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Comparing the Bias of Dynamic Panel Estimators in
Multilevel Panels: Individual versus Grouped Data

Nathan P. Hendricks and Aaron Smith

Abstract

We propose the Grouped Coefficients estimator to reduce the bias of dynamic panels
that have a multilevel structure to the coefficient and factor loading heterogeneity. If
groups are chosen such that the within-group heterogeneity is small, then the grouped
coefficients estimator can lead to a substantial bias reduction compared to fixed effects
and Arellano-Bond estimators. We also compare the magnitude of the bias of panel
estimators with individual versus aggregate data and show that the magnitude of the
bias also depends on the proportion of the heterogeneity that is within groups. In an
application to estimating corn acreage response to price, we find that the grouped co-
efficients estimator gives reasonable results. Fixed effects and Arellano-Bond estimates
of the coefficient on the lagged dependent variable appear to be severely biased with
county-level data. In contrast, if we randomly assign the fields to groups and aggregate
within the random groups, then pooled OLS of the randomly aggregated data gives a
reasonable estimate of the coefficient on the lagged dependent variable.



1 Introduction

We study the estimation of dynamic regression models using panels of heterogeneous indi-

viduals or firms over time when the time series dimension of the panel (T ) is small. This

problem has been studied extensively in econometrics, but panels with a multilevel (i.e., clus-

ter or hierarchical) structure have received little attention.1 Multilevel structure is common

in panel data, and we show that it can be exploited to reduce bias. Examples of multilevel

structure include individuals who are more similar to others in their school, county, or state

than those outside, and firms that are more similar to those in their sector or region than

those outside.

Dynamic panels with heterogeneous intercepts and small T have received considerable

attention in the literature. Nickell (1981) showed that fixed effects estimates are inconsistent

for small T . Several articles have proposed consistent estimators that are based on using

lags as instruments (e.g., Anderson and Hsiao, 1982; Arellano and Bond, 1991; Arellano and

Bover, 1995) or deriving a bias correction (e.g., Kiviet, 1995; Hahn and Kuersteiner, 2002).

The instrumental variables methods, however, are not consistent when either i) the coefficient

on the lagged dependent variable or an autocorrelated regressor is heterogeneous (Pesaran

and Smith, 1995) or ii) there is cross-sectional dependence (Sarafidis and Robertson, 2009).

Even when T is large, fixed effects estimates of dynamic panels with heterogeneous co-

efficients on the lagged dependent variable or an autocorrelated regressor are inconsistent

(Robertson and Symons, 1992; Pesaran and Smith, 1995). In the case of large T , Pesaran

and Smith (1995) propose the mean group estimator, where a separate regression is esti-

mated for each individual and coefficients are averaged across individuals. Hsiao, Pesaran,

and Tahmiscioglu (1999) find that the mean group estimator performs poorly when T is

small and propose the use of a hierarchical Bayes estimator of the random coefficients.
1The typical panel formulation can be thought of as a multilevel structure with time and individuals

as separate levels. Here we use the term “multilevel” to indicate multiple levels of heterogeneity in the
cross-section.
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There is also a literature that examines the impact of cross-section dependence on dy-

namic panel estimators with fixed T . Phillips and Sul (2007) show that incidental trends

and cross-sectional dependence can substantially increase the bias of fixed effects in dynamic

panels with heterogeneous intercepts and derive a bias correction. Sarafidis and Robertson

(2009) show that time fixed effects can reduce the bias of generalized method of moments

estimators with cross-sectional dependence as long as the variance of the factor loadings is

small. Nauges and Thomas (2003) propose a double-differencing approach with generalized

methods of moments to remove the influence of common factors.

We make two contributions to the dynamic panel data literature. First, we propose

the use of a grouped coefficients estimator to reduce the bias in dynamic panels with i)

heterogeneous coefficients, ii) cross-sectional dependence due to common factors or incidental

trends, and iii) small T . Second, we investigate the difference in the bias of fixed effects under

these conditions with individual versus aggregate data.

The grouped coefficients estimator exploits knowledge of the multilevel structure of the

data to reduce the bias due to heterogeneous coefficients. The grouped coefficients estimator

is implemented by estimating pooled OLS for groups of relatively homogeneous individuals,

then an estimate of the mean marginal effect is obtained by averaging marginal effects across

groups. If groups are defined such that there is no within-group coefficient heterogeneity

and the groups are sufficiently large, then the grouped coefficients estimator consistently

estimates the coefficients specific to each group and the overall mean coefficient. Estimating

coefficients specific to each group removes the pooling bias from coefficient heterogeneity,

while pooling within the groups reduces the bias of the coefficient on the lagged dependent

variable due to small T .

A tradeoff exists in the specification of groups. If the groups are large, then pooling

reduces the bias of the coefficient on the lagged dependent variable due to small T . But if

groups are large, then the groups are likely to have more heterogeneity within groups and

the pooling bias from heterogeneous coefficients is larger.
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The grouped coefficients estimator also reduces the bias due to cross-sectional depen-

dence when the factor loadings have a multilevel structure. If there is no within-group

heterogeneity, then the bias from common factors is removed by including year fixed effects

in the grouped coefficients estimator. The grouped coefficients estimator is especially bene-

ficial when the overall variance of the factor loadings is large, but the variance of the factor

loadings within groups is small.

Our work is related to studies that have used a grouped effects estimator in static models,

where we use the term “grouped effects” to refer to an estimator with a separate intercept

for each group. For example, Bester and Hansen (2009) consider a grouped effects estimator

in nonlinear panel data models to reduce the bias from the incidental parameters problem.

Deaton (1988) uses a grouped effects estimator with cross-section data.2

Our second contribution is to examine how the magnitude of the bias in standard panel

estimators differs with individual versus aggregate data when there are heterogeneous co-

efficients and cross-sectional dependence in a multilevel panel. This is important because

several studies use aggregate data (e.g., state or sector-level data). If most of the variation in

parameters is within groups that are aggregated, then the aggregation reduces the parameter

heterogeneity and panel estimators have less bias with aggregate data than individual data.

However, if most of the parameter heterogeneity is between groups, then panel estimators

typically have more bias with aggregate data than individual data. Furthermore, we show

that even the direction of the bias of fixed effects may differ depending on whether individual

or aggregate data are used.

We apply the grouped coefficients estimator to estimate the short-run and long-run corn

acreage response to price in Iowa, Illinois, and Indiana. Our estimates with field-level data

indicate that the long-run response to price is smaller than the short-run response to price.

This result is expected given that corn and soybeans are commonly grown in a crop rotation

in the region so that the probability of planting corn is lower if the field was previously
2Deaton (1988) and others refer to this estimator as the within-cluster estimator or cluster fixed effects.
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planted to corn, ceteris paribus. Estimates of the dynamics of corn acreage response to price

have important implications for understanding the effects of shocks to the corn market (e.g.,

ethanol production) on prices and the environment.

With field-level data, the coefficient on the lagged dependent variable is more negative

with pooled fixed effects and the Arellano-Bond estimator than with the grouped coefficients

estimator and pooled OLS gives a less negative coefficient. But all of the estimates with field-

level data are between -0.70 and -0.54. For each estimator, using aggregate data increases

substantially the coefficient on the lagged dependent variable. Estimates with county-level

data are between -0.14 and 0.87, where the coefficient is positive for pooled OLS and pooled

fixed effects. Consistent with our theory and simulations, our empirical estimates of the

coefficient on the lagged dependent variable using county-level data are substantially larger

than field-level estimates because the aggregation occurs over groups (counties) with large

between-group heterogeneity. When we randomly assign fields to groups and aggregate the

data within each of these groups—such that the aggregation should reduce the parameter

heterogeneity—and estimate the model with pooled OLS, the coefficient on the lagged depen-

dent variable is -0.52. Therefore, it is not the aggregation itself that results in the substantial

bias of the coefficient on the lagged dependent variable, but the form of the aggregation (i.e.,

aggregating over groups with substantial between-group heterogeneity). The grouped coef-

ficients estimates on prices do not differ substantially with fixed effects and Arellano-Bond

estimates with county-level data. But we do find more variability in the coefficients on prices

across different estimators with county rather than field-level data.

Our application to corn acreage response to price illustrates that the grouped coefficients

estimator performs well when there is knowledge about the multilevel structure of the data

and that caution is warranted when estimating dynamic panel models with aggregate data.

In particular, the bias of standard dynamic panel estimators with aggregate data can far

exceed the bias of pooled OLS with individual data when the aggregation occurs over groups

with substantial between-group heterogeneity.
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Section 2 defines a multilevel dynamic panel model, where a single common factor is a

special case where all of the variation in the exogenous variable is between years, and de-

scribes the potential of the grouped coefficients estimator to reduce bias. Section 3 examines

the magnitude of the bias of fixed effects with individual versus aggregate data. Section 4

describes our Monte Carlo simulations that compare the grouped coefficients estimator with

pooled fixed effects and the Arellano-Bond estimator with individual and aggregate data,

and section 4.2 presents results of the simulations. Section 5 presents our application to corn

acreage response to price in Iowa, Illinois, and Indiana.

2 Exploiting the Multilevel Structure to Reduce Bias

for Small T

We consider a heterogeneous dynamic panel with a common factor, where the coefficient

heterogeneity has a multilevel structure. The heterogeneous dynamic panel that we consider

is written as

yit = γiyi,t−1 + βixit + αi + εit, (1)

xit = µi(1− ρ) + ρxi,t−1 + uit,

γi ∼ N
(
γ, σ2

γ

)
, βi ∼ N

(
β, σ2

β

)
, κi ∼ N

(
0, σ2

κ

)
,

αi ∼ N
(
α, σ2

α

)
, εit ∼ N

(
0, σ2

ε

)
.

We assume that xit is strictly exogenous and is uncorrelated with the unobserved hetero-

geneity in the intercept, αi. The independent variable has unconditional mean µi and an

autocorrelation coefficient of ρ. The idiosyncratic errors, εit, are assumed to be indepen-

dently and identically distributed. We assume that each individual can be assigned uniquely

to a group. There are G� N such groups, where N denotes the total number of individuals
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in the sample. Denote by Ng the number of individuals in group g. The number of time

periods is denoted T .3

A multilevel structure is given to the model by assuming that the parameter heterogeneity

has a group-level component as well as an individual-level component,

γi = γ + λg + λi (2)

λg ∼ N
(
0, (1− δ)σ2

γ

)
, λi ∼ N

(
0, δσ2

γ

)
, E (λgλi) = 0

βi = β + ηg + ηi

ηg ∼ N
(
0, (1− δ)σ2

β

)
, ηi ∼ N

(
0, δσ2

β

)
, E (ηgηi) = 0

αi = α + θg + θi

θg ∼ N
(
0, (1− δ)σ2

α

)
, θi ∼ N

(
0, δσ2

α

)
, E (θgθi) = 0,

where δ is the intraclass correlation coefficient. In other words, δ represents the proportion

of the parameter variance that is within groups.

We also specify a multilevel structure for the variation of xit. We assume that the

variation of xit over time has an aggregate component as well as an idiosyncratic component,

uit = vt + vit (3)

vt ∼ N
(
0, (1− φ)σ2

u

)
, vit ∼ N

(
0, φσ2

u

)
,

where φ is the proportion of the variance of uit that is due to idiosyncratic variation (i.e.,

within years). In many empirical applications, the variation in xit is dominated by aggregate

level changes over time. For example, our empirical application estimates the supply response

of corn to price, where prices vary predominantly over time. Note that a common factor is
3Note that N (·) denotes the normal distribution while N denotes the total number of individuals.
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a special case of our model where all of the variation in xit is between years (µi = µ, φ = 0),

and βi is the factor loading.

Pesaran and Smith (1995) consider the case where the coefficients on the lagged dependent

variable and the autocorrelated regressor are heterogeneous. If T is large, then the mean

group estimator proposed by Pesaran and Smith (1995) gives consistent estimates of the

short-run and long-run average marginal effects. The mean group estimator is the average

of the coefficients estimated from separate least squares regressions for each individual. The

mean group estimator is, however, inconsistent for small T since the coefficient on the lagged

dependent variable is biased in the least squares regressions for each individual. Arellano-

Bond type estimators that use lagged values as instruments are also inconsistent when the

coefficients are heterogeneous (Pesaran and Smith, 1995). Hsiao, Pesaran, and Tahmiscioglu

(1999) perform Monte Carlo simulations and find that the mean group estimator performs

poorly when T is small relative to N . Instead, Hsiao, Pesaran, and Tahmiscioglu (1999)

propose the use of a hierarchical Bayes estimator of the random coefficients and find that it

performs well in Monte Carlo simulations.

Sarafidis and Robertson (2009) consider the effect of common factors on generalized

method of moments estimates under the case of a homogenous coefficient on the lagged de-

pendent variable. They show that generalized method of moments estimates can be severely

biased in the presence of the common factor, but that including year fixed effects reduces

the bias. The benefit of including year fixed effects is reduced as the variance of the factor

loadings increases. Intuitively, when the factor loadings are homogeneous, a model with year

fixed effects is correctly specified.

We propose a grouped coefficients estimator that exploits knowledge of the multilevel

structure of the data to reduce the bias in a heterogeneous dynamic panel that may include

a common factor.4 To implement the grouped coefficients estimator, the researcher defines
4We do not refer to the grouped coefficients estimator as a mean group estimator to avoid confusion with

the estimator proposed by Pesaran and Smith (1995) where regressions are estimated separately for each
individual.
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groups of relatively homogeneous individuals and estimates pooled OLS regressions for each

group. The grouped coefficients estimate of the mean coefficient is the weighted average of

the coefficients across the groups, where the weights correspond to the size of each group.

The bias from an omitted common factor is reduced by including year fixed effects in the

group-specific regressions. Alternatively, if the model has incidental trends as in Phillips and

Sul (2007), then the bias is reduced by adding a trend to the group-specific regressions.

It is straightforward to see that if groups are defined such that there is no within-group

coefficient heterogeneity and the groups are sufficiently large, then the grouped coefficients

estimator consistently estimates the coefficients specific to each group. In this case, estimat-

ing coefficients specific to each group removes the pooling bias from coefficient heterogeneity,

and pooling within groups reduces the bias of the coefficient on the lagged dependent variable

due to fixed T .

An advantage of the grouped coefficients estimator over the Bayesian random coefficients

estimator is that the grouped coefficients estimator does not impose a specific distributional

form on the coefficient heterogeneity and allows any form of correlation between the coef-

ficients at the group level. The grouped coefficients estimator also allows the unobserved

group-specific heterogeneity to be correlated with the regressors. Furthermore, the grouped

coefficients estimator is appealing because it is computationally simple compared to Bayesian

estimators. For example, in our application to corn acreage in section 5, we use a dataset

with roughly 1 million observations per year.

Bester and Hansen (2009) consider a grouped effects estimator in nonlinear panel data

models where the intercept varies across individuals. Nonlinear panel estimators with fixed

effects suffer from the incidental parameters problem. Bester and Hansen (2009) find a

tradeoff from the bias of incidental parameters and the bias from misspecification of the un-

observed heterogeneity. Estimating group-specific intercepts reduces the bias from incidental

parameters if groups are specified with a large number of individuals. But if groups have a
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large number of individuals, then there is also likely to be more unobserved heterogeneity

within groups.

An analogous tradeoff exists in our specification of groups in a multilevel dynamic model.5

If the groups are large, then pooling minimizes the bias of the coefficient on the lagged

dependent variable due to fixed T . But if groups are large, then the groups are likely to

have more within-group heterogeneity and the pooling bias from heterogeneous coefficients

is larger.

An alternative approach to reduce the bias of multilevel dynamic panel estimates is to

aggregate the data by groups, where the groups are defined such that all of the parameter

heterogeneity is within groups (see the discussion below in sections 3.1 and 3.2). For ex-

ample, this approach could be implemented by randomly assigning individuals to groups.

Intuitively, aggregation can eliminate the bias if the parameter heterogeneity is removed in

the aggregation.

The aggregation approach, however, is problematic because aggregation of a heteroge-

neous dynamic panel leads to a different dynamic structure at the aggregate level than at

the individual level (e.g., see Granger, 1980). Lewbel (1994) shows that the coefficient on

the first lagged dependent variable of an aggregate time series is the mean of the individual

coefficients on the lagged dependent variable under the assumption that the coefficient on

the lagged dependent variable is uncorrelated with the coefficient on the regressor. Under

more general assumptions, an aggregate model with a single lagged dependent variable gives

inconsistent estimates of the average coefficients (Pesaran and Smith, 1995).
5The incidental parameters problem underlies the bias of fixed effects in linear dynamic panels as well

(see Lancaster, 2000).
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3 Bias of Fixed Effects with Individual versus Aggre-

gate Data

Several studies use aggregate data rather than individual data to estimate a dynamic model.

In this section, we compare the bias of pooled fixed effects with individual versus aggregate

data and show how the bias depends on whether the data are aggregated over relatively

homogenous or relatively heterogeneous individuals. To keep results tractable, we consider

the bias of pooled fixed effects with individual versus aggregate data in two cases: the

coefficient on an autocorrelated regressor is heterogeneous (section 3.1), and the coefficient

on the lagged dependent variable is heterogeneous (section 3.2).

3.1 Heterogeneous Coefficient on the Autocorrelated Regressor

First, we consider a dynamic model with a heterogeneous coefficient on an autocorrelated

regressor,

yit = γyi,t−1 + βixit + αi + εit, (4)

xit = µi(1− ρ) + ρxi,t−1 + uit.

Pooled fixed effects gives biased estimates of the average coefficients in (4), even when

N → ∞ and T → ∞ (Pesaran and Smith, 1995). The source of the bias in pooled fixed

effects in this case is the serial correlation of the composite error term, which is therefore

correlated with yi,t−1.

Although we are primarily concerned with the case of small T in this paper, it is instruc-

tive to examine the bias of fixed effects as T →∞ since this will isolate the bias that is due

to the heterogeneous coefficient (βi). With fixed T there is also the well-known negative bias

of the coefficient on the lagged dependent variable in fixed effects due to the differencing.
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We denote the fixed effects estimates with individual data as γ̂ind and β̂ind. Pesaran and

Smith (1995) show that the bias of pooled fixed effects when N →∞ and T →∞ is

plim
N→∞,T→∞

(
γ̂ind

)
− γ =

ρ (1− γρ) (1− γ2)σ2
β

Ψ1
, (5)

plim
N→∞,T→∞

(
β̂ind

)
− β = −

βρ2 (1− γ2)σ2
β

Ψ1
, (6)

where

Ψ1 = σ2
ε

σ2
u

(
1− ρ2

)
(1− γρ)2 +

(
1− γ2ρ2

)
σ2
β +

(
1− ρ2

)
β. (7)

The estimate of γ is biased up and the estimate of β is biased down. The bias is increasing

in the variance of βi, and decreasing in the ratio of variances σ2
ε/σ2

u.

Next, consider the bias of fixed effects when aggregate data are used instead of individual

data. Granger (1980) shows that aggregating a heterogeneous dynamic panel can lead to a

substantially different dynamic structure at the aggregate level. In equation (4), however,

the coefficient on the lagged dependent variable is constant, so estimating the aggregate

dynamics with a single lagged dependent variable poses no particular problem.

Aggregating to the group level affects the variance of the parameters; and thus, change

the magnitude of the bias of fixed effects. Let the average group-level coefficient on the

independent variable be defined by β̄g = 1
Ng

∑
i∈g (β + ηg + ηi). The variance of the group-

level coefficients is V ar
(
β̄g
)

= V ar (ηg) + 1
Ng
V ar (ηi) or V ar

(
β̄g
)

= (1− δ)σ2
β + δσ2

β

Ng
.

Aggregation also reduces the variation in xit that is relevant for the bias of fixed effects,

V ar (ūgt) = (1− φ)σ2
u + φσ2

u

Ng
. The variance of the idiosyncratic errors at the group level is

V ar (ε̄gt) = σ2
ε

Ng
.

11



Substituting the variance of the parameters with aggregate data into equations (5) and

(6), the bias of pooled fixed effects with aggregate data is

plim
N→∞,T→∞

(γ̂grp)− γ =
ρ (1− γρ) (1− γ2)

(
(1− δ)σ2

β + δσ2
β

Ng

)
Ψ2

, (8)

plim
N→∞,T→∞

(
β̂grp

)
− β = −

βρ2 (1− γ2)
(

(1− δ)σ2
β + δσ2

β

Ng

)
Ψ2

, (9)

where

Ψ2 =
σ2
ε/Ng

(1− φ)σ2
u + φσ2

u

Ng

(
1− ρ2

)
(1− γρ)2 +

(
1− γ2ρ2

)(
(1− δ)σ2

β +
δσ2

β

Ng

)
+
(
1− ρ2

)
β.

(10)

Aggregating to the group-level decreases the variance of σ2
β, which decreases the bias of

fixed effects. On the other hand, aggregating to the group-level also decreases the vari-

ance of the idiosyncratic error relative to the time-varying portion of the variance of xit,(
σ2
ε/Ng

(1−φ)σ2
u+φσ2

u
Ng

≤ σ2
ε

σ2
u

)
, which increases the bias of fixed effects.

To examine whether the bias of fixed effects is larger with individual or aggregate data,

consider two special cases where all of the parameter variation is within groups and when all

of the parameter variation is between groups. In the case where all the parameter variation

is within groups (i.e., δ = 1), then using aggregate data substantially reduces the parameter

heterogeneity and the fixed effects estimator converges to the true parameter values as the

number of individuals in each group increases. When all of the parameter variation is between

groups (i.e., δ = 0), then the parameter variation does not decrease by using aggregate data.

But the variance of the idiosyncratic error relative to the time-varying portion of the variance

of xit decreases, and the bias of pooled fixed effects is larger with aggregate data than with

individual data. In summary, using aggregate data decreases the bias of fixed effects when

most of the parameter variation is within groups. However, using aggregate data can increase
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the bias of fixed effects when a portion of the parameter heterogeneity is between groups

and a portion of the variation in xit is common to all individuals.

If xit is a common factor, then none of the variation is idiosyncratic (φ = 0). Since a

common factor is likely to be autocorrelated—as we would think is true for macro-economic

shocks—then the coefficient on the lagged dependent variable captures the autocorrelation in

the unobserved common factors in addition to the dynamics of the model. Even if individual

and year fixed effects are included with large T , the common factor causes the coefficient on

the lagged dependent variable to be biased since individuals with a greater response to the

common factor are also likely to have a larger lagged dependent variable.

Similar to our previous arguments, a dynamic regression with individual and year fixed

effects has a larger bias with aggregate data than individual data if most of the hetero-

geneity of the factor loadings is between groups since the aggregation does not reduce the

heterogeneity of the factor loadings and the variance of the common factor is a larger pro-

portion of the variation in the dependent variable. This result is related to Granger (1987),

who demonstrated that common factors may have little explanatory power at the individual

level, but substantial explanatory power at the aggregate level. Omitting year fixed effects

to control for common factors causes more bias with aggregate data than individual data.

While we only consider the case of a single common factor, Phillips and Sul (2007) note

that for individual data the number of factors will typically be large and the number of

time periods small. They find that cross-section dependence has little effect on the dynamic

panel estimators when factors are independent and the number of factors is large. In contrast,

aggregate panels will have a small number of common factors that increases the bias of panel

estimators (Phillips and Sul, 2007).
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3.2 Heterogeneous Coefficient on the Lagged Dependent Variable

Next, we consider a model where the coefficient on the lagged dependent variable is het-

erogeneous, but the coefficient on the independent variable is homogeneous and there is no

autocorrelation in the independent variable,

yit = γiyi,t−1 + βxit + αi + εit, (11)

xit = µi + uit.

Using equation (A.20)-(A.25) in Pesaran and Smith (1995), we obtain the following formulas

for the bias of pooled fixed effects with individual data

plim
N→∞,T→∞

(
γ̂ind

)
− γ =

σ2
ε

σ2
u
E
(
λg+λi
1−γ2

i

)
+ β2∑∞

j=0 E
[
(λg + λi) γ2j

i

]
Ψ3

, (12)

plim
N→∞,T→∞

(
β̂ind

)
− β = 0, (13)

where γi = γ̄ + λg + λi and

Ψ3 = σ2
ε

σ2
u

E

(
1

1− γ2
i

)
+ β2

∞∑
j=0

E
(
γ2j
i

)
. (14)

The fixed effects estimate of the coefficient on the independent variables is not biased in

this case, but the lack of autocorrelation in xit is a necessary assumption for the bias to

disappear. The sign of the bias in γ̂ind is indeterminate, but is likely to depend on the sign

of γi.

Note that the magnitude of the bias in equation (12) depends on the the variance of

the idiosyncratic error relative to the time-varying portion of the variance of xit. Therefore,
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using aggregate data instead of individual data affects the magnitude of the bias of fixed

effects, but it is not clear whether the aggregation increases or decreases the bias.

Also note that if all of the parameter variation is within groups, then aggregating to the

group level eliminates the bias if the number of individuals in each group is sufficiently large.

When all of the parameter variation is within groups, λg = 0 and the average of λi converges

to zero and fixed effects is consistent when T →∞.

4 Monte Carlo Simulations

4.1 Simulation Design

We simulate a model with the multilevel structure defined in (1), (2), and (3). Parameter

values in the simulations are given in table 1. We set the true value of the coefficient on

the lagged dependent variable equal to -0.5 because this is roughly what we expect the

coefficient to equal in our application to corn acreage response to price. We randomly draw

the coefficients from a normal distribution, where the standard deviations vary across our

simulations. We replace values of the lagged dependent variable with -1 if the random draw

is less than -1, and replaced the value with 1 if the random draw is greater than 1.

The values of yit and xit are set to their mean, 0, initially. The first ten simulated periods

are discarded, giving eleven remaining periods. We use eleven periods since this is the length

of the panel considered in our application. Discarding the first ten periods creates a realistic

scenario where the initial values in the estimation are correlated with the individual-level

parameters. The aggregate data are created by simply taking the average of yit and xit

within each group.

In all of the simulations, we assume that the coefficient on the lagged dependent variable is

not correlated with the coefficient on the independent variable. Therefore, after aggregating

each group, the coefficient on the lagged dependent variable should approximately equal the

mean coefficient within the group (Lewbel, 1994). If estimators with aggregate data deviate
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from the mean coefficient, it represents bias from pooling coefficients of a heterogeneous

dynamic panel rather than bias from the aggregation itself.

We consider three different estimators of the mean coefficient on the lagged dependent

variable (γ) and the mean coefficient on the independent variable (β) with individual and

aggregate data. We consider the grouped coefficients estimator (GC) with individual data.

We consider pooled fixed effects (FE) and the Arellano-Bond estimator (A-B) with individ-

ual and aggregate data. The grouped coefficients estimator is implemented by estimating

a separate regression for each group, then averaging the coefficients across groups. The

Arellano-Bond estimator is the two-step GMM estimator that uses all of the available lags

as instruments for the differenced equation.

4.2 Monte Carlo Results

Average estimates of γ from the Monte Carlo simulations are presented in figure 1. Results

for the estimate of β are in figure 2. Each plot gives results for a different set of parameters.

The first column of plots gives results for σγ = 0.1, the second column of plots gives results

for σγ = 0.25, and the third column of plots gives results for σγ = 0.5. The first row of

plots gives results for σβ = 0.2, the second row of plots gives results for σβ = 0.5, and the

third row of plots gives results for σβ = 1. The x-axis indicates results for different intraclass

correlation coefficients (i.e., the proportion of the parameter variance that is within groups).

When δ = 0, none of the parameter variation is within groups. When δ = 1, all of the

parameter variation is within groups. Different lines on the graph indicate estimates from

the alternative estimators.

Results in figure 1 show estimates of the coefficient on the lagged dependent variable.

For our simulations, the grouped coefficients estimator typically has less bias than the other

estimators when less than 1/3 of the parameter variation is within groups. The grouped

coefficients estimator can lead to a substantial reduction in the bias over other estimators

with individual data when the heterogeneity of the coefficients is large.
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Fixed effects and Arellano-Bond estimates of the coefficient on the lagged dependent

variable decrease when the variance of γi is larger, and increase when the variance of βi is

larger. The sign of the bias of fixed effects and Arellano-Bond estimates often depends on

whether individual or aggregate data are used. Although fixed effects and Arellano-Bond

estimates typically have a negative bias with individual data, they can have a positive bias

with aggregate data when most of the parameter heterogeneity is within groups. The positive

bias with aggregate data occurs because the bias from the heterogeneity of βi is positive and

increases when data are aggregated over relatively homogenous groups (see section 3.1).

When all of the parameter variation is within groups (δ = 1), then the aggregation reduces

the parameter heterogeneity and the bias of the estimators with aggregate data is reduced,

but only converges to the true parameter value when the variation in the coefficient on the

lagged dependent variable is small.

Results in figure 2 show estimates of the average coefficient on the independent variable.

Again, the grouped coefficients estimator gives substantial bias reduction when less than 1/3

of the parameter heterogeneity is within groups. With individual data, pooled fixed effects

and Arellano-Bond estimates are biased upward. With aggregate data, the direction of the

bias of fixed effects depends on the parameter values, but Arellano-Bond estimates are biased

upward.

Figures 3 and 4 show the root mean squared error for the alternative estimators of γ and β.

When the heterogeneity ofγi is small (σγ = 0.1) and less than 1/3 of the parameter variation

is within groups, the performance of the grouped coefficients estimator is comparable to the

Arellano-Bond estimator with individual data. When the heterogeneity of γi is larger (σγ =

0.25 or σγ = 0.5), then the grouped coefficients estimator has a smaller root mean squared

error than the Arellano-Bond estimator when less than 2/3 of the parameter variation is

within groups.
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5 Application to Corn Acreage Response to Price

We illustrate the use of the grouped coefficients estimator by estimating corn acreage response

to price and compare panel data estimates with field-level and county-level data in Iowa,

Illinois, and Indiana. The seminal work of Nerlove (1958) interpreted the coefficient on a

lagged dependent variable in agricultural supply response as capturing a partial adjustment

process and adaptive expectations. A large literature applied his methods to agricultural

supply response and found the long-run response was larger than the short-run response

(Askari and Cummings, 1977). Eckstein (1984) showed that the same linear specification

with a lagged dependent variable could be derived from a rational expectations model where

the share of land devoted to one crop in the previous year affects the yield of the other crop.

Eckstein’s model suggests that the long-run response is smaller than the short-run response

if monoculture decreases yields and increases costs.

A feature of many cropping systems is that crops are often rotated. For example, it

is common in the Corn Belt to alternate between corn and soybeans from year to year on

the same field. Crop rotations decrease the optimal input use (e.g. soybeans fix nitrogen

that is used by the subsequent corn crop) and increase the yield in a way that cannot be

substituted with market inputs. Hendricks (2011) has shown that the dynamic behavior

implied by aggregating these crop rotations across heterogeneous fields implies that the

long-run response to price is smaller than the short-run response.

We approximate the farmer’s decision of whether to plant corn or soybeans on field i in

year t with a linear probability model,

cit = γici,t−1 + βipit + κit+ αi + εit, (15)

where cit is a binary variable that equals 1 if corn is planted and 0 if soybeans are planted,

pit is a vector containing the expected revenue of corn and the expected revenue of soybeans,

and κit represents incidental trends.
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We assume that expected revenue is contemporaneously exogenous, such that E (εit|pit) =

0. As described in section 5.1, we construct expected revenue as the sum of a futures price,

an expected basis, and an expected government payment. Certainly, the price obtained at

harvest is endogenous. But the price prior to planting of a harvest-time futures contract

is not endogenous as long as unobserved shocks that affect planting decisions are unknown

prior to planting. Only factors that are expected prior to planting must be included in the

regression for consistency. In other words, the use of a pre-planting futures price requires

the standard assumption of no omitted variables for consistency. An advantage of using the

pre-planting futures price is that it incorporates all of the relevant demand shocks to identify

the supply response. Thus, it is more efficient than instrumental variables estimation that

only exploits a subset of demand shocks.

Roberts and Schlenker (2010) argue that the futures price is endogenous and obtain

larger supply elasticity estimates after instrumenting. The main reason for the difference in

our conclusions is that Roberts and Schlenker (2010) estimate a supply elasticity for world

production while we estimate a supply elasticity for an area within the Corn Belt. They use

a futures price one year prior to delivery of harvest in the United States. While their futures

price reflects expectations prior to planting in the Northern hemisphere, it also represents

expectations in the middle of the growing season for the Southern hemisphere. Their futures

price, therefore, is endogenous for production in the Southern hemisphere.

Let Ct equal the aggregate acres of corn and ai equal the acres of field i. The short-run

change in aggregate corn acres with respect to the expected revenue of corn is

∂Ct
∂pcit

∣∣∣∣∣
short−run

=
∑
i

aiβ
c
i , (16)

and the long-run response with respect to the expected revenue of corn is

∂Ct
∂pcit

∣∣∣∣∣
long−run

=
∑
i

ai
βci

1− γi
, (17)
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where βci is the coefficient on the expected revenue of corn. Equations (16) and (17) define

our parameters of interest. We expect the coefficient on the lagged dependent variable, γi, to

be negative due to crop rotation incentives; corn is less likely to be planted if soybeans were

planted the previous year. We also expect γi to vary spatially, since monoculture is more

prominent in certain locations. The short-run response to price, βi, may also vary spatially

as relative yields of corn and soybeans vary across soil types.

5.1 Field-Level Data Description

Our field-level crop data are classified from satellite imagery and released as the Cropland

Data Layer by the National Agricultural Statistics Service (NASS).6 The Cropland Data

Layer is an image of an entire state with a crop or land use classification code corresponding

to each pixel, where pixels are less than one acre in size (roughly 64 meters x 64 meters). The

Cropland Data Layer is available in Illinois for the period 1999–2010 and Iowa and Indiana

for 2000–2010. NASS conducts an accuracy assessment of the Cropland Data Layer for each

state. On average, the probability that the Cropland Data Layer correctly classifies corn or

soybeans is roughly 95%.

We use Common Land Unit (CLU) boundaries from the Farm Service Agency to approx-

imate “field” boundaries and choose a point near the centroid of the common land unit as

our unit of analysis.7 Our panel of crop data corresponds to the land-use classification of

the pixels at each of these points over time. Our dependent variable with field-level data is

a binary variable that indicates corn or soybeans. The Farm Service Agency states that the

common land unit data layer contains digitized field boundaries, where fields are defined as
6The Cropland Data Layer can be viewed and downloaded at http://nassgeodata.gmu.edu/

CropScape/.
7We do not want to use each pixel as a separate unit of analysis for the econometric model for at least

two reasons: i) pixels are more likely to be misclassified at field boundaries (De Wit and Clevers, 2004), and
ii) a farmer’s crop decision is at the field level, not the pixel level. The center of a CLU is also problematic
because CLUs are often split into two fields, so the center point may not be classified from the same field each
year. To avoid these concerns, we use points that are diagonally offset from the centroid of each CLU. The
distance that the point is offset from the centroid is in proportion to the size of the CLU and the direction
is chosen randomly.
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“agricultural land that is delineated by natural and man-made boundaries such as road ways,

tree lines, waterways, fence lines, etc.” (Farm Service Agency, 2007). Many of the common

land units that are extremely small are likely to be gullies, waterways, or farmsteads so only

points corresponding to common land units larger than 15 acres are included in the empirical

analysis.

We only keep observations (field-year pairs) that were classified as corn or soybeans for

the econometric analysis. Double-cropped wheat and soybeans are included in the soybeans

category. To keep our presentation of results concise, we do not model the conversion of land

between corn or soybeans and other land uses since the acreage response at this margin is a

small proportion of the total acreage response in this region (Hendricks, 2011).

In our econometric model, the right-hand side regressor is expected revenue rather than

simply expected price because the government distorts the revenue that farmers receive when

corn and soybean prices are low. Expected crop revenues per bushel are the sum of a futures

price, an expected basis (i.e., the difference between the cash and futures prices), and an

expected loan deficiency payment.

For corn, the futures price is the average price in January–March (prior to planting) of

a December futures contract (after harvest). For soybeans, the futures price is the average

price in January–March of a November futures contract. Futures price data are obtained

from the Commodity Research Bureau. The basis in March is used as the expectation for

the basis at harvest. Spot prices in March were purchased for 93 market locations in the

three states for corn and 90 locations for soybeans from Cash Grain Bids, Inc. The expected

basis is then interpolated to every point in the crop dataset using inverse distance weighting.

Loan deficiency payments from U.S. government are triggered when market prices fall below

the loan rate. We assume the loan rate truncates the distribution of anticipated prices and

construct the expected loan deficiency payment by calculating the difference in the truncated

and untruncated expected market price—Chavas and Holt (1990) and Barr et al. (2011),

among others, follow a similar approach. We assume anticipated prices follow a lognormal
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distribution, where the untruncated mean is the futures price and untruncated standard

deviation is the average implied volatility in January–March of the December options for

corn and November options for soybeans obtained from the Commodity Research Bureau.

Soil data are obtained from the Soil Survey Geographic (SSURGO) database released by

the Natural Resources Conservation Service (NRCS). In the econometric model, we estimate

different coefficients for different soil regimes. We define soil regimes using the soil taxonomy

from NRCS. The soil taxonomy does not impose a particular judgment about the production

capability of a soil, but merely defines the fields that have soils with similar characteristics.

The soil taxonomy has six classification hierarchies. For fields that planted corn or

soybeans in the three states, there are 1,186 unique taxonomy classifications. We reduce

the dimension of the taxonomy to 59 different soil regimes so that there are at least 1,000

observations per year in each soil regime.

5.2 County-Level Data Description

Our county-level crop data are from the official county-level crop acreage data reported

by the National Agricultural Statistics Service. NASS uses the Cropland Data Layer to

inform its county-level estimates, but also uses other survey data. County-level planted

acreage for corn and soybeans in Iowa, Illinois, and Indiana are available from the 1970s and

harvested acreage are available from the 1920s. For the purposes of this paper, we restrict

our analysis of county-level data to the same period that data from the Cropland Data Layer

were available. We only use counties that had acreage data available for every year for the

period 1999-2010 for Illinois and 2000-2010 for Iowa and Indiana.8

For the county-level data, our dependent variable is the acres planted to corn divided by

the average number of acres planted to corn or soybeans for that county during the sample

period. We need to normalize the acres planted to corn for each county since the acreage
8There were 11 counties that only had data available for a portion of the sample period. If we include

these counties in the analysis below, then the fixed effects estimate of the coefficient on the lagged dependent
variable is biased upward even further than the estimate we report.
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depends largely on the size of the county. We divide by the average number of acres planted

to corn or soybeans during the period so that the denominator does not change from year

to year due to changes in prices. We also considered estimating the model in logs, but chose

to specify the dependent variable as a share so that it most closely reflected aggregation

of the linear probability model. Estimating the model in logs does not substantially affect

the results. We obtain county-level expected revenues by calculating the average expected

revenues within each county from the field-level data.

Descriptive statistics for the field-level and county-level data are given in table 2. The

samples include Illinois crop data for the period 1999-2010 and Iowa and Indiana crop data

for the period 2000-2010. A nonmissing “observation” is a field (or county) in a particular

year that has a nonmissing dependent variable in the current year and the previous year.

We lose one year of data since we include a lagged dependent variable. For the field-level

data, observations may also be missing in other years due to cloud cover or because the field

was classified as a land use other than corn or soybeans. There are 8.4 million observations

in the field-level dataset and 2,917 observations in the county-level dataset.

5.3 Results

We present our coefficient estimates with alternative estimators and alternative forms of

aggregation in figures 5, 6, and 7. The top panel of each figure gives estimates from field-level

data using the Cropland Data Layer. The middle panel gives estimates from county-level

data using official NASS county-level data. The bottom panel gives the estimates where we

randomly assign each field to a group, then average the data within each group for each

year. We create 100 random groups of fields. The dependent variable for the field-level data

is a binary variable indicating corn or soybeans. The dependent variable for the county-

level data is the acres planted to corn divided by the average number of acres planted to

corn or soybeans for that county during the sample period. The aggregate data simply

23



represent averages of the field-level data so that coefficients estimates across the alternative

aggregations are directly comparable.9

We consider the grouped coefficients estimator with field level data. We define groups

of homogenous fields using the soil taxonomy and the observed crop transitions during the

period. Fields are divided into 59 different soil regimes using the soil taxonomy as described

in section 5.1. We define groups within the soil regimes of those fields that i) always planted

corn after soybeans and soybeans after corn, ii) always planted corn after corn, iii) always

planted soybeans after soybeans, and iv) fields that transitioned between corn and soybeans

at least once but also planted corn after corn or soybeans after soybeans at least once. About

32% of acres were always planted to corn after soybeans or to soybeans after corn during the

sample period, about 1% of acres were always planted to corn after corn, and about 0.5% of

acres were always planted to soybeans after soybeans.10

We calculate two-way cluster-robust, bootstrap standard errors of the average coefficients

across group-specific regressions, where we cluster by year and field and stratify the bootstrap

samples by our groups. A description of two-way cluster-robust standard errors is given by

Cameron, Gelbach, and Miller (2011). The bootstrap samples are drawn independently

within each group (stratum) so that each group is represented in each bootstrap sample.

One-way cluster covariance matrices are estimated by resampling clusters with replacement.

The two-way cluster covariance matrix is the sum of the covariance matrix clustered by year

and the covariance matrix clustered by field minus the covariance matrix with each field,

year pair drawn independently.

We also consider pooled OLS, pooled fixed effects, and the Arellano-Bond estimator

for the field and county-level data. Each of the models includes a trend variable. We do
9Since counties differ in size, we do not consider aggregate corn acres as a dependent variable. We did

estimate the county-level model in logarithms. Elasticity estimates were generally smaller in the logarithmic
model, but are not reported here.

10For fields that were always planted to corn after soybeans or to soybeans after corn, the OLS estimate
of the coefficient on the lagged dependent variable is -1 and the estimates of the coefficients on prices are
0. For fields that were always planted to corn after corn or soybeans after soybeans, the coefficient on the
lagged dependent variable is not identified but the coefficients on prices are 0.
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not control for year fixed effects because our variation in price occurs primarily between

years, and thus we would lose the variation of greatest importance for this application. Our

Arellano-Bond estimator uses two-step GMM with every lag available as an instrument for

the difference of the lagged dependent variable. The grouped coefficients estimator is not ap-

propriate for the county-level data since counties cannot be grouped into large, homogenous

groups.11

Standard errors for pooled OLS, pooled fixed effects, and Arellano-Bond are clustered at

the crop-reporting district level. There are 27 districts in the three states. Bester, Conley,

and Hansen (2011) propose clustering the standard errors in large spatial blocks in order

to account for spatial dependence in the errors. However, this clustering approach is not

appropriate for the grouped coefficients estimator.

We estimate the model with randomly assigned group aggregation using pooled OLS.

The aggregation is intended to remove parameter heterogeneity—including heterogeneity of

the intercept—such that fixed effects are not necessary for the dynamic model.

Figure 5 shows the estimates of the coefficient on the lagged dependent variable across

specifications. The difference between estimates using field and county-level data is remark-

able. With field-level data we obtain a coefficient on the lagged dependent variable less than

-0.54 with every estimator. The grouped coefficients estimate of the average coefficient on the

lagged dependent variable is -0.59. With county-level data we obtain a positive coefficient

on the lagged dependent variable with pooled OLS and pooled fixed effects. The Arellano-

Bond estimator with county-level data gives a negative coefficient on the lagged dependent

variable, but is still substantially different from the estimates with field level data.

Some people may have a vague notion that the aggregate data capture a partial adjust-

ment process while the field-level data capture the dynamics from crop rotations. In other

words, it may be that the estimates with aggregate data are capturing a different dynamic

process that is of interest for estimating the long-run response to price. However, this notion
11Results using the grouped coefficients estimator where counties were grouped by crop-reporting districts

gave results similar to pooled OLS with county-level data.
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is rejected by the fact that aggregating the data into random groups and estimating with

pooled OLS gives an estimate on the lagged dependent variable that is similar to estimates

with field-level data. Aggregation itself does not substantially affect the dynamics, but rather

the form of aggregation can substantially affect the bias of standard panel estimators (i.e.,

aggregating by groups with substantial between-group heterogeneity).

Figure 6 shows the estimates of the coefficient on expected revenue per bushel of corn

(i.e., expected market price plus expected government payments), and figure 7 shows the

estimates of the coefficient on expected revenue per bushel of soybeans across specifications.

The grouped coefficients estimate is similar to pooled fixed effects and Arellano-Bond with

field-level data. Pooled OLS at the field level underestimates the effect of prices on planting

decision. Results across alternative estimators are more variable with county-level data than

with field-level data. With county-level data, pooled OLS gives the largest coefficient on

revenue and the Arellano-Bond estimator gives the smallest coefficient on revenue.

Although the coefficient on the lagged dependent variable was similar with field-level

data and randomly aggregated data, the coefficients on revenue are much small with the

randomly aggregated data. The coefficients on revenue with the randomly aggregated data

are similar to the coefficients on revenue using pooled OLS with field-level data.

Figure 8 show the long-run elasticity of corn acreage with respect to the price of corn and

figure 9 shows the long-run elasticity of corn acreage with respect to the price of soybeans.

Note that we have converted the marginal effects into elasticities for these two figures. The

long-run marginal effect for the grouped coefficients estimator is calculated as a weighted

average of the group-specific long-run marginal effects, where weights correspond to the acres

in each group, then converted into an elasticity.

Using the grouped coefficients estimator, we obtain a long-run own-price elasticity of

0.23 and long-run cross-price elasticity of -0.17. We find that the coefficient on the lagged

dependent variable is positively correlated with the coefficients on the price of corn and

negatively correlated with the coefficient on the price of soybeans. For example, the fields
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that were always in a corn-soybean rotation have a coefficient on the lagged dependent

variable of -1 and the coefficients on prices are 0, while other fields have a larger coefficient

on the lagged dependent variable (i.e., γi > −1) and a larger coefficient on the price of corn

(i.e., βci > 0). If we ignore this correlation and calculate the long-run elasticity using the

average coefficient on the lagged dependent variable and the average coefficients on prices,

then we obtain a long-run own-price elasticity of 0.20 and a long-run cross-price elasticity of

-0.15.

The long-run own-price elasticity with the grouped coefficients estimator is similar to the

fixed effects and Arellano-Bond estimates, but the cross-price elasticity is larger (in absolute

value). Estimates of the long-run elasticities with pooled OLS and pooled fixed effects with

county-level data differ substantially from the estimates with field-level data. We do not

display the pooled OLS estimate of the long-run elasticities in figures 8 and 9 since they are

so large that they would make the figures difficult to read (own-price elasticity of 3.3 and

cross-price elasticity of -4.6). The pooled fixed effects elasticity estimate with county-level

data are roughly twice as large as the grouped coefficients estimate because of the difference

in the sign of the coefficient on the lagged dependent variable.

The Arellano-Bond long-run elasticities with county-level data are similar to the grouped

coefficients elasticity estimates. The two estimators, however, imply different dynamics

of the supply response. The Arellano-Bond estimate with county-level data indicates a

smaller response in the short-run and a smaller difference between the short-run and long-

run response than the grouped coefficients estimator.

6 Conclusion

Our paper illustrates the importance of considering the multilevel structure of dynamic

panels. We propose the use of a grouped coefficients estimator to reduce the bias in dynamic

panels with coefficient heterogeneity, common factors, and small T . The grouped coefficients
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estimator reduces the bias of mean coefficient estimates if groups of relatively homogenous

individuals can be defined. In Monte Carlo simulations, we show that the grouped coefficients

estimator can reduce the bias compared to fixed effects and Arellano-Bond estimates.

We also describe how the bias of fixed effects differs with individual and aggregate data

when there are heterogeneous coefficients. Monte Carlo simulations show that there can be

large differences in the bias of fixed effects and Arellano-Bond estimates with individual and

aggregate data depending on whether the data are aggregated over relatively homogenous

individuals or relatively heterogeneous individuals.

In an application to estimating corn acreage response to price, we illustrate the use of

the grouped coefficients estimator by defining groups of fields with similar soils and observed

crop transition histories. Estimates of the coefficient on the lagged dependent variable are

dramatically different depending on whether field or county-level data are used. Field-level

data indicate that the long-run response to price is smaller than the short-run response to

price—consistent with the dynamics of supply that are implied by crop rotations. Fixed

effects estimates with county-level data indicate that the long-run response to price is larger

than the short-run response to price which has often been interpreted as a partial adjustment

process.
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Figure 1: Monte Carlo Results: Estimates of γ
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Notes: GC=Grouped Coefficients estimator, FE=Pooled Fixed Effects estimator, and A-B=Arellano-Bond
estimator. The figure presents Monte Carlo simulations for the estimate of the mean coefficient on the lagged
dependent variable for the equation yit = γiyi,t−1 + βixit + αi + εit, where γi, βi, and αi have a multilevel
structure.

32



Figure 2: Monte Carlo Results: Estimates of β
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Notes: GC=Grouped Coefficients estimator, FE=Pooled Fixed Effects estimator, and A-B=Arellano-Bond
estimator. The figure presents Monte Carlo simulations for the estimate of the mean coefficient on the
independent variable for the equation yit = γiyi,t−1 + βixit +αi + εit, where γi, βi, and αi have a multilevel
structure.
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Figure 3: Monte Carlo Results: Root Mean Squared Error of Estimates of γ

Proportion of Parameter Variance Within Groups (δ)
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Notes: GC=Grouped Coefficients estimator, FE=Pooled Fixed Effects estimator, and A-B=Arellano-Bond
estimator. The figure presents Monte Carlo simulations for the root mean squared error of the the estimate
of the mean coefficient on the lagged dependent variable for the equation yit = γiyi,t−1 + βixit + αi + εit,
where γi, βi, and αi have a multilevel structure.
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Figure 4: Monte Carlo Results: Root Mean Squared Error of Estimates of β

Proportion of Parameter Variance Within Groups (δ)
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Notes: GC=Grouped Coefficients estimator, FE=Pooled Fixed Effects estimator, and A-B=Arellano-Bond
estimator. The figure presents Monte Carlo simulations for the root mean squared error of the estimate of
the mean coefficient on the independent variable for the equation yit = γiyi,t−1 + βixit + αi + εit, where γi,
βi, and αi have a multilevel structure.
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Figure 5: Estimates of Coefficient on Lagged Dependent Variable for Corn Planting Response
to Price with Alternative Estimators and Alternative Aggregation
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Notes: The panels in the figure give estimates from field-level data, county-level data, and randomly aggre-
gated data. The dependent variable for the field-level data is a binary variable indicating corn or soybeans.
The dependent variable for the county-level data is the acres planted to corn divided by the average number
of acres planted to corn or soybeans for that county during the sample period. The dependent variable for
the randomly aggregated data is the average of the corn binary variables within each group. The regressors
include a lagged dependent variable, expected revenue per bushel of corn, expected revenue per bushel of
soybeans, and a time trend. Standard errors for the grouped coefficients estimator are two-way (field and
year) cluster-robust, bootstrap standard errors. Standard errors for pooled OLS, fixed effects, and Arellano-
Bond with field and county-level data are clustered at the crop-reporting district level. Standard errors for
OLS with randomly aggregated data are not heteroskedastic consistent.
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Figure 6: Estimates of Coefficient on Corn Revenue per Bushel for Corn Planting Response
to Price with Alternative Estimators and Alternative Aggregation
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Notes: The panels in the figure give estimates from field-level data, county-level data, and randomly aggre-
gated data. The dependent variable for the field-level data is a binary variable indicating corn or soybeans.
The dependent variable for the county-level data is the acres planted to corn divided by the average number
of acres planted to corn or soybeans for that county during the sample period. The dependent variable for
the randomly aggregated data is the average of the corn binary variables within each group. The regressors
include a lagged dependent variable, expected revenue per bushel of corn, expected revenue per bushel of
soybeans, and a time trend. Standard errors for the grouped coefficients estimator are two-way (field and
year) cluster-robust, bootstrap standard errors. Standard errors for pooled OLS, fixed effects, and Arellano-
Bond with field and county-level data are clustered at the crop-reporting district level. Standard errors for
OLS with randomly aggregated data are not heteroskedastic consistent.
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Figure 7: Estimates of Coefficient on Soybean Revenue per Bushel for Corn Planting Re-
sponse to Price with Alternative Estimators and Alternative Aggregation
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Notes: The panels in the figure give estimates from field-level data, county-level data, and randomly aggre-
gated data. The dependent variable for the field-level data is a binary variable indicating corn or soybeans.
The dependent variable for the county-level data is the acres planted to corn divided by the average number
of acres planted to corn or soybeans for that county during the sample period. The dependent variable for
the randomly aggregated data is the average of the corn binary variables within each group. The regressors
include a lagged dependent variable, expected revenue per bushel of corn, expected revenue per bushel of
soybeans, and a time trend. Standard errors for the grouped coefficients estimator are two-way (field and
year) cluster-robust, bootstrap standard errors. Standard errors for pooled OLS, fixed effects, and Arellano-
Bond with field and county-level data are clustered at the crop-reporting district level. Standard errors for
OLS with randomly aggregated data are not heteroskedastic consistent.
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Figure 8: Estimates of the Long-Run Elasticity of Corn Acreage Response to the Price of
Corn with Alternative Estimators and Alternative Aggregation
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Notes: The figure gives estimates of the long-run corn acreage elasticity with respect to the price of corn from
field-level data, county-level data, and randomly aggregated data across alternative estimators. Estimates of
the long-run elasticity using pooled OLS with county-level data are omitted because they are substantially
larger than the other estimates and make the figure difficult to read.
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Figure 9: Estimates of the Long-Run Elasticity of Corn Acreage Response to the Price of
Soybeans with Alternative Estimators and Alternative Aggregation
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Notes: The figure gives estimates of the long-run corn acreage elasticity with respect to the price of soy-
beans from field-level data, county-level data, and randomly aggregated data across alternative estimators.
Estimates of the long-run elasticity using pooled OLS with county-level data are omitted because they are
substantially larger than the other estimates and make the figure difficult to read.
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Table 1: Parameters for Monte Carlo Simulations
Parameter Value(s)
Parameters Constant across Simulations
γ -0.5
β 1.0
α 0
σα 0.5
σε 2
µi 0
ρ 0.8
σu 0.75
φ 0.25
N 5,000
Ng 100
T 11
Number of Reps 500

Parameters Varying across Simulations
σγ {0.1, 0.25}
σβ {0.5, 1.0}
δ {0, 1/3, 2/3, 1}
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Table 2: Descriptive Statistics of Estimation Samples
Data Sample

Statistic Field Level County Level
Proportion Corn 0.53 0.53
Avg Expected Revenue of Corn ($/bu) 3.19 3.17
Avg Expected Revenue of Soybeans ($/bu) 7.56 7.52
Nonmissing Observations 8,386,395 2,917

Notes: The proportion corn is simply the average of the dependent variable in the respective dataset.
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