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Incorporating “Bads” and “Goods” in the Measurement of Agricultural Productivity 

Growth in the U.S. 

 Productive utilization of resources has enabled American agriculture to supply the nation 

with vast quantities of food at a high level of efficiency. A variety of factors have contributed to 

the impressive growth in the agricultural productivity over the last half century. A comparison of 

agricultural production patterns in the United States during the last 50 years shows relatively 

stable patterns of changes in land use at the national level side by side with larger unexpected 

shifts in land use at regional and State levels.  For example, between 1960 and 2011 the annual 

acreage devoted to crop production (including cropland harvested) declined. At the same time, 

land on which crops failed and cultivated summer fallow – increased by 16 % in the Corn Belt 

and decreased by 15 % in the remaining regions (ERS/USDA, 2011). The share of agricultural 

labor in the total labor force steadily decreased in the last few decades. The number of people 

employed in agriculture also declined. However, it is widely accepted that enhanced agricultural 

growth and productivity are the major contributors to economic growth in U.S. agriculture (e.g., 

the aggregate input use measure implies a 0.11 percent annual increase while the level of U.S. 

farm output shows an average growth rate of 1.63 percent) (ERS/USDA, 2012). Technological 

change has resulted in more efficient and effective inputs or allowed inputs to be combined in 

new and better ways leading to increases in agricultural productivity (i.e., which can be obtained 

either by producing more output with the same amount of inputs or  producing the same amount 

of output  with a smaller amount of inputs). As noted by Huffman and Everson (1992) the major 

public sector investments in research and development led to technological change which was 

rapidly adopted by farmers. In fact, modern agriculture may suffer significant economic losses in 

yield and quality without intensive use of pesticides and other chemicals. It is estimated that 

about 700 million pounds of more than 600 different pesticide types are applied annually in the 
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United States at a cost of $10 billion (Pimentel and Greiner, 1997).  Due to a rapid expansion of 

the ethanol industry total U.S. corn acreage increased 19 percent between 2006 and 2007 (i.e., 

Department of Agriculture estimates 90.5 million acres of corn were planted in 2007, an increase 

of 12.8 million acres from 2006). Even though prices paid for pesticides increased by an 

additional 9 percent in 2008 and continued to increase in 2009, estimates of pesticide 

expenditures fell by $900 million (7.8%) in 2010 due to lower prices and a decrease in crop 

production.   

 However, the USDA shows that 2011 pesticide expenses increased by about $100 million 

resulting from a slight increase of planted acres and a one-percent rise in prices paid. Some 

believe that increased food and fiber production has come at a cost to environmental quality.  

 Updated, revised and extended through 1997 USDA data on “goods” and “bads” enable 

us to present a comprehensive productivity analysis of the U.S. Agricultural Sector that spans 

across forty-eight states. The findings from this study are expected to differ from the previous 

results reported in Harper et al. “New Developments in Productivity Analysis” (2001).  The 

results may be influenced by differential increases in use of low toxic pesticides (i.e., use of 

glyphosate across the states) due to increased awareness and attitudes amongst the farmers 

regarding the environmental issues and adoption of more stringent environmental regulation.    

Crop Production, Total Factor Productivity Growth and the Environment, “Good’ and 

“Bad” Outputs 

 According to the USDA/Economic Research Service (2007) total factor productivity 

(TFP) statistical series, total factor productivity is an important indicator of the long run 

performance of the agricultural sector in the United States. It separates the effects of 
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technological change and related factors from the effects of changes in the quantity of inputs on 

the growth of agricultural output. The statistical series show changes in total output (an 

aggregate measure of crop, livestock commodities and farm related services), total inputs (an 

aggregate measure of capital, land, labor, energy, agricultural chemicals such as pesticides and 

fertilizers, and other materials) and total factor productivity from 1960 to 2004. For aggregate 

output, the total agricultural production increased and aggregate input use in agriculture slightly 

decreased over the 1960-2004 period. While the use of some inputs such as pesticides, fertilizers 

and capital display growing patterns, these increases were more than offset by reductions in 

cropland and total labor force recorded as working in agriculture. In general, the amount of crop, 

livestock and the farm related output produced per unit of aggregate measure of input , as 

measured by TFP, increased from 1960 to 2004. The agricultural productivity growth was 

substantial in each decade, raising output while requiring little or no increase in inputs. The 

growth in TFP in agriculture saved natural resources, including land, and freed labor for 

employment absorbed by other sectors.  

 Over the last several decades, the long run productivity growth in the agriculture sector 

has been sustained. However, productivity indices fluctuate from year to year due to weather, 

change in policy interventions, general economic conditions, and other factors. In the short run, 

the inputs employed in agriculture are relatively fixed, so much of the annual fluctuations in 

output is attributable to annual fluctuations in measured productivity.  

 Governmental policies can have a dramatic effect on the rate of agricultural productivity 

growth in both the short run and the long run. A change in policy interventions may lead to a 

sharp increase or decrease in measured productivity (i.e., variation from one year to the next). 

Long run and short run fluctuations in productivity growth should be viewed separately. In the 
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short run, fluctuations are evident but usually recover quickly within 1 or 2 years. The long run 

trend in productivity growth is most important when evaluating policy interventions in the 

agricultural sector in the long run. The most common policies are the macro-economic policies 

that support new investment and policies that support agricultural research and development in 

encouraging innovation and productivity gains in agriculture.  Furthermore, both the public and 

private sectors continue to invest heavily in research to develop new cost-effective techniques for 

the farm sector.  

 Modern pest management utilizes a wider range of appropriate pest management options 

despite the diversity of chemical use in agriculture. Both insect and herbicide resistant varieties 

of chemicals are commonly used on corn and cotton production, while soybean farmers generally 

use different herbicides. A significant overall trend in recent years has been toward use of less-

toxic or non-toxic active ingredients in pesticide products. In fact, we see many examples of a 

major change in premix products that control annual broadleaf and grass weeds in corn (e.g., 

from metholachlor to acetochlor).  It is worth mentioning that the glyphosate is the most widely 

used herbicide in the United Sates, in part because of its low toxicity.  At the same time, atrazine 

is used on up 85% of all corn crops even though its environmental risks outweigh its benefits.   

 In the United States, the Environmental Protection Agency (EPA) regulates pesticides. 

All pesticides used must be approved (licensed) by the EPA and must be periodically 

reregistered to ensure that they meet safety standards.  

 In recent decades, chemical control of agricultural pests has been highly influenced by 

technical/scientific advances and program policy factors. The most common factors include 

adoption of genetically engineered (GE) crops, corn-based ethanol production, as well as climate 
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change, increased conservation tillage, crop rotation and fundamental modifications in 

government programs. Minimizing the amount of pesticides used on crops while tracking 

productivity and maintaining excellent yields in the U.S. agricultural sector is crucial in 

maintaining both food security and environmental quality.   

 Natural resource depletion and national income accounting, so-called green accounting, 

have become very popular  as research topics, but relatively little attention has been accorded in 

the productivity literature to the specific role that environmental attributes play in conventional 

measures of economic performance and efficiency at the plant, firm or industry level. 

Conventional measures of productivity, technical efficiency and technical change are based on 

marketed outputs and inputs, but they ignore changes in by-products of a specific subset of 

polluting inputs or bad outputs.  It is useful and informative to incorporate these two productivity 

variables, good and bad outputs, when measuring the efficiency or productivity change in 

agriculture. Our attention here is on progress in the agricultural sector and environmental impacts 

of agricultural production methods that may be recognized as the driving forces behind this 

progress. Ball et al. (1999), for example, find that measured productivity outcomes differ when 

undesirable outputs (i.e., proxy effects of pesticides and fertilizer on groundwater and surface-

water quality for the 1972-1993 time period) are taken into account. 

 Over the last few decades several attempts have been made in the literature to identify the 

impacts of pollutant outputs in agricultural efficiency and productivity measures.  Pittman (1983) 

provided the earliest attempt at incorporating undesirable or bad outputs in conventional 

efficiency measurements based on analysis of Wisconsin paper mills. He made adjustments to 

the Caves et al. (1982) multilateral productivity index and found the inclusion of undesirable 

outputs to be an important factor in substantial changes in the rank order of productivity outcome 
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measures. Furthermore, Färe, Grosskopf, Lovell and Pasurka (1989) used the Pittman data and 

included a pollution variable as a bad output into a production model. In particular, this study 

applied the hyperbolic Data Envelopment Analysis (DEA) methods in the estimation process and 

introduced the application of the weak disposability concept to account for the fact that the firm 

cannot freely dispose of the undesirable outputs (pollution). In contrast to weak disposability 

(i.e., expensive disposal), strong disposability implies that unwanted inputs or outputs of 

technology are likely to be freely disposable at no cost. Several years later, Färe, Grosskopf, 

Lovell and Yaisawarng (1993) used parametric output distance functions to repeat the analysis 

that was designed to let them easily calculate underlying shadow prices of the undesirable 

outputs.  

 Different versions of similar approaches have subsequently been used in a number of 

applied studies with the application to other industries such as fossil-fuel fired-electric utilities or 

Belgian pig-finishing farms (e.g., Färe, Grosskopf and Tyteca, 1996; Chung, Färe and 

Grosskopf, 1997; Färe, Grosskopf  and Pasurka, 2001; Coelli et al., 2005). Recently, Ball et al. 

(2001), Ball et al. (2002) and Asmilde and Hougaard (2004) studied the productivity growth of 

U.S. agriculture in the presence of desirable (good) and undesirable (bad) outputs exploiting the 

connection to the efficiency and productivity measurement literature and employed Data 

Envelopment Analysis (DEA) in the estimation process.  

 Some studies on measures of agricultural efficiency and productivity (e.g., Hailu and 

Veeman, 2001) provided a comparison analysis of conceptual framework and the empirical 

performance of alternative approaches. They explained the relative strengths and weaknesses of 

different alternative methods such as input distance functions, output distance functions, 

nonparamertric methods, and index number approaches using Canadian paper and pulp industry 
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data.  Their findings suggest that adjusting agricultural productivity measures for environmental 

effects would significantly improve the understanding of productivity change in agriculture.    

Research Methodology 

The Production Technology 

 Consider an industry producing m outputs from n inputs. A pair of input-output bundles 

(x, y) is deemed feasible if the output bundle y can be produced from the corresponding input 

bundle x. The set of all feasible input-output bundles constitutes the technology set 

T = {(x, y): y can be produced from x}. 

One way to define the technology in terms of a transformation function F (x, y) is 

T = {(x, y): F(x, y) ≤ 1}. 

If F(x, y) is differentiable, it is conventional to assume that 0
i

F
x


  for each input i 

and 0
j

F
y



 for each output j. The first implies that if 0 0( , ) 1F x y   for some input-output 

combination 0 0( , )x y then an increase in any input without a corresponding decrease in another 

input would not render the output bundle y
0
 infeasible. Similarly, if the quantity any one output is 

reduced without increasing any other output, x
0
 would be able to produce the new output bundle. 

These are known as free disposability assumptions. 

 One may, however, avoid an explicit parametric specification of the transformation 

function and merely impose a number of fairly weak restrictions on the admissible technology. 

In particular, one assumes only that the technology set is convex and that both inputs and outputs 

are freely disposable. These assumptions can be formally stated as: 
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(i)  0 0 1 1 0 1 0 1( , ),( , ) ( (1 ) , (1 ) ) | 0 1.x y x y T x x y y T              

(ii) 0 0 1 0 1 0( , ) ( , ) | .x y T x y T x x     

(iii) 0 0 0 1 1 0( , ) ( , ) | .x y T x y T y y     

 The nonparametric method of Data Envelopment Analysis (DEA) permits one to 

empirically construct and estimate of the technology set from a set of observed input-output 

bundles with the additionally recognition of the fact that any observed input-output bundle is 

undoubtedly feasible. Thus, if ( , )j jx y is one of a sample of N observations, then (x
j
, y

j
)  T  for j 

= 1,2,…,N.  A DEA estimate of the technology set underlying the data is 

1 1 1

( , ) : ; , 1; 0;( 1,2,..., ) .
N N N

j j

j j j jS x y x x y y j N   
 

      
 

    

If, in addition to convexity and free disposability of inputs and outputs one also assumes constant 

returns to scale, the corresponding estimate of the technology becomes 

1 1

( , ) : ; , 0;( 1,2,..., ) .
N N

C j j

j j jS x y x x y y j N  
 

     
 

   

Weak Disposability 

 There are many realistic situations where the assumption of free (also known as strong) 

disposability of inputs and/or outputs may be inappropriate. This is especially true when the 

production process results in both good (or desirable) outputs and bad (or undesirable) outputs. A 

widely used example is one of electric power generation, where burning fossil fuels produces 

both electric energy (the good output) and smoke (bad output). In this case one cannot reduce 
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smoke (the bad output) and still produce the same level of power (the good output) from the 

same input bundle. In fact, pollution reduction would require additional resources to be 

employed for abatement. It is possible to argue that the good and the bad outputs are weakly 

disposable in the sense that they can be reduced together. That is, the level of pollution can be 

lowered if power generation is reduced as well. This is the view popularized by Färe, Grosskopf, 

and their co-authors in measurement of efficiency in the presence of bad outputs. It should be 

noted that the good and the bad outputs are effectively treated as joint products. In fact, Färe et 

al. consider them to be null joint meaning that the bad output can be eliminated only if no good 

output is produced either. For a formal representation, partition the output vector as 

( , )y g b where g and b are sub-vectors of good and bad outputs. Weak disposability of outputs 

can be defined as 

 0 0 0 0 0( , , ) ( , , ) | 0 1.g b x T kg kb x T k      

 An alternative interpretation of production of the bad alongside the good output is that the 

bad output results from the use of some polluting inputs that are used for the production of the 

good output. To the extent that there is any substitution possibility between the polluting and the 

‘neutral’ inputs, it would be possible to reduce the bad output without reducing the good output 

by changing the input mix. Partition the input vector as ( , )x p q where p and q represent the 

sub-vectors of polluting and neutral inputs, respectively. In this case, the weak disposability 

assumption applies to b and p rather than to g and b. One can think of two sub-technologies: 

 1 1( , ; ) : ( , ; ) 1T p q g F p q g  and 

  2 2( , ) : ( , ) 1 .T p b F p b   
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The strong disposability assumptions about inputs and outputs apply for T
1
 but only weak 

disposability applies for T
2
. More specifically,  

2 2( , ) ( , ) | 0 1.p b T kp kb T k      

Finally, the overall technology set is 

 1 2( , , , ) : ( , , ) , ( , ) .T p q b g p q g T p b T    

In this view taken in Forsund (1998, 2009), Murty and Russell (2010) and others, the bad outputs 

are by-products of a specific subset of polluting inputs and are technologically separable from 

the good outputs. 

The corresponding DEA estimates of the CRS technologies would be: 

1

1 1 1

( ; , ) : ; , ;1 0; 0;( 1,2,..., )
N N N

C j j j

j j j jS x g b x x g k g b k b k j N   
 

        
 

    

and 

2

1 1 1 1

( , ; , ) : ; , ; ; 1 0; 0;( 1,2,..., )
N N N N

C j j j j

j j j j jS p q g b q q p k b b k b g g k j N    
 

         
 

   

 

Measuring Efficiency with Bad Outputs 

 Measured efficiency in production depends on the criterion function and the assumptions 

about the technology. For the present study we consider three alternatives: 

(a) input-oriented efficiency assuming weak disposability of the offending input and the bad 

output; 
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(b) output-oriented efficiency assuming weak disposability of the offending input and the 

bad output; 

(c) the Nerlove-Luenberger Directional efficiency assuming weak disposability of the 

offending input and the bad output. 

In all cases, the good output and the neutral inputs are assumed to be freely disposable. 

The corresponding efficiency measures would be 

*

2min : ( , ; , ) Cp q g b S      for case (a), where the value of the  DEA score 
* equal to 

one means efficiency (i.e., there is more room  for reducing the bad output coupled with 

polluting or bad input) while a value less than one means inefficiency 

*

1


where *

2max : ( , , , ) Cp q g b S     for case (b), where the value of the  DEA score *

equal to one means efficiency (i.e., there is more room  for expanding  the good output) while 

a value less than one means inefficiency 

*(1 ) where  *

2max : (1 ) , ;(1 ) ,(1 ) Cp q g b S         for the case (c), where the 

value of the  DEA score * equal to zero means efficiency (i.e., there is more room  for 

reducing the bad output coupled with polluting or bad input  along with expanding  the good 

output) while a value greater than zero means inefficiency. 

 For the present paper, denoting the vector of agricultural outputs as g, the pollution 

measures (harmful to people and fish) as b. fertilizers and other agricultural chemicals as F, and 

the other inputs as x, the alternative DEA models can be formulated as follows: 
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Model 1 (input-oriented efficiency)                Min                                                                    (1) 

s.t. 
0gg j

j   

      0bb jj    

      0FFjj    

     
0xx j

j   

0j  

Model 2 (output-oriented efficiency)                Max                                                                  (2) 

s.t. 
0gg j

j    

      0bb jj    

      0FFjj    

     
0xx j

j   

1  

0j  
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Model 3 (the Nerlove-Luenberger Directional efficiency)                                                           (3) 

                    Max   

s.t. 
0)1( gg j

j    

      0)1( bb jj    

      0)1( FFjj    

     
0xx j

j   

0  

0j  

Data 

 The analysis employs conventional and environmental data. The conventional data used 

to construct the productivity indexes are based on desirable outputs and inputs. These data are 

described in Ball et.al, 1999 in Harper et al. “New Developments in Productivity Analysis”, 

2001. The most recent version of data is updated, revised and extended through 1997 

(www.ers.usda.gov/Data/AgProductivity/). It is a unique panel of state-level data set developed 

by the U.S. Department of Agriculture’s (USDA’s) Economic Research Service (ERS) in 

cooperation with the USDA’s Natural Resources Conservation Center (NRCS). The inputs 

include services of capital, land, labor, energy, agricultural chemicals and other goods. The 

desirable (“good”) outputs are crops, livestock and farm related output. The data are available for 

the forty-eight contiguous states over the period 1960-1997. Longitudinal indexes of outputs and 

http://www.ers.usda.gov/Data/AgProductivity/
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inputs are constructed. An index of relative, real output and real input between two states is 

obtained by dividing the nominal output (alternatively, input) value ratio for the two states by 

corresponding output (relatively, input) price index. EKS multilateral price indexes are then 

constructed for 1996. The base year is 1996 because that is the year for which detailed price 

information is available.  The corresponding quantity indexes for the other years are formed by 

chain-linking them to a base Alabama state in 1996.  

 The data for our measure of detrimental effects of pesticides (undesirable outputs – 

henceforth “bads”) are based on Kellogg, Nehring, and Grube (1998), Kellogg and Nehring 

(1997), and Kellogg, Nehring, Grube, Plotkin, et al. (1999).  The measurement of risk is based 

on the extent to which the concentration of a specific pesticide exceeds a water quality threshold. 

The annual concentration at the bottom of the root zone and the edge of the field for 4,700 

representative soils is estimated for each of 200 pesticides applied to twelve crops. Furthermore, 

these estimated concentrations are compared to water quality thresholds that represent non 

harmful levels for chronic exposure. The risk indicator is constructed using the concentration-

threshold ratio upon the evidence that the concentration of a specific pesticide exceeds the 

threshold.  This leads the bad outputs indicators to proxy changes over time and across states in 

the risk from pesticide exposure (Ball et al., 2004). These “bads” were intended to capture the 

effects of the agricultural use of chemical pesticides on groundwater and surface water quality.  

We use two indicators of pesticide “bads”. The first indicator includes separate indexes of 

pesticide leaching into groundwater and runoff into surface water. The second indicator of 

indexes of “bads” accounts for toxicity and, therefore environmental risk factors. Additionally, 

we have two types of risk: one that is associated with exposure to humans and other that is 

associated with exposure to fish. More precisely we have four indicators of pesticide “bads”. We 
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have a leaching indicator for human and a leaching indicator for fish; and we have a runoff 

indicator for human and a runoff indicator for fish. Pesticide leaching and runoff series from 

Kellogg et al. (2000) are updated by using state level productivity account information on 

quality-adjusted quantities of pesticides and acres planted by crop for the 12 crops used in the 

Kellog et.al analysis.  A more detailed discussion of the construction of these series is provided 

in Kellogg et al. (2002).  

 The data shown in Table 1 are confined to summary annual values of all thirteen 

variables, aggregated across forty eight states using land variable as the weight indicator. Figure 

1 and Figure 2 depict trends in all variables aggregated across states. As seen in Figure 1, good 

outputs (i.e., livestock, crops, and farm related output) have grown at a faster rate than any 

purchased input. The labor force for U.S. agriculture declined dramatically and steadily over 

1960 to 1994. As a result, we expect a conventional efficiency measures to exhibit increasing 

patterns at the aggregate level. At the same time, a lot of interstate variation can lead to 

downward effects of efficiency measures in some states.  

 In contrast with the relatively smooth pattern of change in the good outputs and the 

purchased inputs, the four undesirable (bad) outputs exhibit dissimilar patterns of trends (Figure 

2). The indicators of human risk-adjusted from exposure to pesticide runoff and fish risk-

adjusted from exposure to pesticide runoff show moderate early growth along with the early 

growth in the purchased inputs excluding the labor force input. However, while the purchased 

inputs show the same slow growing patterns over the study period, the environmental risk 

indicators from pesticide runoff begin to decline in the mid-1970s with a sharp increase in fish 

risk-adjusted from exposure to pesticide runoff indicator in 1990. The indicators of human risk-

adjusted from exposure to pesticide leaching and fish risk-adjusted from exposure to pesticide 
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leaching indicators show extremely rapid early growth until mid-1970s followed by slower rates 

of decline and some growth of human risk-adjusted from exposure to pesticide leaching in mid-

1990s. Regardless of the divergent time paths, we have no expectation concerning the 

relationship between the conventional and broad efficiency measures neither at the aggregate 

level nor at the state level.       

 In our analysis we model the production of “good” and “bad” outputs, allowing the good 

output and the neutral inputs to be freely disposable, both conceptually and empirically using 

three alternative ways to measure the efficiency level.  

Preliminary Results 

 We apply our methods to a unique conventional and environmental panel of state-level 

data on outputs and inputs that is updated, revised and extended through 1997.  Although our 

results are preliminary, they suggest that the efficiency measures differ depending on how the 

bad outputs are taken into consideration. The indexes of undesirable (bad) outputs explicitly 

account for toxic chemical effects so that we can assess the risks to both humans and the 

environment. In our analysis we use risk-adjusted indexes for both pesticide runoff and leaching. 

To that end, we consider two types of risk: that associated with exposure to humans (i.e., human 

risk-adjusted effect of pesticide leaching and human risk-adjusted effect of pesticide runoff) and 

that associated with exposure to fish (i.e., fish risk-adjusted effect of pesticide leaching and fish-

adjusted effect of pesticide runoff). In our analysis we also include three good outputs, five good 

inputs and one polluting input. The variables are used to calculate data envelopment analysis 

input, output and the Nerlove-Luenberger Directional efficiency scores with three different 

model specifications. The same set of outputs and inputs are included in all the models.   
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 The results for the forty eight states with the three different model specifications are 

summarized in the different tables. The study reveals considerable variations in state-wise 

efficiency scores. To illustrate, Tables 2, 3 and 4 exhibit the averages of the overall efficiency 

scores over time. We present the average efficiency scores for corn, cotton and soybean states. 

One interesting pattern we observe is that if we look at the key corn-producing states (Illinois, 

Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South 

Dakota, and Wisconsin) they show that, in general, there is more room for reducing the bad 

output (coupled with the polluting input or bad input such as agricultural chemicals in our data 

set) than for expanding the good outputs.  Selected individual states in this group such as 

Michigan (in 1960-1970: * = 0.9774, in 1970-1980: * =0.9501, and in 1980-1990:  
* =0.8397)   

Minnesota (in 1960-1970: 
* = 0.9773, in 1970-1980: 

* =0.9307, and in 1980-1990:  
*

=0.9894) and Missouri (in 1960-1970: * = 0.9335, in 1970-1980: * =0.8016, in 1980-1990:  
*

=0.5481, and in 1990-1997:  
* =0.5509) have consistently performed inefficiently with respect 

to pollution abatement (column 
* in Table 2).  Among the cotton states (e.g., Alabama, Arizona, 

California, Georgia, Louisiana, Mississippi, New Mexico, North Carolina, Oklahoma, South 

Carolina, Texas, and Tennessee), six out of 12 states were found efficient over the entire period. 

Louisiana (in 1960-1970:  
* =0.6357, 

* = 1.1192, and
*  = 0.1265, respectively; in 1970-1980:  

* =0.8867, 
* = 1.0277, and

*  = 0.0095, respectively; in 1980-1990:  
* =0.7908, 

* = 1.0397, 

and
*  = 0.0217, respectively), Mississippi (in 1960-1970:  

* =0.7799, 
* = 1.0033, and

*  = 

0.0071, respectively; in 1970-1980:  
* =0.7433, 

* = 1.0138, and
*  = 0.0023, respectively) and 

Tennessee (in 1960-1970:  
* =0.7309, 

* = 1.0624, and
*  = 0.0329, respectively; in 1970-

1980:  
* =0.5368, 

* = 1.1557, and
*  = 0.1417, respectively; in 1980-1990:  

* =0.4930, 
* = 
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1.2137, and
*  = 0.2358, respectively, and in 1990-1997:  

* =0.8258, 
* = 1.0492, and

*  = 

0.0404, respectively ) showed significant levels of inefficiency in pollution abatement (Table 3). 

The soybean states are the corn states plus Arkansas, Maryland, and Virginia. The last three 

states do not show any significant inefficiency (Table 4).  

 To obtain a better understanding of the preliminary results, we examine pesticide runoff 

risk indicators for protection of drinking water patterns in corn, cotton, and in soybean producing 

states (Figure 3 – Figure 7). Ball et al., 2002 estimated that the use of pesticides in the production 

of corn, cotton and soybean accounted for approximately two- thirds of the total pounds of active 

ingredients applied to the field. The pesticides that caused much of the leaching and runoff in the 

early 1970s were alachlor, atrazine, aldrin, carbofuran, phroate, trifluralin, and propachlor. The 

EPA, the main pesticides regulation institution, cancelled all uses of aldrin in 1974. In 1982, 

restrictions were imposed on the application of trifluralin. Most uses of carbofuran were 

cancelled in the early 1990s (Ball et al., 2002). Insecticide use is very important in cotton 

production. The most commonly used, not environmentally friendly, pesticides were aldrin and 

EPN. However, their use was cancelled in 1974 and 1987 respectively, thereby decreasing the 

risk to human health in the years since then. 

  The efficiency measures coincide with the decreasing pattern of pesticide applications 

for corn producing states. Our findings provide more room for reducing the bad output, along 

with the polluting input which may help to keep the declining pattern over the years (Figure 5). 

While there is no evident downward trend for the application of pesticides in Iowa (Figure 7), it 

is still more environmentally feasible to reduce bad output than to expand the good output. The 

cotton producing states show consistency with the efficiency score measures. Louisiana (Figure 

6), for example, showed significant levels of inefficiency in pollution abatement and increasing 
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patterns in the pesticide runoff risk indicator for protection of drinking water (i.e., increasing 

pattern in risk to human health).   

Concluding Remarks 

 This paper presents findings on the efficiency score measures with undesirable or bad 

outputs and the offending bad input (i.e., pesticides and fertilizers) for twelve key corn producing 

states, twelve key cotton producing states, and fifteen key soybean producing states using a  

unique panel of state-level data set for 1960-1997. Our preliminary findings indicate that the 

efficiency scores for corn, cotton, and soybean producing states are consistent with the pesticide 

risk indicators for protection of drinking water patterns discussed in Kellogg et al, 2002. In 

general, there is more room for reducing the bad output along with the polluting input (e.g., 

pesticide and fertilizer) than for expanding the good outputs (e.g., crops, livestock, and farm 

related output) in the major corn and soybean producing states. Only half of the 12 cotton 

producing states were found to be efficient over the entire period.  

 Our findings using the updated, revised and extended through 1997 USDA data on 

“goods” and “bads” differ from the previous results reported in Harper et al. “New Developments 

in Productivity Analysis” (2001) due to the different approach (i.e., measured efficiency scores) 

used in this study.  In our future research we intend to conduct a study using the same approach 

(i.e., measuring productivity growth using the Malmquist-Luenberger productivity index) with 

updated, revised and extended through 2004 USDA data on “goods” and “bads”.  
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Figure 1. Trends in Marketed Outputs and Purchased inputs 

 

Figure 2. Trends in Environmental Impact Indicators 
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Figure 3. Pesticide Runoff Risk Indicators for Protection of Drinking Water, Southeast 

States  

 

Source: Kellogg et al., 2000 

Figure 4. Pesticide Runoff Risk Indicators for Protection of Drinking Water, Four 

Northern Plains States  

 

Source: Kellogg et al., 2000 
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Figure 5. Pesticide Runoff Risk Indicators for Protection of Drinking Water, Four Midwest 

States  

 

Source: Kellogg et al., 2000 

Figure 6. Pesticide Runoff Risk Indicators for Protection of Drinking Water, Louisiana 

 

Source: Kellogg et al., 2000 
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Figure 7. Pesticide Runoff Risk Indicators for Protection of Drinking Water, Iowa 

 

Source: Kellogg et al., 2000 
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Table 1. Data Summary: Annual Values of the Thirteen Variables  

Year Livestock Crops Farm 

Related 

Capital Labor Energy Others Agricultural 

Chemicals 

HL HR FL FR 

1960 18.91 19.51 3.71 8.98 47.94 2.39 15.51 1.72 0.32 150.93 0.03 144.08 

1961 19.98 18.95 3.68 8.89 45.57 2.44 16.28 1.88 0.37 126.35 0.04 148.33 

1962 20.44 19.21 3.54 8.82 44.37 2.45 16.91 1.89 0.43 147.99 0.04 141.01 

1963 20.96 20.24 3.48 8.87 42.24 2.52 17.13 2.18 0.56 185.13 0.04 152.18 

1964 21.18 19.64 3.26 8.99 39.78 2.60 16.65 2.42 0.57 173.10 0.03 134.96 

1965 21.11 21.06 3.31 9.14 38.82 2.65 17.07 2.55 1.05 170.15 0.04 158.05 

1966 21.89 21.38 3.25 9.44 36.63 2.70 18.19 2.90 1.50 206.53 0.06 170.26 

1967 22.54 21.30 3.15 9.75 34.97 2.71 18.67 3.08 1.76 221.82 0.06 187.49 

1968 22.78 22.70 3.11 10.22 33.94 2.73 19.20 2.73 1.82 204.30 0.06 194.16 

1969 23.26 23.13 2.88 10.45 33.51 2.80 19.72 3.01 1.97 200.17 0.11 144.81 

1970 24.04 21.98 2.51 10.59 33.06 2.79 19.59 3.14 1.94 174.36 0.67 154.20 

1971 25.32 23.80 2.47 10.70 31.85 2.79 20.50 3.26 2.04 204.91 0.64 159.53 

1972 26.18 24.59 2.40 10.79 32.22 2.72 21.96 3.45 2.31 196.50 0.94 223.26 

1973 25.85 27.49 2.57 10.96 32.39 2.73 22.59 3.78 2.80 230.56 1.26 156.32 

1974 25.08 24.19 2.55 11.47 30.78 2.67 19.55 3.97 3.07 232.36 2.01 182.67 

1975 24.44 27.87 2.65 11.90 31.05 3.01 18.95 3.80 2.83 176.79 2.00 145.91 

1976 25.39 27.65 2.63 12.22 31.19 3.43 20.26 4.69 3.95 156.49 2.43 188.83 

1977 25.84 30.06 2.55 12.54 30.64 3.48 21.02 4.16 4.08 153.58 2.51 209.31 

1978 25.92 30.30 2.50 12.59 30.72 3.46 22.08 4.59 3.55 139.09 2.27 188.00 

1979 26.03 34.16 2.44 13.06 30.75 3.39 25.29 5.14 3.42 148.43 1.97 206.50 

1980 25.96 30.99 2.11 13.56 30.94 3.26 23.25 5.83 3.64 149.99 1.97 186.52 

1981 25.94 35.50 1.95 13.40 29.72 3.10 21.84 5.58 3.58 147.28 1.52 223.73 

1982 26.56 36.05 3.38 13.05 29.66 2.85 22.53 4.67 3.05 146.47 1.63 192.28 

1983 26.23 28.23 3.24 12.90 28.15 2.80 21.86 4.41 2.76 106.94 1.08 188.39 

1984 26.50 33.11 3.26 12.45 28.52 2.88 21.03 5.26 2.87 151.64 1.21 213.61 

1985 26.98 36.10 3.92 12.23 27.87 2.58 20.82 5.19 3.20 140.86 1.11 190.87 

1986 27.45 34.25 3.99 11.58 25.48 2.70 22.22 5.49 2.84 127.32 0.89 196.72 

1987 27.84 33.74 3.66 10.91 25.48 2.78 22.55 4.96 2.85 120.39 1.22 192.42 

1988 28.24 28.76 4.16 10.46 26.33 2.80 21.88 4.70 3.16 135.31 1.38 246.73 

1989 28.02 34.49 4.39 10.11 25.96 2.80 21.40 4.82 3.35 122.72 1.31 254.72 

1990 29.54 36.19 4.45 9.92 26.00 2.91 22.84 5.21 3.36 121.71 1.25 534.39 

1991 30.05 35.23 4.86 9.63 25.07 2.90 23.21 5.47 3.01 124.75 1.20 307.41 

1992 30.59 39.64 4.78 9.40 23.68 2.82 22.92 5.69 3.12 134.03 1.12 252.18 

1993 31.21 36.08 4.84 9.27 23.02 2.81 23.85 5.76 3.10 119.11 0.96 231.19 

1994 32.15 41.71 4.67 9.06 23.07 2.90 23.82 5.83 3.71 130.58 0.91 327.97 

1995 33.17 36.13 5.10 8.99 24.64 3.15 25.57 6.53 4.44 97.92 1.18 272.53 

1996 31.33 40.03 4.51 8.76 24.99 3.17 22.91 7.21 4.07 94.70 0.96 258.36 

1997 33.07 42.65 5.29 8.73 24.18 3.19 25.06 7.57 3.79 88.64 1.15 222.24 

Definitions of environmental impact indicators: HL – human risk-adjusted effects from exposure to pesticide leaching; HR –

human risk-adjusted effects from exposure to pesticide runoff; Fl – fish risk-adjusted effect from exposure to pesticide leaching; 

and FR – fish risk-adjusted effect from exposure to pesticide runoff 

 

 

 

 

 



29 
 

Table 2. Efficiency Measures ( 
* , * and * ) for Corn Sates 

Corn States *  
*  *  

Illinois 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Indiana 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

0.8506 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Iowa 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Kansas 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

0.8557 

0.9451 

 

1 

1 

1.0548 

1.0123 

 

0 

0.0146 

0.0656 

0.0197 

 

Michigan 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

0.9774 

0.9501 

0.8397 

1 

 

1 

1.0160 

1.0315 

1 

 

0.0171 

0.0396 

0.0328 

0 

 

Minnesota 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

 

 

0.9773 

0.9307 

0.9894 

1 

 

1 

1 

1 

1 

 

0.0038 

0.0038 

0 

0 
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Missouri 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

 

0.9335 

0.8016 

0.5481 

0.5509 

 

 

1.0231 

1.0660 

1.1457 

1.2103 

 

 

0 

0.0707 

0.1557 

0.2134 

Nebraska 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

0.9890 

1 

 

1 

1 

1.0007 

1 

 

0 

0 

0.0042 

0 

 

North Dakota 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0.0001 

0 

0 

0 

 

Ohio 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0.0063 

0 

0 

 

South Dakota 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Wisconsin 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 
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Table 3. Efficiency Measures ( 
* , * and * ) for Cotton Sates 

Cotton States *  
*  *  

Alabama 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Arizona 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

California 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Georgia 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Louisiana 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

0.6357 

0.8667 

0.7908 

1 

 

1.1192 

1.0277 

1.0397 

1 

 

0.1265 

0.0095 

0.0217 

0 

 

Mississippi 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

 

 

0.7799 

0.7433 

0.7572 

1 

 

1.0033 

1.0138 

1.0154 

1 

 

0.0071 

0.0023 

0 

0 
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New Mexico 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

 

1 

1 

1 

1 

 

 

1 

1 

1 

1 

 

 

0 

0 

0 

0 

North Carolina 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Oklahoma 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

0.9604 

0.8938 

0.9501 

0.9035 

 

1.0077 

1.0084 

1 

1 

 

0 

0.0215 

0 

0.0107 

 

South Carolina 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

0.9656 

0.7669 

0.8806 

 

1 

1.0322 

1.0454 

1.0115 

 

0 

0.0216 

0.0517 

0.0117 

 

Texas 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

0.9243 

0.9719 

1 

 

1 

1.0227 

1 

1 

 

0 

0.0513 

0.0089 

0.0025 

 

Tennessee  

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

0.7309 

0.5368 

0.4930 

0.8258 

 

1.0624 

1.1557 

1.2137 

1.0492 

 

0.0329 

0.1417 

0.2358 

0.0404 
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Table 4. Efficiency Measures ( 
* , * and * ) for Soybean Sates 

Soybean States *  
*  *  

Arkansas  

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

0.9908 

0.9908 

0.9841 

1 

 

1.0025 

1 

1.0005 

1 

 

0.0023 

0 

0.0007 

0 

 

Illinois 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Indiana 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

0.8506 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Iowa 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Kansas 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

0.8557 

0.9451 

 

1 

1 

1.0548 

1.0123 

 

0 

0.0146 

0.0656 

0.0197 

 

Maryland 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

0.9430 

1 

1 

1 

 

1.0078 

1 

1 

1 

 

0.0068 

0 

0 

0 

 

 



34 
 

Michigan 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

0.9774 

0.9501 

0.8397 

1 

 

1 

1.0160 

1.0315 

1 

 

0.0171 

0.0396 

0.0328 

0 

 

Minnesota 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

 

 

0.9773 

0.9307 

0.9894 

1 

 

1 

1 

1 

1 

 

0.0038 

0.0038 

0 

0 

Missouri 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

 

0.9335 

0.8016 

0.5481 

0.5509 

 

 

1.0231 

1.0660 

1.1457 

1.2103 

 

 

0 

0.0707 

0.1557 

0.2134 

Nebraska 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

0.9890 

1 

 

1 

1 

1.0007 

1 

 

0 

0 

0.0042 

0 

 

North Dakota 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0.0001 

0 

0 

0 

 

Ohio 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0.0063 

0 

0 
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South Dakota 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

Virginia 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

0.8887 

1 

0.9579 

 

1 

1.0291 

1 

1.0115 

 

0 

0.0283 

0 

0.0121 

Wisconsin 

1960-1970 

1970-1980 

1980-1990 

1990-1997 

 

1 

1 

1 

1 

 

1 

1 

1 

1 

 

0 

0 

0 

0 

 

 

 


