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Abstract 
 
 

Missing data is a problem that occurs frequently in survey data. Missing data results in 

biased estimates and reduced efficiency for regression estimates. The objective of the current 

study is to analyze the impact of missing-data imputation, using multiple-imputation methods, on 

regression estimates for agricultural household surveys. The current study also analyzes the 

impact of multiple-imputation on regression results, when all the variables in the regression have 

missing observations. Finally, the current study compares the impact of univariate multiple 

imputation with multivariate normal multiple imputation, when some of the missing variables 

have discrete distribution. The results of the current study show that multivariate-normal 

multiple imputation performs better than univariate multiple imputation model, and overall both 

methods improve the efficiency of regression estimates.  
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1. Introduction 

Missing data is a problem that occurs frequently in survey data. Missing data can cause 

biased estimates and reduce the efficiency of regression estimates (Rubin, 1987; Schafer, 1997). 

The loss of significant amount of observations can cause even simulation based regressions, such 

as seemingly unrelated multivariate probit model, not to reach a convergence due to lack of 

enough observations (Gedikoglu, 2008). The standard procedure on common econometrics and 

statistical software, such as Stata®, is to use observations those do not have any missing value, 

which is called listwise (casewise) deletion (Schafer, 1997). This can lead to a loss of significant 

number of observations for Agricultural Household Surveys. For example, the current study has 

a loss of 44% of the data due to missingness. 

Over time, different methods have been used to handle missing data. A simple method of 

placing mean, predictive mean matching, single imputation, and multiple imputation are 

examples of missing data handling methods (Little and Rubin, 2002)1

Although statistical literature has been developed for missing data imputation, the 

agricultural economics literature has not used and got benefit from this literature, yet. There have 

been very few studies in agricultural economics that explored some parts of missing data 

imputation. The studies aimed to measure the impact of certain imputation techniques on the 

univariate missing variable (Robbins and White, 2011; Ahearn et. al., 2011). However, these 

. Simple imputation treats 

imputed values as knows in the analysis, hence understates the variance of the estimates and 

overstates precision, which results in confidence intervals and significance tests to be too 

optimistic (Little and Rubin, 2002). Multiple imputation method addresses this problem by 

creating multiple imputations and taking into account the sampling variability due to the missing 

data (between-imputation variability) (Little and Rubin, 2002; Schafer, 1997).  

                                                 
1 Little and Rubin (2002) provides a detailed review on each method. 
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studies used complete data sets with randomly generated missing data. Hence, these studies do 

not address the complexities that the actual household surveys face, such us multiple missing 

variables and the correlation among these variables. An important aspect of multiple imputation 

literature that is lacking is how multiple imputation performs when all the variables in the data 

set have missing observations. Although the multiple imputation theory is developed, many of 

the practical problems are unanswered (Schafer, 1997). Another important question that has not 

been answered in the literature is whether or not to use multivariate multiple imputation instead 

of individual univariate imputations, when some of the missing variables have discrete 

distributions.  

The objective of this paper is to analyze the impact of multiple imputation on 

Agricultural Household Surveys, when all the variables in the dataset have missing values. The 

current study also analyzes the impact of using multivariate normal multiple imputation, when 

some variables have discrete distribution and compares the results with univariate multiple 

imputation. In the next section, we provide information on missing-data patterns and missing-

data mechanism. Multivariate normal imputation method is introduced next. Followingly, the 

univariate imputation methods are presented. The paper continuous with the results part and final 

conclusions are made.  

2. Missing-Data Patterns 

 The missing data pattern is an important component of multiple imputation, which impact 

the choice of the multiple imputation method (Schafer, 1997). The missing data can occur in 

different patterns. We explain these patterns using an example from Enders (2010). Consider a 3 

x 3 data matrix 𝑋 = (𝑋1,𝑋2,𝑋3) with 3 variables and 4 observations. An indicator matrix 𝑅 can 

be formed based on 𝑅𝑖𝑗 = 1 if variable 𝑋𝑗 is observed (complete) in observation i and otherwise:  
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 𝑅1 = �
1 1 1
0 1 1
0 1 1
1 0 1

�      𝑅2 = �
1 1 1
0 1 1
0 1 1
0 0 1

�         𝑅3 = �
1 1 1
0 1 0
1 1 1
0 0 1

�  

where 𝑅1 is an example for univariate missing-data pattern, 𝑅2 is called monotone missing-data 

pattern, and 𝑅3 is an general (nonmonotone) multivariate missing-data pattern (Enders, 2010). 

The univariate missing-data pattern 𝑅1 can be imputed using the univariate multiple-imputation 

methods, based on the distribution of the variable with missing observations. For monotone 

missing-value pattern 𝑅2, 𝑋3 is at least as observed 𝑋2 and 𝑋2 is at least as observed as 𝑋1. In 

this case multivariate multiple-imputation can be formulated as a sequence of independent 

univariate (conditional) imputation tasks, which allows a flexible imputation model (based on the 

distribution of each variable) and simplifies the imputation task (Rubin, 1987). However, in 

general it is very difficult to obtain monotone missing-value pattern. When the data shows the 

general missing-data pattern 𝑅3, multivariate-normal (MVN) multiple-imputation model can be 

applied if the variables have continuous distribution (Rubin, 1987). Schafer (1999) shows that 

MVN model can be applied even when the variables have discrete distribution. 

 Table 1 shows the information about the missing data for the current study. All the 

variables in the current data set have some missing observations (percent of missing data is 

nonzero for all variables). Hence, a multivariate missing-data pattern exists in the current data 

set. A further analysis using Stata®’s data pattern function shows that there exists no monotone-

data pattern. For that reason either a MVN multiple imputation method or a univariate multiple 

imputation method for each variable separately can be used.           

3. Missing-Data Mechanisms 

 Missing data mechanism defines the distribution of the missing data for the data set and 

can be thought of the reason for the missingness (Rubin, 1987). The commonly used three 
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missing data mechanisms are: missing completely at random (MCAR), missing at random 

(MAR), and missing not at random (MNAR). Denoting the observed part of n x p data matrix X, 

with n observations and p variables, by 𝑋𝑜𝑏𝑠 and missing part by 𝑋𝑚𝑖𝑠, so that 𝑋 = (𝑋𝑜𝑏𝑠,𝑋𝑚𝑖𝑠). 

For MAR, the probability that an observation is missing may depend on observed observation 

𝑋𝑜𝑏𝑠 , but not on missing observations 𝑋𝑚𝑖𝑠. This can be formally represented for a probability 

model as Pr�𝑅𝑛𝑝|𝑋𝑜𝑏𝑠,𝑋𝑚𝑖𝑠�,𝜑� =  Pr�𝑅𝑛𝑝|𝑋𝑜𝑏𝑠�,𝜑�, where R n x p indicator matrix as and 𝜑 is 

the underlying vector of parameters of the missingness mechanism. The special case of MAR is 

MCAR. In this case observed data is a simple random sample of all potentially observable data 

values (Schafer, 1997). MCAR can be represented as Pr�𝑅𝑛𝑝|𝑋𝑜𝑏𝑠,𝑋𝑚𝑖𝑠�,𝜑� =  Pr�𝑅𝑛𝑝|𝜑��.        

Finally, MNAR is the case, if the probability of missing data on a variable is related to the 

missing values of itself and observed values of other variables. 

When the data is generated as MCAR, then no bias would result from ignoring missing 

observation (Schafer, 1997). However, there will be still loss in efficiency of estimates, as not all 

the observations would be used. On the other hand, if MAR exists in the data set, ignoring 

missing observations will cause biased and inefficient estimates. The MAR restriction is not 

testable as the value of the missing data are unknown (Schafer, 1997). In general MAR is a better 

assumption than MCAR for most of the surveys, as MAR is more restrictive assumption. Lastly, 

MNAR would cause missingness mechanism to be accounted for in the model to obtain valid 

results, similar to Heckman’s selection model (Little and Rubin, 2002).   

A missingness data mechanism is said to be ignorable if (a) the data set is MAR and (b) 

parameters for the missing data-generating process 𝜑 are unrelated to the regression parameters 

that we want to estimate. In this case there is no need to model data generating process for 
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missing data (Schafer, 1997). In general, MAR and ignorability are often treated treated as 

equivalent under the condition that (b) for ignorability is almost always satisfied (Allison, 2002).  

Common statistical software, such as Stata®, assume MAR as it is difficult to test ignorability 

formall as MAR mechanism is distinguished from MNAR only through the missing data that is 

not observed (Schafer, 1997). In the current study we will assume MAR.   

4. Multiple-Imputation Models 

 Multiple imputation methods, both multivariate and univariate, are based on simulation 

from a Bayesian posterior predictive distribution of missing data (Rubin, 1987: Schafer, 1997). 

The univariate imputation method uses noniterative techniques for simulation from the posterior 

predictive distribution of missing data, whereas multivariate methods use an iterative Markow 

Chain Monte Carlo (MCMC) technique (Rubin, 1987). Multiple imputation consists of three 

steps: imputation step, completed-data analysis step, and the pooling step. During the imputation 

step, M imputations (completed datasets) are generated under the chosen imputation model. The 

econometric model is performed separately on each imputation m=1,2,…,M in the completed−

data analysis step. In the current study, a univarite probit model is used to represent the 

adoption of Roundup Ready® corn. Lastly, during the pooling step, the results obtained from M 

completed-data analyses are combined into a single multiple-imputation based estimation results. 

Below is the detailed description for each step. 

4.1 Imputation Step  

M imputations are generated under the chosen imputation model. The imputation model 

can be a univariate model or a multivariate model based on the number of variables to be 

imputed and the correlation among the variables. In the current study both univariate and 

multivariate models are used to evaluate the differences. In the current study there are three types 
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of data: binary, ordered categorized, and continuous. Although multivaritate normal imputation 

is originally developed for imputing continues variables, studies show that multivariate normal 

model can be used for non-continous variables, given that imputed observation are again 

converted to categorized form after the imputation (Schafer, 1997; Lee and Carlin, 2010). For 

example, for binary variables, values smaller than 0.5 can be converted to 0, and other are 

converted to 1. Another option would be to use a logit based univariate multiple imputation for 

binary variables, ordered logit for ranked categorized variables, and linear regression based 

univariate multiple imputation for continuous variables. The disadvantage of this process is 

ignoring the correlation among imputed variables (Schafer, 1997). We provide information first 

on multivariate normal multiple imputation, then on univariate multiple imputation methods.    

4.1.1 Multivariate Normal Multiple Regression 

Multivariate normal (MVN) multiple regression model uses Data Augmentation, which is 

an iterative MCMC method, to impute missing values (Rubin, 1987).  Let 𝐱1,𝐱2, … , 𝐱N  be 

random sample from a p-variate normal distribution, representing the p imputation variables that 

have missing observations for observations i=1,…,N. The multivariate normal regression can be 

represented as: 

  𝐱𝑖 = 𝚯′𝐳𝑖 + 𝝐𝑖,  i = 1,…,N 

where 𝒛𝑖 is a q x 1 vector of independent variables for observation i, 𝚯 is a q x p matrix of 

regression coefficients, and 𝝐𝑖 is a p x 1 vector of random errors from a p-variate normal 

distribution with mean zero and a p x p variance-covariance matrix Σ. 𝚯 and Σ are referred as the 

model parameters. Next we provide the information on data augmentation.  
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4.1.1.1 Data Augmentation 

 Data augmentation consists of two steps, an I step (imputation step) and a P step 

(posterior step), which are preformed at each iteration t = 0,1,…,T (Schafer, 1997). Consider the 

partition of 𝒙 = �𝒙′𝑖(0),𝒙′𝑖(𝑚)� corresponding to observed and missing values of imputation 

variables in observation i. At iteration t of the I step, the missing values in 𝐱𝑖 are replaced with 

draws from the conditional posterior distribution of 𝐱𝑖(𝑚)
(𝑡+1) given observed data and the current 

values of model parameters 𝚯(𝑡) and 𝚺(𝑡) independently for each observation (Little and Rubin, 

2002).  Following Little and Rubin (2002), in the current study, T is set as 100 following (Little 

and Rubin, 2002). Next, during the P step new values of model parameters 𝚯(𝑡+1) and 𝚺(𝑡+1) are 

drawn from their conditional posterior distribution given observed data and data imputed in the 

previous I step  𝐱𝑖(𝑚)
(𝑡+1). These procedures can be represented as (Schafer, 1997; Little and Rubin, 

2002): 

 I step:   𝐱𝑖(𝑚)
(𝑡+1)~ 𝑃�𝒙𝑖(𝑚)�𝒛𝑖,𝒙𝑖(0),𝚯(𝑡),𝚺(𝑡)�, 𝑖 = 1, … ,𝑁 

 P step:   𝚺(𝑡+1)~ 𝑃 �𝚺�𝒛𝑖,𝒙𝑖(0), 𝐱𝑖(𝑚)
(𝑡+1)� 

   𝚯(𝑡+1) ~ 𝑃 �𝚯�𝒛𝑖,𝒙𝑖(0), 𝐱𝑖(𝑚)
(𝑡+1)� 

the I and P steps are repeated until the MCMC sequence {(𝐗𝑚
(𝑡), 𝚯(𝑡),𝚺(𝑡)) : t = 1,2,…,T}, where 

𝐗𝑚
(𝑡) denotes all values imputed at iteration t, converges to the stationary distribution 

𝑃(𝐗𝑚,𝚯,𝚺|𝒁,𝑿0, ). The functional form of the conditional posterior distribution in the I and P 

steps above depends on the distribution of the data and a prior distribution of the model 

parameters. We use an improper uniform prior distribution for 𝚯, to reflect the uncertainty about 

𝚯, and an inverted Wishart distribution W𝑝
−1(𝜆,𝛬)  for 𝚺 (Rubin, 1987). In frequentist theory, 

Wishard distribution appears as the sampling distribution for the sample covariance matrix. The 
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parameters 𝜆 and 𝛬 are called degrees of freedom and scale, respectively (Johnson and Wichern, 

2002). The prior joint density function can be represented as: 

 𝑓(𝚯,𝚺) ∝ |𝚺|−�
𝜆+𝑝+1

2 �exp �− 1
2

tr𝛬−1𝚺−1�       

Wishard prior distribution is a natural conjugate to the multivariate normal likelihood function, 

which makes Bayesian inference to be conducted easily (Johnson and Wichern, 2002).  Using the 

Baye’s rule   𝑃(𝚯,𝚺|𝑿) ∝ 𝐿(𝚯,𝚺|𝑿)𝑓(𝚯,𝚺), where 𝐿(𝚯, 𝚺|𝑿) is the standard multivariate 

normal likelihood function, the I and P steps become (Schafer, 1997):  

 I step:   𝐱𝑖(𝑚)
(𝑡+1)~ 𝑁𝑝𝑖�𝒙𝑖(𝑚)�𝝁𝑚.𝑜

(𝑡) ,𝚺𝑚𝑚.𝑜
(𝑡) �, 𝑖 = 1, … ,𝑁 

 P step:   𝚺(𝑡+1)~ 𝑊−1(𝜦∗
(𝑡+1), 𝜆∗) 

   vec �𝚯(𝑡+1)�~ 𝑁𝑝𝑞�vec �𝚯�(𝑡+1)�,𝚺(𝑡+1) (𝒁′𝒁)−1� 

where pi is the number of imputation variables containing missing values in observation i,  is 

the Kronecker product, and vec(.) is the vectorization of a matrix into a column vector. 

Submatrices 𝝁𝑚.𝑜
(𝑡)  and 𝚺𝑚𝑚.𝑜

(𝑡)  are the mean and variance of the conditional distribution of 

𝒙𝑖(𝑚)given 𝒙𝑖(0) based on 𝐱𝑖~𝑁𝑝(𝚯(t)′𝒛𝑖 ,𝚺(t)). The matrix 𝚯�(𝑡+1) = (𝒁′𝒁)−1𝒁′𝑿(𝑡+1) is the 

ordinary least squares estimate of regression coefficients based on the augmented data 𝑿(𝑡+1) =

(𝐗𝑜 ,𝐗𝑚
(𝑡+1)) from iteration t. The posterior scale matrix 𝛬∗

(𝑡+1) and the posterior degrees of 

freedom  for the inverted Wishart distribution 𝜆∗ are defined as (Johnson and Wichern, 2002): 

 𝛬∗
(𝑡+1) = �𝛬−1 + �𝑿(𝑡+1) − 𝒁𝚯�(𝑡+1)�′�𝑿(𝑡+1) − 𝒁𝚯�(𝑡+1)��

−1
 

 𝜆∗ =  𝜆 + 𝑁 − 𝑞  

Values for the degrees of freedom and the scale parameter are determined based on the requested 

prior distribution for 𝚯. For the uniform prior distribution for 𝚯, the values are 𝜆 = -(p+1) and 
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𝛬−1 =  𝟎𝑝𝑥𝑝 , where 𝟎𝑝𝑥𝑝 is a zero matrix (Johnson and Wichern, 2002). In the current study, to 

reflect uncertainty about model parameters, noninformative uniform prior distribution is used. 

4.1.1.2 Expectation-Maximization Algorithm 

The initial values 𝜣(0) and 𝜮(0)for the Data Augmentation above are obtained from the 

Expectation-Maximization (EM) algorithm (Schafer, 1997). The EM algorithm iterates the 

expectation step (E step) and maximization step (M step) to maximize the log-likelihood 

function. The observed-data likelihood function is (Schafer, 1997).: 

 𝑙𝑙(𝚯,𝚺|𝑿𝒐) = ∑ ∑ �−0.5ln(|𝚺𝐬|) − 0.5(𝐱𝑖(𝑜) − 𝚯′(s)𝐳𝑖)′𝚺−𝟏s(𝐱𝑖(𝑜) − 𝚯′(s)𝐳𝑖)�𝑖𝜖𝐼(𝑠)
𝑆
𝑠=1   

where S is the number of unique missing-value patterns in the full-data, I(s) is the set of 

observations from the same missing-value pattern s, and  𝜣𝒔 and 𝜮𝒔 are the submatrices of 𝜣 and 

𝜮 that correspond to the imputation variables, which are observed in pattern s. In the current data 

set S is 87. Using the prior joint density function, and the log-likelihood function above, the log-

posterior function is obtained as (Schafer, 1997): 

  𝑙𝑝(𝚯,𝚺|𝑿𝒐) = 𝑙𝑙(𝚯,𝚺|𝑿𝒐) + ln{𝑓(𝚯,𝚺)} − 𝜆+𝑝+1
2

ln (|𝚺|) − 1
2

tr(𝛬−1𝚺−1) 

  The E step and M step are processed as using the sufficient statistics for the multivariate 

normal distribution. Let 𝑇1 = ∑ 𝒛𝑖𝒙′𝑖𝑁
𝑖=1  and 𝑇2 = ∑ 𝒙𝑖𝒙′𝑖𝑁

𝑖=1  denote the sufficient statistics for 

the multivariate normal model. The submatrices 𝚯𝑖(s)and 𝚯𝑖(m) of 𝚯, and the submatrices 

𝜮𝑖(mm),𝜮𝑖(mo), and 𝜮𝑖(oo) of 𝜮 corresponding to the observed and missing column of 𝒙𝑖. Let 

O(s) and M(s) correspond to the column indexes of the observed and missing parts of 𝒙𝑖 for each 

missing-values pattern s (Little and Rubin, 2002; Rubin, 1987).   

  E Step: The expectations E(𝑇1) and E(𝑇2) are computed with respect to the conditional 

distribution 𝑃�𝐗𝑚�𝚯(t),𝚺(t),𝑿0� using the following relations (Little and Rubin, 2002; Rubin, 

1987):  



10 
 

  𝐸�𝑥𝑖𝑗�𝚯(t), 𝚺(t),𝑿0� = �
 𝑥𝑖𝑗 , for 𝑗𝜖 𝑂(𝑠)
𝑥𝑖𝑗∗ , for 𝑗𝜖 𝑀(𝑠)

�  

and  

  𝐸�𝑥𝑖𝑗𝑥𝑖𝑙�𝚯(t),𝚺(t),𝑿0� = �
𝑥𝑖𝑗𝑥𝑖𝑙 , for 𝑗, 𝑙 𝜖 𝑂(𝑠)

𝑥𝑖𝑗∗ 𝑥𝑖𝑙 , for 𝑗𝜖 𝑀(𝑠), 𝑙 𝜖 𝑂(𝑠)
𝑐𝑖𝑗 + 𝑥𝑖𝑗∗ 𝑥𝑖𝑙∗ , for 𝑗, 𝑙 𝜖 𝑀(𝑠)

� 

where 𝑥𝑖𝑗∗  is the jth element of the vector 𝚯′𝑖(m)𝒛𝑖 + 𝜮𝑖(mo)𝜮𝑖(oo)
−1 (𝐱𝑖(𝑜) − 𝚯′

(s)𝐳𝑖), and 𝑐𝑖𝑗 is the 

element of the matrix 𝜮𝑖(mm) − 𝜮𝑖(mo)𝜮𝑖(oo)
−1  𝜮𝑖(oo)

′  (Little and Rubin, 2002; Rubin, 1987).    

  M step:  During the M step, the model parameters are updated using the computed 

expectations of the sufficient statistics: 

  𝚯(𝑡+1) = (𝒁′𝒁)−1E(𝑇1)  

  𝚺(t+1) = 𝟏
𝑁+𝜆+𝑝+1

{E(𝑇2) − E(𝑇1)′(𝒁′𝒁)−1E(𝑇1) + 𝛬−1 } 

The EM iterates between the E step and M step until the maximum relative difference between 

the two successive values of all parameters is less than the specified tolerance (in this paper it is 

1e-5) (Little and Rubin, 2002; Rubin, 1987).  

4.1.1.3 Convergence of Data Augmentation  

  Data augmentation (DA) procedure is iterated until the MCMC sequence {(𝐗𝑚
(𝑡), 

𝚯(𝑡),𝚺(𝑡)) : t = 1,2,…,T} converges to a stationary distribution (Schafer, 1997). Unlike 

optimization based EM procedure, the DA procedure does not have a simple stopping rule that 

guarantees the convergence of the MCMC sequence to a stationary distribution (Schafer, 1997). 

Hence, the question is how long to iterate to achieve the convergence. Another issue is the serial 

dependence known to exist among MCMC draws (Schafer, 1997). Suppose that after an initial 

burn-in period b, the sequence {(𝐗𝑚
(𝑏+𝑡)) : t = 1,2,…,T} can be regarded as an approximate 

sample from Pr(𝐗𝑚|𝐗𝑜) (Schafer, 1997, Little and Rubin, 2002). To achieve the independence 
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among imputations, a chain can be sampled. In order to achieve the independence, the number of 

iterations k should be determined such that 𝐗𝑚
(𝑡) and 𝐗𝑚

(𝑡+𝑘) are approximately independent 

(Schafer, 1997, Little and Rubin, 2002).. Then imputations can be obtained as the chain values of 

𝐗𝑚 from iterations b, b+k, b+2k,…,b+Mk, where M is the number of imputations. Hence, b is 

the number of iterations necessary for the chain to achieve stationary k is the number of iterations 

between imputations necessary to achieve independent values of the chain. 

  We use the worst linear function (WLF), developed by Schafer (1997) to detect the 

convergence and autocorrelation for the DA. WLF corresponds to the linear combination of 

parameter estimates where the coefficients are chosen such that this function has the highest 

asymptotic rate of missing information. Schafer (1997) shows that when the observed-data 

posterior distribution is nearly normal, WLF is among the slowest to approach stationarity. WLF 

can be calculated as (Schafer, 1997): 

  𝜔(𝜽) = 𝑣′� �𝜽 − 𝜽�� 

where 𝜽 and 𝜽�  are column vectors of the unique model parameters and their respective EM 

estimates; 𝑣′� �𝜽(𝑡) − 𝜽(𝑡−1)�, where 𝜽(𝑡) = 𝜽� and  𝜽(𝑡−1)are the estimates from the last and one 

before the last iterations of the EM algorithm. Below figure 1 shows the convergence of the DA 

and figure 2 shows the lag between iterations to analyze the autocorrelation for DA for the 

current study. Figure 1 shows no apparent trend, hence the convergence is reached for DA. 

Figure 2 shows that the autocorrelation dies out after the 1st lag. Hence, setting burn-in period b 

to be 100 and burn-between period k to be also 100 provided the convergence and no-serial 

correlation for the current study. 
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Figure 1: Convergence of DA

 

Figure 2: Autocorrelation of DA Draws 

 

 

4.1.2 Univariate Multiple Imputation 

 The current data set have three types of variables: binary, ordered categorized, and 

continuous. Hence, we will use three univariate multiple imputation methods; logit, ordered 

logit, and linear regression, for the corresponding variables separately. Univariate multiple 

imputation methods address the specific distribution for each variable, but ignore the correlation 
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among the variables. Below, we provide the information for each univariate multiple imputation 

method.  

Logistic regression model is a parametric model that assumes an underlying logistic 

distribution for a binary missing variable. Imputation method for the logistic model is based on 

asymptotic approximation of posterior predictive distribution of missing data. Actual posterior 

distribution of logictic model parameters does not have a simple form. Hence, a large-sample 

normal approximation to the posterior distribution is used.  A binary univarite variable that 

contains missing values to be imputed can be represented as 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)′, which follows 

a logistic model (van Buuren, 2007; Rubin, 1987): 

Pr ( 𝑥𝑖 = 1|𝒛𝑖) � = exp (𝒛𝒊′𝜷) 1 + exp (𝒛𝒊′𝜷)⁄     

where 𝒛𝒊 = �𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑞�′ records values of predictors of x for observation i, 𝜷 is the q x 1 

vector of unknown regression coefficients. Consider the partition of 𝒙 = (𝒙′0,𝒙′𝑚) into two 

vectors containing the complete (𝒙′0) and incomplete (𝒙′𝑚) observations. A similar partition is 

done for 𝒁 = (𝒁′0,𝒁′𝑚) into 𝑛0 𝑥 𝑞 and 𝑛1 𝑥 𝑞 submatrices.  The following steps are followed to 

fill in 𝒙′𝑚 using multiple imputation (van Buuren, 2007; Rubin, 1987): 

I. Fit a logistic model (1) to the observed data ( 𝒙0, 𝒛0) to obtain maximum 

likelihood estimates, 𝜷�, and their asymptotic sampling variance, 𝐔�.     

II. New parameters 𝜷∗ are simulated from the large-sample normal approximation, 

𝑁(𝜷� ,𝐔�), to its posterior distribution assuming the noninformative prior Pr (𝜷) ∝ 

const.  

III. One set of imputed values, 𝒙1𝑚 , is obtained by simulating from the logistic 

distribution Pr ( 𝑥𝑖 = 1|𝒛𝑖) � = exp (𝒛𝒊′𝜷) 1 + exp (𝒛𝒊′𝜷)⁄  for every missing 

observation 𝑖𝑚.  
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IV. The steps 2 and 3 are repeated to obtain M sets of imputed values, 

 𝒙1𝑚, 𝒙2𝑚,…, 𝒙𝑀𝑚.   

Steps 2 and 3 correspond to only approximate draws from the posterior predictive distribution of 

missing data Pr ( 𝐱𝑚|𝐱𝑜 ,𝒁𝑜) �, because 𝜷∗ is drawn from the asymptotic approximation to its 

posterior distribution (Rubin, 1987). 

  For the ranked discrete missing variables, the ordered logistic model is used. The model 

can be represented for an ordered K categorized variable as 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)′,  as (van Buuren, 

2007):  

 Pr (𝑥𝑖 = 𝑘|𝒛𝑖) � = Pr (𝛾𝑘−1 <  𝒛𝒊′𝜷 + 𝑢 < 𝛾𝑘) = 1
1+exp�𝒛𝒊

′𝜷−𝛾𝑘�
− 1

1+exp�𝒛𝒊
′𝜷−𝛾𝑘−1�

 

where 𝜸 = (𝛾1, … , 𝛾𝐾−1)′ are the unknown cutpoints. The steps I through IV above for the 

logistic model are conducted for the ordered logistic model to obtain the M set of imputed 

values. 

  For the continuous missing variables, linear regression model is used to obtain the 

imputed values. The linear regression model for a continuous variable 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)′ can 

be represented as (Gelman et al, 2004): 

  𝑥𝑖|𝒛𝒊�~𝑁(𝒛𝒊′𝜷,𝜎2) 

The steps I through IV above for the logistic model are followed to obtain the M set of imputed 

values for the linear regression model (Little and Rubin, 2002). for the ordered logistic model to 

obtain the M set of imputed values. 

4.2 Completed-data Analysis Step 

   In the current study, our ultimate objective is to analyze the adoption of Roundup 

Ready® corn. The adoption decision of farmers can be represented as binary variable y (Greene, 

2008): 
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  Pr ( 𝑦𝑖 = 1|𝒙𝑖) � = exp (𝒙𝒊′𝒒) 1 + exp (𝒙𝒊′𝒒)⁄   

where 𝑦𝑖 = 1 if the farmer adopts Roundup Ready® corn and 𝑦𝑖 = 0 if the farmer does not adopt 

Roundup Ready® corn. 𝒒 is the vector of coefficients in interest, in the completed-data analysis, 

to be estimated. This model is performed separately on each set of imputed data (completed data) 

m=1,2,…,M.  

4.3 Pooling Step 

  The results obtained from M completed-data analyses are combined into a single 

multiple-imputation based estimation results. Let ��𝒒𝒊� ,𝐔ı��: i = 1,2, … ,𝑀� be the completed-data 

estimates of q and the respective variance covariance estimates U from M imputed datasets. The 

multiple imputation estimate of q is 𝒒�𝑀 =  1
𝑀
∑ 𝒒𝒊�𝑀
𝑖=1 . The variance-covariance estimate of  

𝒒�𝑀(total variance) is 𝐓 = 𝐔� +  �1 + 1
𝑀
�𝐁, where 𝐔� =  1

𝑀
∑ 𝑼𝒊�/𝑀𝑀
𝑖=1  is the within-imputation 

variance-covariance matrix and 𝐁 =  1
𝑀
∑ (𝒒𝒊 −  𝒒�𝑀)(𝒒𝒊 −  𝒒�𝑀)′/(𝑀− 1)𝑀
𝑖=1  is the between-

imputation variance-covariance matrix.   

5. Data  

The data for the current study is obtained through a mail survey of 2995 farm operations 

in Iowa and Missouri in spring 2011. The questions were designed to learn farmers’ adoption of 

new technologies and how the farmer’s and the farm’s characteristics impacted the adoption 

decision. The survey was sent out to a test group of 100 farmers and was revised before 

developing the final survey instrument.   The final survey was sent out with a cover letter and a 

postage paid return envelope. A reminder postcard was sent after two weeks. The effective 

response rate for the survey was 21 percent.  Before calculating the response rate, the farmers 

that had stopped farming, farmers that returned the survey due to not being the farm operator, 
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and undeliverable surveys were subtracted from the original number of surveys that were sent 

out.  The effective rate is the number of returned surveys divided by the adjusted number of 

surveys sent, times 100.  

Table 1 provides information about the type of the data, whether the variable is binary, 

categorized, or continuous. The current data set have both three types of variables. Also, both 

number and percentage of missing observations are reported. In general, the percentage of 

missing observations is low for most of the variables, except for spouse’s education and off-farm 

income. Even if the percentage of missing observations is low for most of the variables, 

percentage of complete observations, which is used in most statistical programs for the 

regression analysis, is 56 percent. Hence, 44 percent of the observation would not be used in the 

regression analysis using no imputation methods. In table 1, also reports that when MVN 

imputation is used, the missing observations are imputed leading the number of complete 

observation to be 472. 

6. Results 

 To see the impact of imputation methods on the variables, mean and the standard 

deviation for the imputed variables are compared between no imputation (m=0), the 5th 

imputation and the 10th imputation for MVN and univarite multiple imputation methods. Table 2 

reports the results for mean and table 3 reports the results for standard deviation. Overall, the 

multiple imputation methods do not cause a significant variation for both mean and standard 

deviation for the variable. The results vary for discrete variables only in the second or the third 

digit for most of the variables. Even for the spouse education variable, which has the highest 

percentage of missing observation 25 percent, both multiple imputation methods provided the 

mean and standard deviation very close to no imputation values.  
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Table 4 provides the comparison of probit regression results between no imputation case 

and MVN multiple-imputation with M is set as 10.  The hypothesis that all the regression 

coefficients except the constant term is rejected for both regressions with the p-values of 0.000. 

Hence, both the no-imputation and MVN imputation regressions are significant. For the 

individual variables in the regression, two of the variables that were not significant in the no-

imputation case became significant in the multiple-imputation case, e.g. age and land rented in. 

On the other hand, the university / extension variable was significant in no-imputation 

regression, but it is not significant in the MVN imputed regression. It is important to see that all 

the variable estimates have lower standard error in the MVN imputed regression than no-imputed 

regression. Hence, MVN imputation increased the efficiency of the estimates and corrected for 

the biased estimates. For the cases of age and land rented in variables, no-imputation regression 

underestimated these variables and it over estimated the university / extension variable. 

Table 4 provides the comparison of probit regression results between no imputation case 

and univariate multiple-imputation method with M is set as 10. The hypothesis that all the 

regression coefficients except the constant term is rejected for the univarite-imputed regression 

with the p-values of 0.000. Hence, in addition to no-imputation regression being significant, 

univariate-imputed regression is also significant. Similar to no-imputed regression, age and land 

rented in variables are not statistically significant in the univariate-imputed regression at 10 

percent significance level (even if they have lower p-values in the univariate-imputed 

regression). However, university / extension variable is not significant in the univariate-imputed 

regression. Hence, the univariate-imputed regression shows that the university / extension 

variable is overstated in the no-imputation regression. Also, comparison of the standard errors of 
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the variables estimates show that all the estimates have lower standard errors in the univaria-

imputed regression than no-imputation regression. 

The comparison of the standard errors between the MVN multiple imputation regression 

and the univariate multiple imputation regression shows that all the estimates have lower 

standard errors in the MVN imputation regression than the univariate imputed regression. Hence, 

MVN imputed regression results are more efficient than univariate imputed regression. Table 6 

shows the impact of missing variables on the variable estimates for MVN multiple imputed 

regression and univariate imputed regression. The relative variance increase (RVI), which is the 

increase in variance of a variable due to missing information, are relatively low for all variables 

both MVN imputed regression and univariate imputed regression, with the exception for spouse 

off-farm income and education variables for MVN imputed regression. This is expected as these 

two variables had the highest percentage of missing observations. Same results are also valid for 

the fraction of missing information (FMI), which shows the ratio of information lost due to 

missing data to the total information that would be present if there were no missing data. Lastly, 

the relative efficiency in table 6 is helpful in deciding the number of total imputation M, which is 

10 in the current study. Relative efficiency shows the ratio of the variance of an estimator with M 

is set as 10 to the variance if M was infinite. The results show that the relative efficiencies are 

very high for both MVN and univariated imputed regressions. Hence, choice is setting M in the 

current study is justified.     

7. Conclusion 

The current study analyzed the impact of missing data and multiple imputation methods 

on an agricultural household survey. Current study shows that there can be significant amount of 

information lost in household surveys due to non-response. Even the individual percentages of 
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missing data was low for the variables of interest in the current study, overall 44 percent of 

observations could not be used in a standard regression due to non-response, when no imputation 

methods are used. 

 The current study also analyzed the impact of using multivariate normal multiple 

imputation method when some of the variables have discrete distribution and the results are 

compared to univariate multiple imputation method, which provides imputation based on the 

distribution of each variable. Our results showed that the regression estimates had lower standard 

error for multivariate normal imputed regression than the univariate imputed regression. Hence, 

multivariate normal method is preferred to univariate method, even when the variables have non 

continuous distributions. Overall, multiple imputation methods provided estimates with lower 

standard error than no imputation regression. Hence, use of multiple imputation methods can 

improve the efficiency of regression results.   
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Table 1. Number of Missing Observations and Imputed 
Variables                                  Type           Complete     Missing    Percentage     Imputed       Total       Imputed   Total 
                                                                         Obs.             Obs.          Missing          MVN          MVN        Univ.        Univ. 
Roundup Ready Corn Binary 453 19 4% 19 472 1 452 
Age Continuous  460 12 3% 12 472 3 463 
Owned Land Continuous  466  6 1% 6 472 2 468 
Land Rented Out Continuous  461 11 2% 11 472 6 467 
Land Rented In Continuous  459 13 3% 13 472 6 465 
State Binary 467 5 1% 5 472 1 468 
Farm Sales Categorized 456 16 3% 16 472 4 460 
Non-Family Labor  Binary 463 9 2% 9 472 2 465 
Environmental Perceptions        
Water Quality Categorized 463 9 2% 9 472 2 465 
Air Quality Categorized 443 29 6% 29 472 8 451 
Global Warming Categorized 463 9 2% 9 472 1 464 
Sources of Information         
Other Farmers Categorized 452 20 4% 20 472 2 455 
Non-farming Neighbors  Categorized 450 22 5% 22 472 1 451 
Banks Categorized 449 23 5% 23 472 1 450 
Contractors Categorized 449 23 5% 23 472 0 449 
University / Extension  Categorized 453 19 4% 19 472 0 453 
USDA Categorized 447 25 5% 25 472 0 447 
Other Government Org.  Categorized 446 26 6% 26 472 0 446 
Off-Farm Income        
Farm Operator Categorized 458 14 3% 14 472 0 458 
Spouse Categorized 373 99 21% 99 472 6 379 
Education         
Farm Operator Categorized 436 36 8% 36 472 4 440 
Spouse Categorized 352 120 25% 120 472 12 364 
Total Animal Units Continuous  462 10 2% 10 472 3 465 
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Table 2. Comparison of the Mean Between No Imputation and Multiple Imputations 
Variables                                    No Imputation      MVN Multiple Imputation        Univariate Multiple Imputation 
 m = 0 m = 5 m=10  m =5 m= 10  
Roundup Ready Corn 0.466 0.464 0.466  0.453 0.455  
Age 53 53 53  53 53  
Owned Land 235 234 234  236 234  
Land Rented Out 20 20 20  21 19  
Land Rented In 170 167 166  168 167  
State 0.490 0.489 0.489  0.493 0.493  
Farm Sales 3.171 3.167 3.172  3.160 3.169  
Non-Family Labor  0.283 0.282 0.284  0.283 0.282  
Environmental Perceptions 
Water Quality 3.994 3.994 3.994  3.991 3.983  
Air Quality 4.115 4.104 4.113  4.097 4.116  
Global Warming 2.544 2.541 2.541  2.542 2.534  
Sources of Information         
Other Farmers 2.573 2.571 2.574  2.560 2.586  
Non-farming Neighbors  1.718 1.716 1.716  1.714 1.714  
Banks 1.866 1.864 1.864  1.851 1.837  
Contractors 1.490 1.490 1.490  1.498 1.482  
University / Extension  2.210 2.210 2.210  2.215 2.197  
USDA 2.145 2.145 2.145  2.158 2.151  
Other Government Org.  1.794 1.794 1.794  1.812 1.798  
Off-Farm Income         
Farm Operator 2.614 2.614 2.614  2.621 2.602  
Spouse 2.842 2.842 2.842  2.821 2.777  
Education         
Farm Operator 2.489 2.502 2.498  2.491 2.472  
Spouse 2.744 2.758 2.742  2.680 2.646  
Total Animal Units 187 187 187  189 185  
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Table 3. Comparison of the Standard Deviation Between No Imputation and Multiple Imputations 
Variables                                    No Imputation      MVN Multiple Imputation        Univariate Multiple Imputation 
 m = 0 m = 5 m = 10  m = 5 m= 10  
Roundup Ready Corn 0.499 0.499 0.501  0.500 0.498  
Age 11 11 11  11 11  
Owned Land 256 255 255  256 256  
Land Rented Out 102 102 102  102 102  
Land Rented In 339 337 339  341 342  
State 0.500 0.503 0.502  0.500 0.500  
Farm Sales 1.502 1.498 1.489  1.498 1.498  
Non-Family Labor  0.451 0.449 0.452  0.450 0.451  
Environmental Perceptions 
Water Quality 1.191 1.192 1.195  1.190 1.190  
Air Quality 1.080 1.077 1.083  1.098 1.078  
Global Warming 1.357 1.361 1.358  1.358 1.358  
Sources of Information         
Other Farmers 1.164 1.166 1.167  1.162 1.160  
Non-farming Neighbors  1.020 1.040 1.024  1.019 1.019  
Banks 1.118 1.136 1.145  1.118 1.118  
Contractors 0.869 0.865 0.879  0.869 0.869  
University / Extension  1.178 1.179 1.177  1.178 1.178  
USDA 1.192 1.201 1.206  1.192 1.192  
Other Government Org.  1.040 1.045 1.033  1.040 1.040  
Off-Farm Income         
Farm Operator 1.158 1.180 1.162  1.158 1.158  
Spouse 1.248 1.260 1.268  1.248 1.250  
Education         
Farm Operator 1.608 1.643 1.620  1.609 1.613  
Spouse 1.453 1.540 1.472  1.461 1.454  
Total Animal Units 362 361 362  362 362  
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Table 4. Regression Results for Roundup Ready Corn 
  Variables                                                    No-Imputation                               Multivariate Normal Imputation 
   Coeff.      Std. Err.    p-Value    Coeff.      Std. Err.      p-Value       DOF     % Inc. S.E. 
Age 0.008 0.010 0.390 0.023 0.006 0.000 3332 4% 
Owned Land -0.001 0.000 0.182 0.000 0.000 0.349 9474 2% 
Land Rented Out 0.001 0.001 0.451 0.000 0.001 0.820 10896 2% 
Land Rented In 0.001 0.000 0.424 0.001 0.000 0.088 3826 4% 
State -0.995 0.207 0.000 -0.640 0.148 0.000 8818 2% 
Farm Sales 0.366 0.108 0.001 0.323 0.073 0.000 2903 4% 
Non-Family Labor  -0.041 0.222 0.854 -0.154 0.165 0.351 14121 2% 
Environmental Perceptions        
Water Quality 0.052 0.104 0.614 -0.052 0.069 0.457 4457 3% 
Air Quality -0.093 0.105 0.377 0.022 0.080 0.786 969 8% 
Global Warming -0.198 0.081 0.014 -0.126 0.056 0.023 5654 3% 
Sources of Information         
Other Farmers 0.086 0.096 0.373 -0.077 0.070 0.271 2488 5% 
Non-farming Neighbors  0.054 0.105 0.610 0.065 0.085 0.446 1105 7% 
Banks 0.094 0.107 0.382 0.114 0.083 0.168 3378 4% 
Contractors 0.088 0.143 0.537 -0.088 0.104 0.394 2373 5% 
University / Extension  -0.205 0.119 0.085 -0.048 0.081 0.552 4986 3% 
USDA 0.237 0.118 0.044 0.247 0.092 0.008 1986 5% 
Other Government Org.  0.179 0.119 0.131 0.054 0.089 0.545 4506 3% 
Off-Farm Income        
Farm Operator 0.038 0.114 0.739 0.008 0.081 0.920 3118 4% 
Spouse 0.001 0.110 0.994 -0.018 0.084 0.826 444 12% 
Education         
Farm Operator 0.004 0.078 0.956 -0.038 0.055 0.485 2051 5% 
Spouse 0.074 0.083 0.378 0.021 0.069 0.763 355 14% 
Total Animal Units 0.000 0.000 0.715 0.000 0.000 0.683 9528 2% 
Constant -1.910 0.877 0.029 -1.945 0.608 0.001 3592 4% 
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Table 5. Regression Results for Roundup Ready Corn 
  Variables                                             No-Imputation                                            Univariate Imputation 
   Coeff.      Std. Err.    p-Value  Coeff.        Std. Err.   p-Value       DOF     % Inc. S.E. 
Age 0.008 0.010 0.390 0.010 0.008 0.233 300561 0% 
Owned Land -0.001 0.000 0.182 -0.001 0.000 0.195 13901 1% 
Land Rented Out 0.001 0.001 0.451 0.002 0.001 0.211 1386 4% 
Land Rented In 0.000 0.000 0.424 0.000 0.000 0.123 6991 2% 
State -0.995 0.207 0.000 -0.870 0.181 0.000 120161 0% 
Farm Sales 0.366 0.108 0.001 0.303 0.090 0.001 83813 1% 
Non-Family Labor  -0.041 0.222 0.854 0.012 0.192 0.950 59573 1% 
Environmental Perceptions        
Water Quality 0.052 0.104 0.614 0.059 0.089 0.506 24990 1% 
Air Quality -0.093 0.105 0.377 -0.034 0.095 0.717 5623 2% 
Global Warming -0.198 0.081 0.014 -0.176 0.068 0.010 114456 0% 
Sources of Information         
Other Farmers 0.086 0.096 0.373 0.020 0.086 0.812 34299 1% 
Non-farming Neighbors  0.054 0.105 0.610 0.051 0.096 0.598 31997 1% 
Banks 0.094 0.107 0.382 0.149 0.093 0.111 18213 1% 
Contractors 0.088 0.143 0.537 -0.010 0.125 0.934 75602 1% 
University / Extension  -0.205 0.119 0.085 -0.079 0.095 0.409 9467098 0% 
USDA 0.237 0.118 0.044 0.232 0.103 0.024 989302 0% 
Other Government Org.  0.179 0.119 0.131 0.091 0.102 0.372 27383 1% 
Off-Farm Income        
Farm Operator 0.038 0.114 0.739 0.062 0.097 0.523 23185 1% 
Spouse 0.001 0.110 0.994 -0.013 0.095 0.889 10483 2% 
Education         
Farm Operator 0.004 0.078 0.956 -0.023 0.067 0.734 10164 2% 
Spouse 0.074 0.083 0.378 0.051 0.074 0.493 8455 2% 
Total Animal Units 0.000 0.000 0.715 0.000 0.000 0.884 32138 1% 
Constant -1.910 0.877 0.029 -2.009 0.739 0.007 228952 0% 
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Table 6. Impact of Missing Observations on Variable Estimates 
                                                             MVN Imputation        Univariate Imputation 
  RVI            FMI         Rel. Eff.  RVI          FMI       Rel. Eff. 
Age 0.068 0.064 0.997 0.006 0.005 0.999 
Owned Land 0.050 0.048 0.998 0.026 0.026 0.997 
Land Rented Out 0.028 0.027 0.999 0.088 0.082 0.992 
Land Rented In 0.130 0.117 0.994 0.037 0.036 0.996 
State 0.042 0.040 0.998 0.009 0.009 0.999 
Farm Sales 0.076 0.071 0.996 0.010 0.010 0.999 
Non-Family Labor  0.047 0.045 0.998 0.012 0.012 0.999 
Environmental Perceptions      
Water Quality 0.088 0.081 0.996 0.019 0.019 0.998 
Air Quality 0.088 0.081 0.996 0.042 0.040 0.996 
Global Warming 0.120 0.109 0.995 0.009 0.009 0.999 
Sources of Information       
Other Farmers 0.119 0.107 0.995 0.016 0.016 0.998 
Non-farming Neighbors  0.104 0.095 0.995 0.017 0.017 0.998 
Banks 0.162 0.141 0.993 0.023 0.022 0.998 
Contractors 0.106 0.096 0.995 0.011 0.011 0.999 
University / Extension  0.076 0.072 0.996 0.001 0.001 0.999 
USDA 0.106 0.097 0.995 0.003 0.003 0.999 
Other Government Org.  0.071 0.066 0.997 0.018 0.018 0.998 
Off-Farm Income      
Farm Operator 0.124 0.111 0.994 0.020 0.020 0.998 
Spouse 0.244 0.200 0.990 0.030 0.029 0.997 
Education       
Farm Operator 0.196 0.166 0.992 0.031 0.030 0.997 
Spouse 0.358 0.269 0.987 0.034 0.033 0.997 
Total Animal Units 0.023 0.023 0.999 0.017 0.017 0.998 
Constant 0.088 0.081 0.996 0.006 0.006 0.999 
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