) 

 Coef. Std. Err. T P>|t| [95% Conf. Interval] 
acre_9 0.238574 0.001115 213.9 0 0.236388 0.24076 
acre_10 0.504254 0.002377 212.12 0 0.499594 0.508913 
room2 0.316785 0.009854 32.15 0 0.297471 0.336099 
room3 0.495023 0.009708 50.99 0 0.475995 0.514051 
room4 0.446755 0.009965 44.83 0 0.427225 0.466285 
room5 0.64063 0.009986 64.15 0 0.621057 0.660203 
room6 0.798261 0.010019 79.68 0 0.778625 0.817897 
room7 0.948742 0.010045 94.45 0 0.929055 0.968429 
room8 1.086049 0.010081 107.74 0 1.066292 1.105807 
room9 1.309055 0.010111 129.46 0 1.289237 1.328872 
Bed2 -0.1169 0.005831 -20.05 0 -0.12833 -0.10548 
Bed3 -0.02974 0.006033 -4.93 0 -0.04156 -0.01791 
Bed4 0.056016 0.006135 9.13 0 0.043991 0.068041 
Bed5 0.126727 0.006225 20.36 0 0.114526 0.138929 
Bed6 0.195024 0.006471 30.14 0 0.182341 0.207707 
Unit2 -0.35472 0.011706 -30.3 0 -0.37766 -0.33178 
Unit3 0.802728 0.00139 577.43 0 0.800004 0.805453 
Unit4 0.67791 0.00202 335.61 0 0.673951 0.681869 
Unit5 0.860843 0.003036 283.58 0 0.854893 0.866792 
Unit6 0.880736 0.003779 233.06 0 0.873329 0.888142 
Unit7 0.760116 0.004295 176.99 0 0.751698 0.768534 
Unit8 0.727957 0.004882 149.11 0 0.718389 0.737526 
Unit9 0.826935 0.004644 178.08 0 0.817834 0.836036 
Unit10 0.981787 0.003685 266.41 0 0.974564 0.98901 
noplumb -0.17694 0.006934 -25.52 0 -0.19053 -0.16335 
nokitch -0.17015 0.008067 -21.09 0 -0.18597 -0.15434 
yr1 0.470302 0.002587 181.78 0 0.465231 0.475373 
yr2 0.416239 0.001625 256.11 0 0.413054 0.419425 
yr3 0.338295 0.001613 209.71 0 0.335134 0.341457 
yr4 0.210377 0.001327 158.57 0 0.207777 0.212978 
yr5 0.074306 0.001278 58.14 0 0.071801 0.076811 
yr6 0.062975 0.001325 47.54 0 0.060379 0.065571 
yr7 0.061517 0.001288 47.76 0 0.058992 0.064041 
Constant 9.7127 0.012807 803.0272 0 9.687627 9.73783 

R-square: 0.9976 
Observations: 2,417,253 
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The following graph shows housing price index in each MSA (obtained from hedonic 
housing price regression) 
 

Figure A Housing Price Index for Each MSA 
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Note: the red plot is where State College, PA locates 
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Appendix B 

 
 
 

 
 
 
 

Table B.2 Results from Income Regression 
Lninctot Coef. Std. Err. T P>|t| [95% Conf. Interval]   
Age_g_60 -0.32602 0.001126 -289.64 0 -0.32823 -0.32381 
Male 0.483654 0.001099 440.05 0 0.4815 0.485808 
White 0.169664 0.001403 120.97 0 0.166915 0.172413 
Hsgrad 0.279948 0.002316 120.87 0 0.275408 0.284487 
Coll 0.632171 0.002361 267.78 0 0.627544 0.636798 
Collgrad 0.995492 0.002628 378.79 0 0.990341 1.000642 
Constant 9.835 0.0131 926.36 0 9.8086 9.86 

Observations: 2,417,253 
  
Notes: HSDROP is left out and is included in the constant as a reference of other 
education types.  
 
 
 
 
 
 
 
 
 
 

Table B.1 Demographic Variable Description 
Variable Mean Description 
WHITE 0.837 White = 1; Non-white = 0 

MALE 0.706 Male = 1; Female = 0 

AGE>60 0.304 Age>60 = 1; Age <=60 = 0 

HSDROP 0.0539 High school dropout 
HSGRAD 0.419 High school graduate 

SOMECOLL 0.3998 Completed some college (not four year degree) 

COLLGRAD 0.127 College graduate 
Lntotinc 10.82 Log(total personal income $) 
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Appendix C Mean Indirect Utility for 283 MSAs 

 
 

Mean Indirect Utility for 283 MSAs
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Appendix D Intersect Gridded Temperature Data with MSAs 

 
 
 
 

On the map, polygons represent 283 MSAs. Dots represent temperature data with 
exceedance days. The annual number of days with maximum daily temperature above 
90F, annual number of days with minimum daily temperature below 32F, and annual 
number of days with maximum daily precipitation over 1 inch are calculated based on the 
arithmetic mean of extreme days in each MSA.  
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Appendix E Descriptive Statistics for Site-Specific Attributes 
 

Variable Obs. Mean Std. Dev. Min Max Description 
Extreme Hot 283 4.0 4.3542 0 17.5 mean annual number of 

days/10 with maximum 
temp 90 degrees F or 
more (Ed Maurer’s 
downscaled data) 
 

Extreme Cold 283 9.1 5.1862 0 21.3 mean annual number of 
days/10 with minimum 
temp 32 degrees F or less 
(Ed Maurer’s downscaled 
data) 
 
 

Ln (Construction 
wage) ($000s) 

283 3.4633 0.1915 2.8707 3.9522 Natural log of 
construction wage (wage 
rates data from the U.S. 
Bureau of Labor 
Statistics. ($000s)) 

       
Ln(production 
wage) ($000s) 

283 3.2353 0.2479 0.8671 3.7746 Natural log of production 
wage ($000s) 

       
Ln(service wage) 
$000s 

283 3.4375 0.1242 2.9684 3.9174 Natural log of service 
wage ($000s) 

       
Annual snowfall 
(inches) 

283 17.9694 23.5865 0 115.6 Annual snowfall (inches) 
(NCDC) 

       
Extreme 
precipitation  

283 7.6 2.9231 1 22 Annual days of 
precipitation with daily 
maximum over 1 inch (Ed 
Maurer’s downscaled 
data) 
 

Annual number 
of tornado 
watches  

283 8.5018 5.3438 0 40 Annual number of 
tornado watches (NCDC) 

       
Total 
establishments of 
arts, 
entertainment, 
and recreation  
per square mile 

283 0.1419 0.3148 0.004 4.227 Total establishments of 
arts, entertainment& 
recreation/land are (in 
square miles) (U.S. 
Census) 

       
Water area  283 2.47 5.13 0.0073 39.55 Water area (area in square 

miles/100) (U.S. Census) 
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Appendix F Five Regions Defined 
 
 

 
 

Regions defined by coordinating economic regions with USDA plant hardiness zones: 
1) Northeast (CT, ME, MA, NH, RI, VT, NJ, NY, PA); 2) Midwest (IA, MN, NE, SD, 
ND, MT, WY, IL, IN, MI, OH, WI); 3) South (FL, GA, AR, MD, NC, SC, VA, WV, AL, 
KY, MS, TN, LA, KS, MO, OK, AR, TX); 4) West (NV, AZ, CO, NM, UT, OR, WA, 
ID); 5) California 
*AK and HI are excluded due to the unavailability of projected temperature data in these 
two states 
 
Table F Summary Statistics of Temperature Extremes by Regions (2000 vs. 2061-2065) 

 
Regions Description Time Period Projected Time Period 
    2000 2060-2065 
    Mean Min Max Std. Dev.  Mean Min Max Std. Dev.  
Northeast Days above 90F 17 0 77 19.89 42 17 70 14.75 
(46 MSAs) Days below 32F 153 79 177 20.05 132 66 165 19.62 
                    
Midwest Days above 90F 12 0 143 23.91 72 1 181 28.83 
(72 MSAs) Days below 32F 147 28 200 28.41 136 84 205 24.84 
                    
West Days above 90F 12 0 143 23.91 61 1 210 62.05 
(30 MSAs) Days below 32F 128 42 194 21.8 149 32 238 59.51 
                    
South Days above 90F 68 1 166 39.96 117 40 185 27.43 
(111 MSAs) Days below 32F 54 0 167 38.31 49 1 169 49.41 
                    
California Days above 90F 58 4 129 33.3 118 67 165 24.26 
(22 MSAs) Days below 32F 47 6 136 42.02 66 31 151 37.98 

Source: Data is provided by Rob Nicholas  in the Department of Geosciences at Penn State University 
Data is obtained from NARCCAP, Canadian Regional Climate Model (CRCM) 
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Appendix G 

Derive the Second-Stage Sorting Model  
and the Coefficient of Housing Price Coefficient 

 
Maximize utility subject to budget constraint, set up the Lagrangian expression 
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In equilibrium, individuals must be indifferent among locations. If not, they would 
prefer to move. Hence, I can writeiH , iC , and ijI as ijH , ijC , and ijI . 
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Substitute ijH  into equation (G.3), ij
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Plugging (G.4) and (G.5) into utility function, the indirect utility function is obtained: 
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 Let hcI βββ += , jjxjhj Z ξβρβ ++−=Θ lnln , I
ijijij II ε+= ˆ ,  and ijijIijv ηεβ +=  

and take the log of indirect utility, equation (G.6) becomes the following  
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Recall jjZxjhj ξβρβ ++−=Θ lnln , in the second stage sorting model, MSA fixed 

effects jΘ can be decomposed according to this equation. In this case, predicted 

income for every location j is entered into indirect utility function as a standalone 
measure.  
In the second stage, the regression equation is: 

jjZxjhj ξβρβ ++−=Θ lnln                                                                 (G.8) 

Now move jh ρβ ln−  to the LHS of equation (G.7), regression equation becomes the 

following ( jCLIMATE is included in jZ ): 

jjZxjhj ξβρβ +=+Θ lnln                                                                  (G.9) 

From equation (4) 
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)/( ijijIh IHρββ =                                                                                 (G.10) 

The parameter Iβ is estimated in the first stage of sorting model, and set ijij IH /ρ (the 

share of housing expenditure in income) equal to its median value in the sample.  
From our regression results, 00.1=Iβ , and the mean values 767,17=jρ  071,45=ijI , 

3942.0071,45/)1*767,17(*00.1)/( === ijijIh IHρββ      (G.11) 
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Appendix H 
 
The regression coefficient for extreme heat days is calculated as the following by 
combining results from both 1st and 2nd stage (example from OLS sorting model (1) in 
Table 2):  

1) Coefficient of extreme heat (overall effect): 
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2)  Coefficient of extreme cold (overall effect): 
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Mean value of household head’s income is $45,071, and mean values of extreme heat 
days and extreme cold days are measure in 10 days. Coefficient of marginal utility of 
income is 00.1=Iβ . MWTP to reduce additional extreme heat day = 
(0.0376/1)*45,071/10 = $169. MWTP to reduce additional extreme cold day = 
(0.0512/1)*45,071/10 = $231 

 


