|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

AARES

AUSTRALIAN AGRICULTURAL &
RESOURCE ECONOMICS SOCIETY

Murray Darling Basin Irrigation Adaptation to Droug ht:
A Statistical Evaluation

Jeffery D. Conndr’, Mobin Ahmad, Darran King, Onil Banerje& Mohammed Mainuddfn
Lei Ga

! CSIRO Ecosystem Sciences Division

2 CSIRO Land and Water Divisibn

"corresponding author: Dr. Jeff Connor, CSIRO EctesysSciences, PMB 2, Glen Osmond, SA
5064 Jeff.connor@csiro.au

Contributed paper prepared for presentation ab@tle AARES annual conference, Fremantle,
Western Australia, February7-10, 2012
Copyright 2012 by CSIRO. All rights reserved. Readeay make verbatim copies of this
document for non-commercial purposes by any meaasided that this copyright notice
appears on all such copies.



Introduction

This document describes a statistical evaluatidrrigfation sector response to drought in the
Murray Darling Basin. It forms the basis for an eemic simulation model of the Murray Darling
Basin irrigation sector that is used in an integpldtydrology and economic model (Kirby et al,
2012a) and applied to several scenario evaluat{#idy et al., 2012). Methodologically, the
economics underpinning the integrated model iscam@metric simulation. In a first step, the
subject of this paper, land area, water use pdateand gross value of irrigated agricultural
production changes observed during the drough¢stimated as functions of observed price and
climatic condition (rainfall and ET), water allogat levels for irrigation.

The approach of statistically relating observedcadpural adaption and economic impacts to
observed changes in climate controlling for otla@tdrs such as commodity prices is known in the
climate change agricultural economic impact literatas “Ricardian” economics (Mendelsohn,
Nordhaus, and Shaw, 1994). The original idea waisshifts in climate that impact agricultural
production possibilities should effect agricultuiaid values in ways that can be observed and used
to estimated land value changes as a function sérvBble climate change. Over time the literature
along these lines has evolved from solely estimgatimanges in land value in response to observable
climatic variation to estimating underlying agritul adjustment such as crop and livestock species
choices (Seo and Mendelsohn, 2007) and resultanibetc impacts. Similar statistical simulation
approaches can be found elsewhere in the agriautaonomics literature; notably in a body of US
literature characterising allocation of land tanfiang versus conservation land uses (Antle and
Capalbo, 2001).

The last decade, 2000 to 2010 was a period in whiatkr available for irrigation declined steadily,
from near full entittement in the 2000/01 irrigatiseason to only about one third of full entitletnen
available in 2007/08 and 2008/09. In some regidiosation levels in late years of the decade were
much less than the Basin average. For examplagiNEW Murray, 2007/08 allocations were just
6% of entitlement. During this time there was aladgation in crop prices with notable rises in whea
and dairy prices in some drought years, and clenatriation that influenced crop evapo-
transpiration and yield potential. This significamatiation and the resultant irrigation sector
adaptation represents an opportunity to better nstaied economic impact of water scarcity and to
calibrate response coefficients used in simulatimalelling to actual experience.

This document is organised as follows. The nexi@e¢2) describes the conceptual model and its
basis in economic theory. Section 3 describes thaefrstatistical specification of land allocation,
water use and gross value equations by major contie®dnd NRM regions for the MDB. Section
4-6 describe statistical estimation results fodlarea, water use per hectare and GVIAP regressions
respectively and compares the implied responsiweokithese variable with responsiveness
estimates from several other published modelsi@eéisummarises and concludes the paper.

Conceptual model

Our conceptual model follows the tradition in sttial evaluation of the agricultural sector of
economic impacts of climate initiated by (Mendelset al., 1994). In their original work,
Mendelsohn et al. (1994) used returns to land assared by observed land rental price as the
dependent variable in regression. The objectivetavésolate the partial impact of climatic variable



such as change in temperature or rain on landlnenta. In many studies following Mehdelsohn et
al. (1994), rental price of land was not readilg®lyable and regressions were instead on returns to
agriculture (Gbetibouo and Hassan, 2005; KumarRartkh, 1998). Seo and Mendelsohn (2008)
have also generalised the framework to estimatemgtprofits by also estimate production and
environmental determinants of output level of lioek.

A common micro-economic conceptual model undediksf these approaches. Irrigators are
assumed to have an objective of maximising prafiheequation 1, where profff], is a function of
product pricesp, a vector of the market or shadow prices of ingus.g. prices of fertiliser, and
irrigation water), a vector, y, of inputs to protioa that are fixed in the short run, within a grog/
season (e.g. capital, and land in perennial crapd)a vectorz, of exogenously determined and
stochastic environmental effects (e.g. rainfatiperature). In the standard micro-economic
framework, outputg (equation 2) and variable inpusks(equation 3), are assumed to be the profit
maximizing levels of outputs and inputs choseresponse to pricep, r, environmental conditions,
z and fixed inputsy.

In translating from the conceptual to a statistfcainework, economists realise that some of the
factors influencing production are observable, ittage not. The impact of these omitted varialdes i
expressed as an error term or unexplained varianegurns, supply and demand, germ in
equations 1 — 3.

maxi = p*qx|zy)-r*x+e...Q

g =da@rlyz+e..(2
X*=x(p,r|y,z2)+e...(3

In pragmatic terms, without original survey wottke tdata available dictates the form of observations
of inputs, outputs and returns used in estimatoanemic responses. For example, Mendelsohn et al
(1994) had observations of county level land remdé#le observations while Seo and Mendelsohn
(2008) had farm level returns and livestock stogkavel observations. In this case study we have
data reported in annual surveys by regions witheNlurray-Darling Basin. This includes
observations of revenues from production for 10amepmmodities. From a micro-economics

theory perspective, the revenue or gross valuessgnsg can be thought of as price times the

profit maximising output quantity given fixed facsoy and stochastic environmental impacts z
(equation 4)

g =p*ax|zy)+e...(4)

Observations of land area in production of eackevkn major irrigated crops; and observation of
irrigation demand expressed as irrigation applocator each of seven crops. Both land and water
application rate are treated factors of productitat are variable across years as in equation 3.
Whilst in can be argued that overall land is adiesset, amounts allocated to different crops and
total area irrigated are varied annually.



Regression Analysis

The model geographic coverage is the entirety ofrMuDarling Basin irrigated agriculture. Two
separate data sets are used in regression analysis:

Data set 1 — 2005/06 to 2008/09 NRM region date data covers four years and is disaggregated
into the 17 natural resource management (NRM) regised by the Australian Bureau of Statistics
(ABS) to report on MDB irrigated agriculture (Figut). With this data, we estimate determinants of
changes in revenues from production for 10 majop @nd livestock commodities; and land area
and irrigation application rate changes for 7 awopmmodities. The temporal coverage is the years
with available ABS reporting disaggregated at tli&MNregion level (2005/2006 to 2008/09).

Data set 2 — 2000/01 to 2009/10 Basin aggregatgied land use dat@his ABS data reports area
by each of 8 types of major irrigated commodity.rildetailed description of this data and
explanatory variables used in regressions are itbescin the data section below, and data summary
statistics are reported appendix 1.

Irrigated area regression model

In estimating land as an input to irrigated cropdurction, we begin with the conceptual equation 3.
Moving from a conceptual to an empirical model we @stricted to variables that can be
constructed with data readily available in a caesisway across yearg)(@nd MDB regionsr(.

Within theses constraints we are able to consthueke explanatory variables: the level of
stochastically varying annual water allocation &lze for irrigation (va,) the price of the
commodity ;) wherei is an index of commaodities, and a metric relateddtural contributions to
meeting crop irrigation demand, evapotranspiraliss rainfall.

Because the minimum level of land that can be atkxtto any crop is 0, a logistical functional form
is chosen for the regression analysis. It is asduimg potential area is bounded by zero as a lower
bound. For perennial and vegetable crops (for G85806 — 2008/09 NRM region data analysis) we
assume that 95% of the maximum area observed be®@i5/06 and 2008/09 is an upper bound.
For annual crops, the basin record suggests maximigated area can be significantly larger than
that observed in our four year time series. In tlise the maximum in the 2005/06 to 2008/09 time
series is assumed to represent percentile of theraaailable for diversion in 114 year hydrologic
the time series in Kirby et al. (2012).

The logits of the observed area in each year as@opion of the maximum area for each crop are
the dependent variabla, in regression (equation 1) whexeeaj is the area of cropfor region;
observed in yea.

A, =log[---(areg ; /max@req ; ))---/---@/(areq ; )/ max@req ; ))) -] 4

One advantage of using proportion of maximum yBIdNRM region (equation 4) as a dependent
variable is that regional scale differences amnielated. In a similar way scale differences in
dependent variables are eliminated by scalingcatlons in each year are divided by the maximum
observed in the recorded data record going ba@R®6 for each NRM regions; and net irrigation
requirement calculated as region potential cropetranspiration less effective rainfall is also
scaled by dividing this variable by the averagetl@ time period that estimates exist (1896 to 2009



Figure 1: Murray Darling Basin Natural Resource Manageniggions
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The regression model is presented as equation 5.

— A0 wa p c n
A, =al+a™*wa, +af*p tairc, taltn +g )



Whereo;’ is the regression intercept coefficient, afff, o;°, ando;® are the regression coefficients
for the water allocation, price and climate exptanavariablesa, is the regression coefficient for
the binary variabl@; included to account for distinct differences infieeng land and water

allocation and revenues from production in thelmenm Basin versus the southern basin that are not
picked up in the other explanatory variable.

For longer, 2000/01 to 2009/10 timeframe, arearbp @nd at the basin aggregate as opposed to
NRM region disaggregated level, was the only reaaliailable ABS data. Thus for each crop only
10 observations were available. This small sampke@nly allowed univariate regression. For all
commodities considered, multiple univariate regmesswere performed including regressions of
area on water allocation level, commodity price amthe case of perennial crops one year lagged
commodity price.

Once the regression was completed, the results wgei@d to predict the area of given crop as a

proportion of maximum potential area, Rfven values of explanatory variable with the
transformation,

PA ,, =exp(A.iy)/ expl+ Ajy)- 6)

The variable definitions for all three regressians summarised in Table 1.

Table 1 — Regression dependent and explanatory vables

Name | Description | Units
Dependent variables
Aijy Logits of land area (see equation 4) Logits
Wiy Irrigation application rate per hectare ML/Ha
Rijy Revenues from irrigated agricultural production Fwo°
Explanatory variables
way Regional irrigation water allocation measured a&srdported percentage 0%
full regional entitlement
Pi.y Commodity price $/tonne
Cijy Variable measuring climatic influence on crop iatign requirement Mm
calculated as crop potential evapo-transpiraties tzop available rainfall
n; Binary indicator variable, equals one for regiamshe Darling and LachlapBinary
catchments in the north of the basin and zero tloeraregions.
PAy Predicted land areas — result of regressions iatemu4 — used as an Ha
explanatory variable in revenue regressions.

Prior expectations are that the sign of the coefficfor,wg;, should be positive as greater levels of
water allocated to irrigation should lead to anangion of irrigated area. It is also expected tihat
commodity price regression coefficient should ds@ositive: this follows from the conceptual
model with factor demand increasing in output pridee variable;;, is a metric of climatic
conditions that influence crop irrigation. It isfuhed as the estimated potential crop evaporation a
maximum yield minus crop available rainfall whicha measure of amount of potential evapo-
transpiration that is met by rainfall. The priopextation is that the coefficient of this variable
should be negative, or inversely correlated lamé.arhe logic being that other things equal we
would expect irrigators to choice to irrigated sieahreas given hotter and drier conditions with



greater irrigation water requirement and less &dlind help meet this requirement, all other things
equal.

It is expected that there are some systematicrdiifees in land allocation, water application and
revenues from production in northern versus souatbasin regions that will not be fully explained
by the other explanatory variables (allocations$ wetter, and commodity prices). For crops where
this is the case, we expect that the coefficientifo be significant indicating a systematic
difference in area allocated by crop in the nortreard southern basin that is explainable by
unobserved factors other than water allocationsnsodity prices, and crop potential evapo-
transpriation net of crop available rain.

Irrigation area regression can only be appliedtps as opposed to livestock commaodities,
therefore regressions are run for: cereal (in wknehnclude other broadacre crops such as barley);
cotton, rice, pasture and hay (treated as one;onopg, , fruit and nuts (perennial horticulturajd
vegetables. Whilst it would be desirable to disaggte some crop classifications further, the lefel
resolution reported in ABS statistics do not allibwe.

Irrigation application rate regression model

Water use per hectare equations for each cMpwere estimated with the linear regression model
\Ni,j,y = ﬁiO +’3iwa* Wq‘j‘y +,8ip * pi,y +:8ic* Cl,j,y +:Bin * nj +q,j,y ...... (7)

The explanatory variables (crop price, allocatianailable for irrigation, and net irrigation
requirement) are as explained in Table 1 and inahe area regression section ab@/2is the
regression intercept coefficient, agf?, pi°, andp;° are the regression coefficients for the water
allocation, price and climate explanatory variabfsor expectations are for the coefficients & th
commodity price and allocation and climatic varezbare all for positive signs: higher levels of
water application are expected with higher comnyoglitces; higher levels of water availability and
with greater potential evapotranspiration less @wagilable rain, all else equal.

Two alternative forms of equation 7 were estimdtgdach crop and the form with greatest
explanatory power reported: one with the dependedithe explanatory variables normalised as
described in the land area regression methodssabove; the other with the dependent variable,
water application rate per hectare expressed imoomalised terms as Ml/Ha.

Water use per hectare regression can only be dpplierops as opposed to livestock commaodities,
therefore regressions are run for: cereal (in wknehnclude other broadacre crops such as barley);
cotton; rice; pasture and hay (treated as one cvapg, fruit and nuts (perennial horticulture)dan
vegetables.

Irrigated product revenue regression model

The final set of regressions expressed as equatestimate the revenues (gross value of irrigated
production, GVIAP in the terminology used by thesfralian Bureau of Statistics or ABS who
collects statistics on this metric). Data is aua#afor ten irrigation dependent commoditiBs, as a
function of explanatory variables includitite area of crop predicted with regressions egudtjo



net ET and commodity price, and in some cases arguvariable for NRM regions in the northern
Basin all explained in Table 1 and the sectionaomilarea regressio®;” is the regression intercept
coefficient, andb;"®, @;°, and®;® are the regression coefficients for the watercallion, price and
climate explanatory variables. Prior expectatiangliis regression were that revenues should be
increasing in land are®4;;y) and in commodity price. We did not have a cleasrgexpectation

with regard to the sign of the coefficient on thienate variableb;®: on the one hand high potential
evapotranspiration can be associated with highedd yon the other hand heat stress leading to
reduced yield can result under hotter and drieditaom can be correlated with high potential evapo-
transpiration.

Ry =@ +¢"* PA  +@ P, +df*c v n +e o )

In the case of gross value, equations are estinfatede seven crop commodities used in area and
water per hectare regressions as well as livestooknodities: beef, sheep, and dairy. For the
livestock GVIAP regressions, area of pasture arydd&reated as the area explanatory variable. As
with the area regressions, some variables aredsallecations in each year are divided by the
maximum observed in the recorded data record doaag to 1996 for each NRM regions; and in
some regressions net irrigation requirement is s¢sed by dividing this variable by the average fo
the time period that estimates exist (1896 to 2009)

Data sources and treatment

Irrigated area and water use per hectare by crdpN&M region data was sourced from the ABS
catalogue 46180 seried/ater Use on Australian Farms-
http://www.abs.gov.au/ausstats/abs@.nsf/mf/4AGIBVIAP data was sourced from catalogue
46100,Experimental Estimates of the Gross Value of IrteglbAgricultural Production -
http://www.abs.gov.au/ausstats/abs@.nsf/mf/4618.008 Crop price data was from the ABS
series 7501.0 series — Value of Principle Agriaat@ommodities Produced -
http://www.abs.gov.au/ausstats/abs@.nsf/mf/7501.0.

Time series gridded rainfall and areal potentia@pmtranspiration (APET) derived from SILO
datasets was obtained from Catchment Water YielienBton Tools (CWYET) project (Vaze et al.
2011a and 2011b). Under this project daily metemichl data from 1-Jan-1889 to 31-Aug-2009
collected by bureau of meteorology was interpolaie@.05 x 0.05 degree cell across Australia
(Jeffrey et al. 2001). Then daily gridded rainfalld APET was processed to calculate monthly
rainfall and spatial average APET for 58 major salzhments in the MDB. These sub-catchments
are aggregates of the rainfall-runoff sub-catchmesed in the Murray-Darling basin.Water
allocations data was sourced from the various vekiofWater Audit Monitoring Report: Report of
the Murray Darling Basin Commission on the Cap awelbsions — available from the MDBC prior
to 2008/0%ttp://www2.mdbc.gov.au/__data/page/1782/MDBC_WAMG6207.pd and from the
MDBA from the 2008/09 seasorwavw.mdba.gov.au/water/river_iof

Weather has a significant impact on returns tgation. In the regressions presented here Net
evapotranspiration calculated as potential cropetranspiration less effective rainfall is used to
capture main weather impacts. The areal average wdlpotential crop evapotranpiration and
effective rainfall by NRM region was estimated lthse the proportion of catchments within a

NRM region; crop type and areas; dominant cropnzie and coefficients. These values were
initially estimated on monthly time step and thggregated to calculate seasonal and annual net ET
(net irrigation requirements) for economic/cropguction function analysis.



Prices were expressed relative to major substitoiemodities in the case of annual crops where
crop substitution is a viable short-run adaptatlarthe case of pasture crops where a consistently
collected price time series was not available pitiee of the substitute in production, wheat was
used.

1. Irrigated area estimation results

Results of irrigated area by crop regression ferai05/06 to 2008/09 NRM region disaggregated
data are summarised in Table 2. For the annuakaropsidered (cereal, rice, cotton, pasture), the
overall regression fits as expressed by thstRtistics (0.34 to 0.92) are reasonably to vexydg
relative to expectations for time series crossigeatata. In contrast, the explanatory power of the
area regressions for perennial and vegetable ésaptatively low with B ranging from 0.10
(horticulture) to 0.22 (vegetables).

The signs of all statistically significant regresss coefficients are consistent with prior expeciet
(Table 2). The sign on the coefficients for th@edition explanatory variable are positive for aflaa
regressions, as expected, and five of the sevea statistically significant at a p-value of 0.1less.
The p-value for the allocation coefficient in thegetable regression is also very close to the-0.1 p
value threshold at 0.104. These results offer gtsupport for the hypothesis that irrigated area
declines with reductions in water allocation anat tiis is the case for all crops across the Basin.
statistically significant relationships between@iygd land area and prices and our climatic vagiabl
(net ET less rain) could be discerned as indichyep-values > 0.1 for these two variables in aldla
area regressions (Table 2). This result is nostoprising given the limited variation prices, Eida
rain over the sample and the fact that these areie somewhat correlate with some of the higher
price years also occurring when ET less rainfdliea were low relative to the four year sample
average.

The results of the area regressions with the aginegate 2000/01 to 2009/10 summarised in Table
3, are qualitatively similar to the results of laam@a regression with 2005/06 to 2008/09 NRM

region disaggregate data. In six out of eight aegaessions, area is directly related to allocation
level as expected and in five of these cases,atlmts are a statistically significant determinad.

was the case with the NRM region disaggregate ssges, overall explanatory power of the
regression was generally better for annual thaamel crops with R-squares of greater than 0.9 for
all annual crops other than cereal (0.45). For vaine horticulture, the area as function of allawati
level regression had relatively poor explanatorywgowith a direction of influence that is opposite

of expectation on the statistically insignificafibaation level explanatory variable.

Estimated area response elasticity, percent changearea predicted over percentage change from theample
mean in water allocation level, net ET level and pce level are summarised in Table 3: Irrigated aredy crop
regression results - aggregate basin 2000/01 to 2000 data

allocation intercept R-square

Pasture -

meat 0.00056 -2.74 0.91
Pasture -

dairy 0.00038 -1.367 0.9
Rice 0.0009 -7.24 0.95

cotton 0.00058 -3.72 0.92



cereal 0.00016 -0.193 0.45

Wine? -0.00015 2.58 0.56
Horticulture® -0.00016 2.7 0.54
Vegetables 0.00026 -0.595 0.72

Table 4. These calculations, based on the 2006/@6@8/09 NRM region regressions, allow
comparison with elasticity estimates that are rgf@from two widely reported alternative MDB
irrigation economics models. We estimate elaséisifor these studies with the standard arc elgstici
formula, (6 — Yo)/yo)/[(X1 — %0)/X0] where y is the base case predicted level of the dependent
variable, y is the dependent variable predicted level fortineat 1, X is treatment level of
explanatory variable and is base case explanatory variable level.

Colum 1 in Table 3: Irrigated area by crop regressn results - aggregate basin 2000/01 to 2009/10 aat

allocation intercept R-square

Pasture -

meat 0.00056 -2.74 0.91
Pasture -

dairy 0.00038 -1.367 0.9
Rice 0.0009 -7.24 0.95
cotton 0.00058 -3.72 0.92
cereal 0.00016 -0.193 0.45
Wine” -0.00015 2.58 0.56
Horticulture® -0.00016 2.7 0.54
Vegetables 0.00026 -0.595 0.72

Table 4 shows our estimates of land area respdastcéy to changes in allocation level. Columns
2 and 3 show elasticity estimates inferred fromrésailts of published studies with two other
economic models of the MDB irrigation sector. Thessults show relatively elastic land area
contractions with reductions in water allocatioosrhost annual crops including (in order of
elasticity magnitude): rice, cereal, pasture. Thestenates are also similar to the estimates from
other models with the UQ model an outlier in pastand area elasticity and our estimates of rice
area elasticity higher than the others.

In contrast, we estimate very inelastic perenniap ¢wine and horticulture) and vegetable crop area
response to changes in allocation level. For exaropt estimated elasticity of area in horticultisre
0.05 about one eight of the elasticity inferredrdQ modeling results. ABARE estimated elasticity
responses for these crops are of a similar magnibud opposite sign. This suggests somewhat
implausibly, small expansions in areas of hortiodf wine, and vegetables with reduced allocations
all else equal. In contrast, our small but posigiesticity estimates seem consistent with the
observed small contraction in areas of these ongipsvery large allocation reductions during the
drought.



Table 2: Irrigated area by crop regression resultsummary — disaggregate NRM region 2005/06 — 2008/@8ata

dependent R-

explanatory

variable sauare variable coef std t-stat p-value
rice 0.92 ALLOCATION 10.002 2.375 4.211 0.014
DNET 6.0413 5.972 1.012 0.369
OWN PRICE 0.51971 1.726 0.3011 0.778
CONSTANT -7.7986  3.262 -2.391 0.075
cotton 0.34 ALLOCATION 2.8508 1.141  2.498 0.02
DNET 0.56296 1.956 0.2878 0.776
PRICE 2.0169 1.221 1.652 0.112
CONSTANT -4.3236 1.145 -3.778 0.001
cereal 0.51 ALLOCATION 3.7457 1.004 3.732 0.001
6.37E-
DNET 0.12588 1.975 02 0.949
OWN PRICE 0.0021 0.0035 0.5866 0.56
CONSTANT -3.3302 1.272 -2.617 0.012
wine 0.14 ALLOCATION 1.1335 0.5324  2.129 0.041
DNET 0.249 0.5457 0.4558 0.651
- 0.749-
OWN PRICE 0.19269 0.5964 -0.3231 0.056
CONSTANT 1.6139 0.7149  2.258 0.031
horticulture 0.1 ALLOCATION 0.78932 0.6247  1.264 0.215
DNET 1.9179  1.229 1.56 0.128
OWN PRICE 0.21494 1547 0.1389 0.89
CONSTANT 1.073 1.716 0.6252 0.536
vegetables 0.22 ALLOCATION 1.3728 0.8196 1.675 0.104
DNET -1.9769 1.611 -1.227 0.229
OWN PRICE -1.7982 2.008 -0.8956 0.377
CONSTANT 2.8374 2224  1.276 0.211
pasture 0.6€ ALLOCATION 3.226 0.6483  4.976 0
DNET -1.4795  1.272 -1.163 0.254
SUBSTITUTE
PRICE* -0.0021 0.0020 -1.048 0.303
CONSTANT -1.0449 0.8733 -1.197 0.241
NORTH -0.109 0.3581 -0.3044 0.763

indicates statistically significant at p-valu®<40




Table 3: Irrigated area by crop regression results aggregate basin 2000/01 to 2009/10 data

allocation intercept R-square

Pasture -

meat 0.00056 -2.74 0.91
Pasture -

dairy 0.00038 -1.367 0.9
Rice 0.0009 -7.24 0.95
cotton 0.00058 -3.72 0.92
cereal 0.00016 -0.193 0.45
Wine” -0.00015 2.58 0.56
Horticulture® -0.00016 2.7 0.54
Vegetables 0.00026 -0.595 0.72

Table 4: Estimated land area response elasticity #i respect to irrigation allocations

CSIRO ABARES UQ

Pasture 0.82 0.57 1.79

Hay 1.45

Dairy -0.1

Beef 0.14

Sheep 0.79
Cereal 1.21 0.93
Cotton 0.77 0.55 0.61
Rice 3.83 1.07 2.33
Hort 0.05 -0.07 0.43
wine 0.06 -0.09 0
Vegetable 0.11 -0.17

2. Irrigation application rate regression results

Results of irrigation application rate regressiars summarised in Table 5. Water
application rate equations generally had highetaggiory power for perennial (wine,
horticulture) and vegetable crops (R-square 0.98t) than annual crops(R-square 0.18 to
0.32). The exception is the water per hectare ssgra for annual crop rice with a very high
r-square of 0.91.

Coefficient signs were generally as expected. Omeed irrigation requirement (potential
crop evapotranspiration net of effective rainfalgs the most consistently important
determinant of water application rates. Hotter dndr (lower rainfall) weather was found to
be to positively and statistically significantlylaged to water application rates per hectare in
six of eight regressions. This relationship wagipalarly strong from perennial (wine and
horticulture) and vegetable crops, where the net&éfficient was significant at the 99%
confidence level.

Consistently with prior expectations water applmatate per hectare was statistically
significant and positively related to allocationdés for rice. However no statistically



significant relationship between allocation levetiavater application rate could be found for
the remaining seven regressions. We also foundstatestically significant price effects, both
consistent with expectation: water applied per d&rects increasing with commaodity price for
rice decreasing with decreasing in substitute coditp@rice (wheat) for pasture. However,
in general prices effects could not be identifiathvaigh levels of statistical confidence in
the remaining regressions. One potential explandtipa lack of statistically significant

price and allocation level impacts on irrigationt@raapplication rates is that these factors
may in fact have very little influence. Once irtigs set area to irrigate by crop the marginal
economics is driven primarily by the season ETafeginfall.



Table 5: Irrigated water use by crop regression radts summary

dependent R- explanatory
variable sauare  variable coef std t-stat p-value
Rice 0.91 PRICE 0.25923 0.0519 4.993 0.004
ALLOCATION 0.20022 0.0671 2.982 0.031
NET -0.20637 0.2192 -0.9417 0.39
CONSTANT 0.77737 0.2782 2.795 0.038
1
Cotton 0.21 PRICE 0.0252 0.2652 0.0949 0.925
ALLOCATION -0.0035 0.1095 -0.0324 0.974
NET 0.34228 0.1727 1.982 0.062
CONSTANT 0.52341 0.3991 1.311 0.205
wheat south 0.31 PRICE -0.18664 0.1242 -1.503 0.154
ALLOCATION 0.11648 0.0792 1.471 0.162
NET 0.62759 0.2121 2.959 0.01
CONSTANT 0.39895 0.181 2.204 0.044
1
wheat north 0.32 PRICE 0.0076 0.0924 0.0826 0.935
ALLOCATION -0.18172 0.1424 -1.276 0.217
NET -0.55718 0.3315 -1.681 0.109
CONSTANT 1.5016 0.4278 3.51 0.002
1
horticulture 0.69 PRICE -1.4795 1.575 -0.9395 0.354
ALLOCATION -0.68831 0.8432 -0.8163 0.42
NET 4.4054 1.012 4.353 0
NORTH -3.6054 0.4666 -7.728 0
CONSTANT 3.1108 2.05 1.518 0.138
vegetable 0.58 PRICE 0.80156 1.23 0.6515 0.519
ALLOCATION -0.31677 0.618 -0.5126 0.611
NET 4.2242 0.6308 6.697 0
CONSTANT 0.16238 1.475 0.1101 0.913
NORTH -1.9296 0.3444 -5.603 0
Wine 0.71 PRICE -0.48285 0.4387 -1.101 0.278
ALLOCATION 0.73344 0.6103 1.202 0.237
NET 6.0464 0.7076 8.545 0
CONSTANT -1.9126 0.6778 -2.822 0.008
NORTH -1.9812 0.4323 -4.583 0
SUBSTITUTE
pasture 0.18 PRICE -0.79455 0.439 -1.81 0.076
ALLOCATION 0.2482 0.5028 0.4936 0.624
DNET 1.2128 0.5091 2.382 0.021
NORTH -0.37585 0.3048 -1.233 0.223
CONSTANT 3.5938 0.6151 5.842 0

indicates statistically significant at p-valu®<40




Regression coefficients for the most consistenggificant determinant of irrigation rate net
ET were converted to elasticity estimates so tiertet implications could be more easily
understood as shown in Table 6. These estimategderaew insight into the process and
costs of MDB irrigation sector adaptation of droudihile there is at least one other recent
studies that has accounted for what is essengtallgbility to substitute rain for irrigation
water as an input to production (Whittwer and Dix@@11), the study assumed 1 for 1 rain
for irrigation application substitutability. Ouraadticity estimates suggest that in fact, on
average irrigators increase irrigation by nearlg fvercent for a one percent change in net ET
for water stress and heat sensitive wine and wiapes, and by about 1% for a 1% rise in net
ET for horticultural and vegetable crops. In costrthe elasticity of irrigation application for

a 1% change in net ET for annual crops is small&9(for cotton, and 0.42 for pasture, 0.74
for Southern Basin cereals).

Table 6: Estimated irrigation application rate elagicity with respect to net ET

crop Net ET elasticity
Pasture 0.42
cereal south 0.75
cereal north NS
Cotton 0.39
Rice NS
Hort 0.95
wine 1.74
Vegetable 0.97

NS indicates no statistically significant relationship

3. Revenue regression estimation results

A summary of revenue (or GVIAP in ABS language)resgion outcomes for crop
commodities is shown in Table 7 and for livestoakdd commodities in Table 8. These
regressions generally had good explanatory poweig(Rres from 0.37 to 0.99). Explanatory
power of regressions was generally higher for ¢raped commodities (R squares from 0.51
to 0.99) than for livestock based commodities amstyre (R squares from 0.37 to 0.62).
Whilst the R-square for the rice GVIAP was highod).too few observations and the
presence of a high degree of multicolinearity iplaratory variables (correlation amongst
these variables) meant that this regression waslena produce reliable estimates; signs on
all coefficients reversed with small changes inc#ptions, and calculated elasticity
numbers were implausible. See section 6 for furtigeussion.

As expected area was found to be directly relaagd\{IAP and the relationship was
statistically significant in all regressions. Wéctdated the elasticity of GVIAP with respect

to land area and tested whether we could rejedtypethesis that the value was equal to one.
We failed to reject this hypothesis in all caseidating that the data is consistent with an
assumption of a one to one relationship betweedigiszl contraction in land area and
contraction in GVIAP, all other factors such aspcpoices and rain and evapotranspiration
equal.



For livestock based commodities estimated elagtscaf GVIAP change with respect to
changes in land area were less than one (0.31e&dt 0.44 for sheep and 0.39 for dairy).
This indicates that a 1% decline in the area inysasand hay crops supporting these
industries led to a less than 1% (0.31% to 0.4486)idke in the value of output. This is as
expected and provides circumstantial evidenceféeat was sourced from beyond irrigated
production within the Basin for these industriesiniy the drought.

The estimated impacts of commodity prices on GViRd?e also positive as expected for all
regressions. The relationship was statisticallpificant at 90% confidence or better (pvalue
< 0.1) for three of these 10 regressions. We caledlthe elasticity of GVIAP with respect to
commodity prices and tested whether we could refechypothesis that the value was equal
to one. We failed to reject this hypothesis incalées indicating that it is consistent with the
data to assume a one to one relationship betwesrgehin commodity price and change
GVIAP, all other factors such as crop prices aril aad evapotranspiration equal.

Kirby et al (2012) reviewed drought experiencehe trrigation sector and found that over
the drought, irrigated output per hectare of mamymodities increased as conditions
became hotter and dryer and irrigated land areaaced. It seems reasonable to infer that
the net ET coefficient relate to yield impacts ovil&P pick up this effect, given that price
and area impacts are picked up by price and angaretory variables. As shown in Table 9,
we found that net ET does have a positive and fstgnit correlation with GVAIP for beef,
dairy and pasture and rice with elasticity of GVIARh respect to net ET in the (0.16 to 0.85
range). The result may suggest that, irrigatorkéngotential yields in years of high
evapotranspiration may have been realised as torig@eployed more yield enhancing inputs
in the form of water or other inputs that are regptaired in regression explanatory variables
(e.g. capital or labour inputs that increase itraaefficiency).

We found the opposite effect of greater net ETragation revenues for five crop (wheat,
grapes, horticulture, beef, and cotton). Negatnefficients on the net ET variable for these
crops are consistent with hotter and dryer conaltieading to decreased yields, though the
relationship was only found to be statisticallynsfigant for cereals.



Table 7: Irrigated crop commodity GVIAP regressionresults

dependent R- explanatory
variable sauare  variable coef std t-stat p-value
wheat 0.86 PRICE 0.0128 0.0180 0.7105 0.481
AREA 0.0008 0.0001 15.57 0
DNET -17.436 10.33 -1.688 0.098
CONSTANT -0.93659 5.568 -0.1682 0.867
1
rice 0.99 PRICE 74.539 6.221 11.98 0.053
AREA 0.0047 0.0001 39.46 0.016
DNET 186.4 18.38 10.14 0.063
CONSTANT -126.52 10.53 -12.02 0.053
1
cotton 0.79 PRICE 218.22 190.8 1.144 0.296
AREA 0.0104 0.0024 4.238 0.005
NET -187.86 149.2 -1.259 0.255
CONSTANT -24.149 263.1 -0.0918 0.93
1
pasture 0.63 PRICE 0.0049 0.0209 0.2366 0.815
AREA 0.0001 0.0000 3.658 0.001
DNET 52.739 11.77 4.48 0
NORTH 5.4882 2.564 2.14 0.041
CONSTANT -1.3687 6.476 -0.2113 0.834
vegetable 0.75 PRICE 138.06 71.22 1.938 0.066
AREA 0.0270 0.0046 5.85 0
DNET 57.458 49.54 1.16 0.259
CONSTANT -167 81.99 -2.037 0.054
horticulture 0.51 PRICE 86.768 138.1 0.6282 0.538
AREA 0.0110 0.0042 2.63 0.017
NET -131.63 106.6 -1.235 0.233
NORTH -6.6332 38.2 -0.1736 0.864
CONSTANT 76.128 209.9 0.3627 0.721
grapes 0.9 PRICE 105.26 40.71 2.585 0.023
AREA 0.0072 0.0008 8.829 0
DNET -5.7854 158 -0.0366 0.971
NORTH -0.0778 24.49 -0.0032 0.998
CONSTANT -111.64 46.13 -2.42 0.031

indicates statistically significant at p-valu®<40




Table 8: Irrigated livestock commodity GVIAP regression results

dependent R- explanatory

variable sauare variable coef std t-stat p-value

beef 0.37 PRICE 194.25 103 1.886 0.073
AREA 0.00016 0.00009 1.869 0.075
NET -47.26 36.19 -1.306 0.205
CONSTANT -132.74 95.41 -1.391 0.178

sheep 0.65 PRICE 848.91 1259 0.6745 0.505
AREA 0.00014 0.00002 6.163 0
DNET 17.237 9.829 1.754 0.09
CONSTANT 1.9365 5.022 0.3856 0.703

dairy 0.62 PRICE 102.73 96.19 1.068 0.299
AREA 0.00094 0.00029 3.213 0.005
DNET 693.99 132.2 5.248 0
NORTH -46.34 35.14 -1.319 0.203
CONSTANT -121.44 117.1 -1.037 0.313

indicates statistically significant at p-valu®<40

Table 9: Estimated GVIAP response elasticity with espect to net ET

crop Net ET elasticity

Pasture 0.48
Cereal -0.11
Cotton NS
Rice 0.58
Hort NS
wine NS
Vegetable NS
Dairy 0.84
Sheep 0.16
Beef NS

NS indicates no statisitcally significant relationship




4. Statistical issues and their treatment

Error in dependant variable estimates is one statisssue with our source data. Dependant
variables values in the regressions are estimateanfentire NRM region from survey
samples and not a census of the entire relevantigtigmn. In regions where the commodity
in question has a relatively small population addqarcers, sample sizes are small and as a
result standard errors of population inferencemftbese survey samples is large. The result
is potential for errors in measurement of depensganables used in the regressions. To deal
with this issue data was omitted where: the ABScawed very large standard error in
estimation, this was judged to be the case whegsetlean 3 years out of the four possible
were available for a variable in a given NRM regamd the estimates appeared to vary
implausibly from year to year.

Further statistical issues that arose had to dio v nature of errors in regression prediction.
In the first instance all equations were estimatét straight forward ordinary least squares
regression. We then tested for presence of thremnpal statistical problems:

1. Heteroscedasticity — this is the tendency for ermomprediction to be systematically
correlated with the size of the dependent varidlMieen errors in regression
prediction are heteroscedastic and this is noected for with an with an
appropriately adjusted weighting in regression,staedard errors of regression
coefficients and thus inferences about coefficggnificance are inaccurate. The
extent of hetroscadasticity was tested with the<gl test (Greene, 1990). As
summarised in Table 8 hetroscadasticity was idedtifa less than a 10% probability
of rejecting the hypothesis that errors are hekaaasstic) in seven of twenty four
regressions. To ensure meaningful statistical pmétation in these cases, the five
equations where hetroscadisticity was identifiechbiyyautocorrelation, the equations
were re-estimated with a heteroscedasticity adjestr{the hetcov option in Shazam
v.10 statistical software which implements the \WHi®80 correction) to ensure
accurate estimates of all regression coefficieanidrd errors. These
heteroscedasticity corrected standard errors audtrtetests of coefficients are what
is reported and used in calculation in Tables 2-7.

2. Autocorrelation — this is the tendency for errorprediction to be related across time
periods — rather than being independent (not catedlwith one another). When
errors in regression prediction are auto-correlatadithis is not corrected for with an
auto-corellation adjusted weighting in regresstbe, standard errors of regression
coefficients and thus inferences about coefficggmificance are inaccurate. An
appropriate indicator of the presence of autocatiah is the Durbin Watson statistic
(Greene, 1990). Results of the Durbin Watson tsbdr regressions are shown in
Table 8. Based on these statistics we could nettréye presence of auto-correlated
errors (at p-value of 10% or less) for nine oftiwenty five regressions. Subsequent
analysis by trialling regression models of predicterror on one period lagged error
and other lagged models confirmed significahbfder autocorrelation for all nine
case. To ensure meaningful statistical interpratat these cases and for cases of
both autocorrelation and heteroskedasiticity, merequations were re-estimated with
a first order autocorrelation adjustment using$hazam statistical software v. 10
(autcov=1 procedure following Greene, 2003, p2b®rsure accurate estimates of
all regression coefficient standard errors. Thegearrelation (and



heteroskedasticity where this was also presentgctad standard errors and result t-
tests of coefficients are what is reported and uisedlculation in Tables 2-7.

3. Multicolinearity — is correlation amongst explangteariables. Its presence can make
it difficult to isolate the partial impacts of hilghcorrelated variables and result in
statistically insignificant impacts and relativédyge changes in coefficient including
changes in estimated directions of influence wélatively small changes in
regression specification. We tested for multicadinity by calculating a measure
know as the variance inflation factor (VIF); itasmeasure of the extent to which each
explanatory variable can be predicted as a combimaf the other explanatory
variables. A VIF value greater than 5 indicatesabfgematically high level of
multicolinearity. Estimated VIF values for all regsions are summarised in table 8.
As can be seen none of the estimated VIF valuaesatetl severe multicollinearity in
explanatory variables and thus no modificationsetgression were pursued to address
multicolinearity. The single exception to thisletrice revenue regression. As
discussed above

A final potential statistical issue is cross eqomttorrelation in errors — the equations
describing land area, water use per hectare, arldi&sre expected to have correlated errors
in prediction as they are explained by many ofséu@e and correlated explanatory variables.
Estimating systems of simultaneous equations isipleswhen this is the case and can result
in improved statistical identification of the maleterminants of land and water use and
GVIAP in irrigated cropping. Such an approach isgible but involves intensive efforts and
new specialised software for our case study whHerelata is what is known in econometrics
as “unbalanced panel data” that is it is time sesied cross section but with different cross
sectional and time series observations for diffecenps. .



Table 10: Summary of multicollinearity, autocorrelation, and hetroskedasticity testing results

Dependent | Variance | Probability of Probability of Prob. of Regression
variable inflation | rejecting rejecting rejecting type
factor positive auto- | negative auto- hetero-
correlation correlation skedasticity
Revenue regressions
Pasture 1.7 0.18 0.82 0.02 Hetcov
Dairy 1.48 0.02 0.98 0.28 Autcov=1
Wine 2.26 0.87 0.13 0.05 Hetcov
Vegetable 1.29 0.01 0.99 0.03 Autcov=1
Horticulture | 1.30 0.38 0.62 0.08 Hetcov
Cotton 2.52 0.69 0.31 0.06 Hetcov
Rice 8.82 0.36 0.64 0.81 OLS
Sheep 1.74 0.03 0.97 0.05 Autcov=1
Beef 1.91 0.08 0.92 0.24 Autcov=1
Cereal 1.27 0.11 0.89 0.01 Hetcov
Land area regressions
Rice 3.45 0.49 0.51 0.76 OLS
Cotton 1.55 0.66 0.34 0.77 OLS
Cereal 1.14 0.02 0.98 0.39 Autcov=]
Cereal south| 1.28 0.40 0.60 0.24 OLS
Cereal north| 1.43 0.21 0.79 0.59 OLS
Wine 1.41 0.71 0.29 0.43 OLS
Horticulture | 1.98 0.69 0.31 0.89 OLS
Vegetable 1.34 0.32 0.68 0.78 OLS
Pasture 1.18 0.68 0.32 0.81 OLS
Water per hectare regressions
Rice 5.5 0.62 0.38 0.30 OLS
Cotton 1.49 0.82 0.18 0.37 OLS
Cereal 1.57 0.46 0.54 0.12 OLS
Wine 1.40 0.01 0.99 0.53 Autcov=1
Horticulture | 1.75 0.01 0.99 0.14 Autcov=1
Vegetable 1.62 0.001 0.999 0.07 Autcov=1
Pasture 1.31 0.04 0.96 0.71 Autcov=1

5. Summary and Conclusions

Key conclusions arising from the crop area regosssare that allocation level was the most
consistently statistically significant determinaitcrop area. Small but significant area
changes in perennials and vegetables could beieggdlay changes in allocations available

to irrigators. Moderate (cotton, pasture, ceraalatge (rice) changes in annual crop are were
estimated in response to irrigation allocation ¢jesn Neither price level changes or changes

in net ET were found to be statistically significaeterminant of some in irrigated crop area.

Key water application rate regression conclusioasvthat the most statistically significant
determinant of irrigation application is the net E€rop potential ET less crop available rain
Statistically significantly greater applicationeatare correlated with greater ET — rain for 6
of 8 crops. The estimated elasticity of applicafiona 1% change in irrigation water



requirement is estimated to be large for perenaiatsvegetables, and small for annual crops.
Higher prices and higher allocation levels weréistiaally significantly correlated with
higher water application rates for rice.

Key revenue (gross value of irrigated agricultymalduction) regression conclusions were
that the most consistently significant determir@freestimated GVAIP across all commodities
considered was estimated area of crop (or pastuieszéstock commodities). The hypotheses
that GVIAP is in a 1:1 relationship with percentagea and percentage price change could
not be rejected for any of the commodities congider he yield impacts of hotter and drier
weather appeared to be positive for some cropsagdtive for others. Statistically
significantly greater GVIAP in years of greater ETain was estimated for Sheep, Dairy,
Pasture and Rice. Less GVIAP was statisticallyiigantly attributable to hotter and drier
weather for wheat. A negative but not statisticadiiationship was estimated for horticulture,
wine, beef, and cotton.

A notable characteristic of both datasets is neddifismall sample sizes — for several of the
regressions smaller than would commonly be usedgression analysis. From an
econometric perspective, larger samples based om miata from farm level surveys would
be more desirable. However, the underlying motorafor this analysis is not the regression
analysis itself. Rather, we are motivated to dertratesan approach to irrigation sector
modelling based on precisely, the type of sparskeagigregated data that is readily available
in the MDB and likely also to be readily availalreother basins where such an approach
could also be applied. Connor et al. (2012) dessribsting of alternative simulation model
specifications for applying these regressions amdi@ation of the final model specification
to simulating irrigation sector adjustment to altgive price, climate and irrigation water
availability scenarios.
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