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Introduction 
 
This document describes a statistical evaluation of irrigation sector response to drought in the 
Murray Darling Basin. It forms the basis for an economic simulation model of the Murray Darling 
Basin irrigation sector that is used in an integrated hydrology and economic model (Kirby et al, 
2012a) and applied to several scenario evaluations  (Kirby et al., 2012). Methodologically, the 
economics underpinning the integrated model is an econometric simulation. In a first step, the 
subject of this paper, land area, water use per hectare and gross value of irrigated agricultural 
production changes observed during the drought are estimated as functions of observed price and 
climatic condition (rainfall and ET), water allocation levels for irrigation. 
 
The approach of statistically relating observed agricultural adaption and economic impacts to 
observed changes in climate controlling for other factors such as commodity prices is known in the 
climate change agricultural economic impact literature as “Ricardian” economics (Mendelsohn, 
Nordhaus, and Shaw, 1994). The original idea was that shifts in climate that impact agricultural 
production possibilities should effect agricultural land values in ways that can be observed and used 
to estimated land value changes as a function of observable climate change. Over time the literature 
along these lines has evolved from solely estimating changes in land value in response to observable 
climatic variation to estimating underlying agricultural adjustment such as crop and livestock species 
choices (Seo and Mendelsohn, 2007) and resultant economic impacts. Similar statistical simulation 
approaches can be found elsewhere in the agricultural economics literature; notably in a body of US 
literature characterising allocation of land to farming versus conservation land uses (Antle and 
Capalbo, 2001). 
 
The last decade, 2000 to 2010 was a period in which water available for irrigation declined steadily, 
from near full entitlement in the 2000/01 irrigation season to only about one third of full entitlement 
available in 2007/08 and 2008/09. In some regions allocation levels in late years of the decade were 
much less than the Basin average. For example, in the NSW Murray, 2007/08 allocations were just 
6% of entitlement. During this time there was also variation in crop prices with notable rises in wheat 
and dairy prices in some drought years, and climatic variation that influenced crop evapo-
transpiration and yield potential. This significant variation and the resultant irrigation sector 
adaptation represents an opportunity to better understand economic impact of water scarcity and to 
calibrate response coefficients used in simulation modelling to actual experience.  
 
This document is organised as follows. The next section (2) describes the conceptual model and its 
basis in economic theory. Section 3 describes the model statistical specification of land allocation, 
water use and gross value equations by major commodities and NRM regions for the MDB. Section 
4-6 describe statistical estimation results for land area, water use per hectare and GVIAP regressions 
respectively and compares the implied responsiveness of these variable with responsiveness 
estimates from several other published models. Section 7 summarises and concludes the paper.  
 

Conceptual model 
 
Our conceptual model follows the tradition in statistical evaluation of the agricultural sector of 
economic impacts of climate initiated by (Mendelsohn et al., 1994).  In their original work, 
Mendelsohn et al. (1994) used returns to land as measured by observed land rental price as the 
dependent variable in regression. The objective was to isolate the partial impact of climatic variables 



such as change in temperature or rain on land rental price. In many studies following Mehdelsohn et 
al. (1994), rental price of land was not readily observable and regressions were instead on returns to 
agriculture (Gbetibouo and Hassan, 2005; Kumar and Parikh, 1998). Seo and Mendelsohn (2008) 
have also generalised the framework to estimate not only profits by also estimate production and 
environmental determinants of output level of livestock.  
 
A common micro-economic conceptual model underlies all of these approaches. Irrigators are 
assumed to have an objective of maximising profit as in equation 1, where profit, ∏, is a function of 
product prices, p, a vector of the market or shadow prices of inputs, r (e.g. prices of fertiliser, and 
irrigation water), a vector, y, of inputs to production that are fixed in the short run, within a growing 
season (e.g. capital, and land in perennial crops) and a vector, z, of exogenously determined and 
stochastic environmental effects (e.g. rainfall, temperature). In the standard micro-economic 
framework, output, q (equation 2) and variable inputs, x (equation 3), are assumed to be the profit 
maximizing levels of outputs and inputs chosen in response to prices, p, r, environmental conditions, 
z and fixed inputs, y.  
 
In translating from the conceptual to a statistical framework, economists realise that some of the 
factors influencing production are observable, others are not. The impact of these omitted variables is 
expressed as an error term or unexplained variance in returns, supply and demand, the e term in 
equations 1 – 3. 
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In pragmatic terms, without original survey work, the data available dictates the form of observations 
of inputs, outputs and returns used in estimating economic responses. For example, Mendelsohn et al 
(1994) had observations of county level land rental value observations while Seo and Mendelsohn 
(2008) had farm level returns and livestock stocking level observations. In this case study we have 
data reported in annual surveys by regions within the Murray-Darling Basin. This includes 
observations of revenues from production for 10 major commodities. From a micro-economics 
theory perspective, the revenue or gross value regressions, g can be thought of as price times the 
profit maximising output quantity given fixed factors y and stochastic environmental impacts z 
(equation 4)  
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Observations of land area in production of each of seven major irrigated crops; and observation of 
irrigation demand expressed as irrigation application for each of seven crops. Both land and water 
application rate are treated factors of production that are variable across years as in equation 3. 
Whilst in can be argued that overall land is a fixed asset, amounts allocated to different crops and 
total area irrigated are varied annually.  
 



Regression Analysis 
 
The model geographic coverage is the entirety of Murray Darling Basin irrigated agriculture.  Two 
separate data sets are used in regression analysis: 
 
Data set 1 – 2005/06 to 2008/09 NRM region data: The data covers four years and is disaggregated 
into the 17 natural resource management (NRM) regions used by the Australian Bureau of Statistics 
(ABS) to report on MDB irrigated agriculture (Figure 1). With this data, we estimate determinants of 
changes in revenues from production for 10 major crop and livestock commodities; and land area 
and irrigation application rate changes for 7 crop commodities. The temporal coverage is the years 
with available ABS reporting disaggregated at the NRM region level (2005/2006 to 2008/09). 
 
Data set 2 – 2000/01 to 2009/10 Basin aggregate irrigated land use data: This ABS data reports area 
by each of 8 types of major irrigated commodity. More detailed description of this data and 
explanatory variables used in regressions are described in the data section below, and data summary 
statistics are reported appendix 1.  

Irrigated area regression model 
 
In estimating land as an input to irrigated crop production, we begin with the conceptual equation 3. 
Moving from a conceptual to an empirical model we are restricted to variables that can be 
constructed with data readily available in a consistent way across years (y) and MDB regions (r). 
Within theses constraints we are able to construct three explanatory variables: the level of 
stochastically varying annual water allocation available for irrigation (way,r) the price of the 
commodity (pi) where i is an index of commodities, and a metric related to natural contributions to 
meeting crop irrigation demand, evapotranspiration less rainfall.  
 
Because the minimum level of land that can be allocated to any crop is 0, a logistical functional form 
is chosen for the regression analysis. It is assumed that potential area is bounded by zero as a lower 
bound. For perennial and vegetable crops (for the 2005/06 – 2008/09 NRM region data analysis) we 
assume that 95% of the maximum area observed between 2005/06 and 2008/09 is an upper bound. 
For annual crops, the basin record suggests maximum irrigated area can be significantly larger than 
that observed in our four year time series. In this case the maximum in the 2005/06 to 2008/09 time 
series is assumed to represent percentile of the water available for diversion in 114 year hydrologic 
the time series in Kirby et al. (2012). 
 
The logits of the observed area in each year as a proportion of the maximum area for each crop are 
the dependent variable, Ai in regression (equation 1) where areai,j,y is the area of crop i for region j 
observed in year y. 
 

)4(])))max(/)/(1(/))max(/(log[ ,,,,,,,,,, LLLLLL yjiyjiyjiyjiyji areaareaareaareaA =  

 
One advantage of using proportion of maximum yield by NRM region (equation 4) as a dependent 
variable is that regional scale differences are eliminated. In a similar way scale differences in 
dependent variables are eliminated by scaling: allocations in each year are divided by the maximum 
observed in the recorded data record going back to 1996 for each NRM regions; and net irrigation 
requirement calculated as region potential crop evapotranspiration less effective rainfall is also 
scaled by dividing this variable by the average for the time period that estimates exist (1896 to 2009) 



 
Figure 1: Murray Darling Basin Natural Resource Management Regions 
 

 

Source: Australian Bureau of Statistics 
 
The regression model is presented as equation 5. 
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Where αi

0 is the regression intercept coefficient, and αi
wa, αi

p, and αi
c are the regression coefficients 

for the water allocation, price and climate explanatory variables. αi
c is the regression coefficient for 

the binary variable nj included to account for distinct differences influencing land and water 
allocation and revenues from production in the northern Basin versus the southern basin that are not 
picked up in the other explanatory variable.  
 
For longer, 2000/01 to 2009/10 timeframe, area by crop and at the basin aggregate as opposed to 
NRM region disaggregated level, was the only readily available ABS data. Thus for each crop only 
10 observations were available. This small sample size only allowed univariate regression. For all 
commodities considered, multiple univariate regressions were performed including regressions of 
area on water allocation level, commodity price and in the case of perennial crops one year lagged 
commodity price. 
 
Once the regression was completed, the results were used to predict the area of given crop as a 
proportion of maximum potential area, PAi given values of explanatory variable with the 
transformation, 
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The variable definitions for all three regressions are summarised in Table 1. 
 
Table 1 – Regression dependent and explanatory variables 
Name Description Units 

Dependent variables 
Ai,j,y Logits of land area (see equation 4) Logits 
Wi,j,y Irrigation application rate per hectare ML/Ha 
Ri,j,y Revenues from irrigated agricultural production  AU$*106 

Explanatory variables 
waj,y Regional irrigation water allocation measured as the reported percentage of 

full regional entitlement 
% 

pi,y Commodity price $/tonne 
ci,j,y Variable measuring climatic influence on crop irrigation requirement 

calculated as crop potential evapo-transpiration less crop available rainfall 
Mm 

nj Binary indicator variable, equals one for regions in the Darling and Lachlan 
catchments in the north of the basin and zero for other regions. 

Binary 

PAi,j,y Predicted land areas – result of regressions in equation 4 – used as an 
explanatory variable in revenue regressions. 

Ha 

 
 
Prior expectations are that the sign of the coefficient for, waj,y should be positive as greater levels of 
water allocated to irrigation should lead to an expansion of irrigated area. It is also expected that the 
commodity price regression coefficient should also be positive: this follows from the conceptual 
model with factor demand increasing in output price. The variable ci,j,y is a metric of climatic 
conditions that influence crop irrigation. It is defined as the estimated potential crop evaporation at 
maximum yield minus crop available rainfall which is a measure of amount of potential evapo-
transpiration that is met by rainfall. The prior expectation is that the coefficient of this variable 
should be negative, or inversely correlated land area. The logic being that other things equal we 
would expect irrigators to choice to irrigated smaller areas given hotter and drier conditions with 



greater irrigation water requirement and less rainfall to help meet this requirement, all other things 
equal.   
 
It is expected that there are some systematic differences in land allocation, water application and 
revenues from production in northern versus southern basin regions that will not be fully explained 
by the other explanatory variables (allocations, net water, and commodity prices). For crops where 
this is the case, we expect that the coefficient for nj to be significant indicating a systematic 
difference in area allocated by crop in the northern and southern basin that is explainable by 
unobserved factors other than water allocations, commodity prices, and crop potential evapo-
transpriation net of crop available rain.   
 
Irrigation area regression can only be applied to crops as opposed to livestock commodities, 
therefore regressions are run for: cereal (in which we include other broadacre crops such as barley); 
cotton, rice, pasture and hay (treated as one crop); wine, , fruit and nuts (perennial horticulture); and 
vegetables. Whilst it would be desirable to disaggregate some crop classifications further, the level of 
resolution reported in ABS statistics do not allow this.  
 

Irrigation application rate regression model 
 
Water use per hectare equations for each crop i, Wi were estimated with the linear regression model 
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The explanatory variables (crop price, allocations available for irrigation, and net irrigation 
requirement) are as explained in Table 1 and in the land area regression section above; βi

0 is the 
regression intercept coefficient, and βi

wa, βi
p, and βi

c are the regression coefficients for the water 
allocation, price and climate explanatory variables. Prior expectations are for the coefficients of the 
commodity price and allocation and climatic variables are all for positive signs: higher levels of 
water application are expected with higher commodity prices; higher levels of water availability and 
with greater potential evapotranspiration less crop available rain, all else equal.  
 
Two alternative forms of equation 7 were estimated for each crop and the form with greatest 
explanatory power reported: one with the dependent and the explanatory variables normalised as 
described in the land area regression methods sections above; the other with the dependent variable, 
water application rate per hectare expressed in non-normalised terms as Ml/Ha. 
 
Water use per hectare regression can only be applied to crops as opposed to livestock commodities, 
therefore regressions are run for: cereal (in which we include other broadacre crops such as barley); 
cotton; rice; pasture and hay (treated as one crop); wine, fruit and nuts (perennial horticulture); and 
vegetables. 
 

Irrigated product revenue regression model 
 
The final set of regressions expressed as equation 8 estimate the revenues (gross value of irrigated 
production, GVIAP in the terminology used by the Australian Bureau of Statistics or ABS who 
collects statistics on this metric). Data is available for ten irrigation dependent commodities, Ri , as a 
function of explanatory variables including the area of crop predicted with regressions equation 1, 



net ET and commodity price, and in some cases a dummy variable for NRM regions in the northern 
Basin all explained in Table 1 and the section on land area regression. Φi

0 is the regression intercept 
coefficient, and Φi

wa, Φi
p, and Φi

c are the regression coefficients for the water allocation, price and 
climate explanatory variables. Prior expectations for this regression were that revenues should be 
increasing in land area (PAi,j,y) and in commodity price. We did not have a clear prior expectation 
with regard to the sign of the coefficient on the climate variable Φi

c: on the one hand high potential 
evapotranspiration can be associated with higher yield, on the other hand heat stress leading to 
reduced yield can result under hotter and drier condition can be correlated with high potential evapo-
transpiration. 
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In the case of gross value, equations are estimated for the seven crop commodities used in area and 
water per hectare regressions as well as livestock commodities: beef, sheep, and dairy. For the 
livestock GVIAP regressions, area of pasture and hay is treated as the area explanatory variable. As 
with the area regressions, some variables are scaled: allocations in each year are divided by the 
maximum observed in the recorded data record going back to 1996 for each NRM regions; and in 
some regressions net irrigation requirement is also scaled by dividing this variable by the average for 
the time period that estimates exist (1896 to 2009). 

Data sources and treatment 
Irrigated area and water use per hectare by crop and NRM region data was sourced from the ABS 
catalogue 46180 series, Water Use on Australian Farms- 
http://www.abs.gov.au/ausstats/abs@.nsf/mf/4618.0; GVIAP data was sourced from catalogue 
46100, Experimental Estimates of the Gross Value of Irrigated Agricultural Production - 
http://www.abs.gov.au/ausstats/abs@.nsf/mf/4610.0.55.008. Crop price data was from the ABS 
series 7501.0 series – Value of Principle Agricultural Commodities Produced -
http://www.abs.gov.au/ausstats/abs@.nsf/mf/7501.0.  
 
Time series gridded rainfall and areal potential evapotranspiration (APET) derived from SILO 
datasets was obtained from Catchment Water Yield Estimation Tools (CWYET) project (Vaze et al. 
2011a and 2011b). Under this project daily meteorological data from 1-Jan-1889 to 31-Aug-2009 
collected by bureau of meteorology was interpolated at 0.05 x 0.05 degree cell across Australia 
(Jeffrey et al. 2001). Then daily gridded rainfall and APET was processed to calculate monthly 
rainfall and spatial average APET for 58 major sub-catchments in the MDB. These sub-catchments 
are aggregates of the rainfall-runoff sub-catchments used in the Murray-Darling basin.Water 
allocations data was sourced from the various volumes of Water Audit Monitoring Report: Report of 
the Murray Darling Basin Commission on the Cap on Diversions – available from the MDBC prior 
to 2008/09 http://www2.mdbc.gov.au/__data/page/1782/MDBC_WAM_2006-07.pdf and from the 
MDBA from the 2008/09 season - www.mdba.gov.au/water/river_info. 
 
Weather has a significant impact on returns to irrigation. In the regressions presented here Net 
evapotranspiration calculated as potential crop evapotranspiration less effective rainfall is used to 
capture main weather impacts. The areal average value of potential crop evapotranpiration and 
effective rainfall by NRM region was estimated based on the proportion of catchments within a 
NRM region; crop type and areas; dominant crop calendar and coefficients. These values were 
initially estimated on monthly time step and then aggregated to calculate seasonal and annual net ET 
(net irrigation requirements) for economic/crop production function analysis. 



 
Prices were expressed relative to major substitute commodities in the case of annual crops where 
crop substitution is a viable short-run adaptation. In the case of pasture crops where a consistently 
collected price time series was not available, the price of the substitute in production, wheat was 
used.  
 

1. Irrigated area estimation results 
Results of irrigated area by crop regression for the 2005/06 to 2008/09 NRM region disaggregated 
data are summarised in Table 2. For the annual crops considered (cereal, rice, cotton, pasture), the 
overall regression fits as expressed by the R2 statistics (0.34 to 0.92) are reasonably to very good 
relative to expectations for time series cross section data. In contrast, the explanatory power of the 
area regressions for perennial and vegetable crops is relatively low with R2 ranging from 0.10 
(horticulture) to 0.22 (vegetables).  
 
The signs of all statistically significant regressions coefficients are consistent with prior expectations 
(Table 2). The sign on the coefficients for the allocation explanatory variable are positive for all area 
regressions, as expected, and five of the seven were statistically significant at a p-value of 0.1 or less. 
The p-value for the allocation coefficient in the vegetable regression is also very close to the 0.1 p-
value threshold at 0.104. These results offer strong support for the hypothesis that irrigated area 
declines with reductions in water allocation and that this is the case for all crops across the Basin. No 
statistically significant relationships between observed land area and prices and our climatic variable 
(net ET less rain) could be discerned as indicated by p-values > 0.1 for these two variables in all land 
area regressions (Table 2). This result is not too surprising given the limited variation prices, ET and 
rain over the sample and the fact that these variable are somewhat correlate with some of the higher 
price years also occurring when ET less rainfall values were low relative to the four year sample 
average.  
 
The results of the area regressions with the basin aggregate 2000/01 to 2009/10 summarised in Table 
3, are qualitatively similar to the results of land area regression with 2005/06 to 2008/09 NRM 
region disaggregate data. In six out of eight area regressions, area is directly related to allocation 
level as expected and in five of these cases, allocations are a statistically significant determinant. As 
was the case with the NRM region disaggregate regressions, overall explanatory power of the 
regression was generally better for annual than perenial crops with R-squares of greater than 0.9 for 
all annual crops other than cereal (0.45). For wine and horticulture, the area as function of allocation 
level regression had relatively poor explanatory power with a direction of influence that is opposite 
of expectation on the statistically insignificant allocation level explanatory variable. 
 
Estimated area response elasticity, percent change in area predicted over percentage change from the sample 
mean in water allocation level, net ET level and price level are summarised in Table 3: Irrigated area by crop 
regression results - aggregate basin 2000/01 to 2009/10 data 

allocation intercept R-square 

Pasture - 
meat  0.00056 -2.74 0.91 

Pasture - 
dairy  0.00038 -1.367 0.9 
Rice 0.0009 -7.24 0.95 
cotton 0.00058 -3.72 0.92 



cereal  0.00016 -0.193 0.45 
Wine^  -0.00015 2.58 0.56 
Horticulture^  -0.00016 2.7 0.54 
Vegetables  0.00026 -0.595 0.72 

 
Table 4. These calculations, based on the 2005/06 to 2008/09 NRM region regressions, allow 
comparison with elasticity estimates that are inferred from two widely reported alternative MDB 
irrigation economics models. We estimate elasticities for these studies with the standard arc elasticity 
formula, (y0 – y1)/y0]/[(x1 – x0)/x0] where y0 is the base case predicted level of the dependent 
variable, y1 is the dependent variable predicted level for treatment 1, x1 is treatment level of 
explanatory variable and x0 is base case explanatory variable level. 
 
Colum 1 in Table 3: Irrigated area by crop regression results - aggregate basin 2000/01 to 2009/10 data 

allocation intercept R-square 

Pasture - 
meat  0.00056 -2.74 0.91 

Pasture - 
dairy  0.00038 -1.367 0.9 
Rice 0.0009 -7.24 0.95 
cotton 0.00058 -3.72 0.92 
cereal  0.00016 -0.193 0.45 
Wine^  -0.00015 2.58 0.56 
Horticulture^  -0.00016 2.7 0.54 
Vegetables  0.00026 -0.595 0.72 

 
Table 4 shows our estimates of land area response elasticity to changes in allocation level. Columns 
2 and 3 show elasticity estimates inferred from the results of published studies with two other 
economic models of the MDB irrigation sector. These results show relatively elastic land area 
contractions with reductions in water allocations for most annual crops including (in order of 
elasticity magnitude): rice, cereal, pasture. These estimates are also similar to the estimates from 
other models with the UQ model an outlier in pasture land area elasticity and our estimates of rice 
area elasticity higher than the others.  
 
In contrast, we estimate very inelastic perennial crop (wine and horticulture) and vegetable crop area 
response to changes in allocation level. For example our estimated elasticity of area in horticulture is 
0.05 about one eight of the elasticity inferred from UQ modeling results. ABARE estimated elasticity 
responses for these crops are of a similar magnitude but opposite sign. This suggests somewhat 
implausibly, small expansions in areas of horticulture, wine, and vegetables with reduced allocations 
all else equal. In contrast, our small but positive elasticity estimates seem consistent with the 
observed small contraction in areas of these crops with very large allocation reductions during the 
drought. 
 



 
Table 2: Irrigated area by crop regression results summary – disaggregate NRM region 2005/06 – 2008/09 data 

dependent 
variable 

R-
sauare 

explanatory 
variable coef std t-stat p-value 

rice 0.92 ALLOCATION 10.002 2.375 4.211 0.014 
DNET 6.0413 5.972 1.012 0.369 
OWN PRICE 0.51971 1.726 0.3011 0.778 
CONSTANT -7.7986 3.262 -2.391 0.075 

cotton 0.34 ALLOCATION 2.8508 1.141 2.498 0.02 
DNET 0.56296 1.956 0.2878 0.776 
PRICE 2.0169 1.221 1.652 0.112 
CONSTANT -4.3236 1.145 -3.778 0.001 

cereal 0.51 ALLOCATION 3.7457 1.004 3.732 0.001 

DNET 0.12588 1.975 
6.37E-

02 0.949 
OWN PRICE 0.0021 0.0035 0.5866 0.56 
CONSTANT -3.3302 1.272 -2.617 0.012 

wine 0.14 ALLOCATION 1.1335 0.5324 2.129 0.041 
DNET 0.249 0.5457 0.4558 0.651 

OWN PRICE 
-

0.19269 0.5964 -0.3231 
0.749-
0.056 

CONSTANT 1.6139 0.7149 2.258 0.031 

horticulture 0.1 ALLOCATION 0.78932 0.6247 1.264 0.215 
DNET 1.9179 1.229 1.56 0.128 
OWN PRICE 0.21494 1.547 0.1389 0.89 
CONSTANT 1.073 1.716 0.6252 0.536 

vegetables 0.22 ALLOCATION 1.3728 0.8196 1.675 0.104 
DNET -1.9769 1.611 -1.227 0.229 
OWN PRICE -1.7982 2.008 -0.8956 0.377 
CONSTANT 2.8374 2.224 1.276 0.211 

pasture 0.66 ALLOCATION 3.226 0.6483 4.976 0 
DNET -1.4795 1.272 -1.163 0.254 
SUBSTITUTE 
PRICE* -0.0021 0.0020 -1.048 0.303 
CONSTANT -1.0449 0.8733 -1.197 0.241 

    NORTH -0.109 0.3581 -0.3044 0.763 

  indicates statistically significant at p-value < 0.10   



Table 3: Irrigated area by crop regression results - aggregate basin 2000/01 to 2009/10 data 

allocation intercept R-square 

Pasture - 
meat  0.00056 -2.74 0.91 

Pasture - 
dairy  0.00038 -1.367 0.9 
Rice 0.0009 -7.24 0.95 
cotton 0.00058 -3.72 0.92 
cereal  0.00016 -0.193 0.45 
Wine^  -0.00015 2.58 0.56 
Horticulture^  -0.00016 2.7 0.54 
Vegetables  0.00026 -0.595 0.72 

 
Table 4: Estimated land area response elasticity with respect to irrigation allocations 
 
  CSIRO  ABARES UQ 

Pasture 0.82 0.57 1.79 

   Hay 1.45 

   Dairy -0.1 

   Beef 0.14 

   Sheep 0.79 

Cereal 1.21 0.93 

Cotton 0.77 0.55 0.61 

Rice 3.83 1.07 2.33 

Hort 0.05 -0.07 0.43 

wine  0.06 -0.09 0 

Vegetable 0.11 -0.17   

 

2. Irrigation application rate regression results 
 
Results of irrigation application rate regressions are summarised in Table 5. Water 
application rate equations generally had higher explanatory power for perennial (wine, 
horticulture) and vegetable crops (R-square 0.58 to 0.71) than annual crops(R-square 0.18 to 
0.32). The exception is the water per hectare regression for annual crop rice with a very high 
r-square of 0.91.  
 
Coefficient signs were generally as expected. Overall net irrigation requirement (potential 
crop evapotranspiration net of effective rainfall) was the most consistently important 
determinant of water application rates. Hotter and drier (lower rainfall) weather was found to 
be to positively and statistically significantly related to water application rates per hectare in 
six of eight regressions. This relationship was particularly strong from perennial (wine and 
horticulture) and vegetable crops, where the net ET coefficient was significant at the 99% 
confidence level.  
 
Consistently with prior expectations water application rate per hectare was statistically 
significant and positively related to allocation levels for rice. However no statistically 



significant relationship between allocation level and water application rate could be found for 
the remaining seven regressions. We also found two statistically significant price effects, both 
consistent with expectation: water applied per hectare is increasing with commodity price for 
rice decreasing with decreasing in substitute commodity price (wheat) for pasture. However, 
in general prices effects could not be identified with high levels of statistical confidence in 
the remaining regressions. One potential explanation for a lack of statistically significant 
price and allocation level impacts on irrigation water application rates is that these factors 
may in fact have very little influence. Once irrigators set area to irrigate by crop the marginal 
economics is driven primarily by the season ET net of rainfall.  
 



 
Table 5: Irrigated water use by crop regression results summary 

dependent 
variable 

R-
sauare 

explanatory 
variable coef std t-stat p-value 

Rice 0.91 PRICE 0.25923 0.0519 4.993 0.004 

ALLOCATION 0.20022 0.0671 2.982 0.031 

NET -0.20637 0.2192 -0.9417 0.39 

CONSTANT 0.77737 0.2782 2.795 0.038 

1 

Cotton 0.21 PRICE 0.0252 0.2652 0.0949 0.925 

ALLOCATION -0.0035 0.1095 -0.0324 0.974 

NET 0.34228 0.1727 1.982 0.062 

CONSTANT 0.52341 0.3991 1.311 0.205 

wheat south 0.31 PRICE -0.18664 0.1242 -1.503 0.154 

ALLOCATION 0.11648 0.0792 1.471 0.162 

NET 0.62759 0.2121 2.959 0.01 

CONSTANT 0.39895 0.181 2.204 0.044 

1 

wheat north 0.32 PRICE 0.0076 0.0924 0.0826 0.935 

ALLOCATION -0.18172 0.1424 -1.276 0.217 

NET -0.55718 0.3315 -1.681 0.109 

CONSTANT 1.5016 0.4278 3.51 0.002 

1 

horticulture 0.69 PRICE -1.4795 1.575 -0.9395 0.354 

ALLOCATION -0.68831 0.8432 -0.8163 0.42 

NET 4.4054 1.012 4.353 0 

NORTH -3.6054 0.4666 -7.728 0 

CONSTANT 3.1108 2.05 1.518 0.138 

vegetable 0.58 PRICE 0.80156 1.23 0.6515 0.519 

ALLOCATION -0.31677 0.618 -0.5126 0.611 

NET 4.2242 0.6308 6.697 0 

CONSTANT 0.16238 1.475 0.1101 0.913 

NORTH -1.9296 0.3444 -5.603 0 

Wine 0.71 PRICE -0.48285 0.4387 -1.101 0.278 

ALLOCATION 0.73344 0.6103 1.202 0.237 

NET 6.0464 0.7076 8.545 0 

CONSTANT -1.9126 0.6778 -2.822 0.008 

NORTH -1.9812 0.4323 -4.583 0 

pasture 0.18 
SUBSTITUTE 
PRICE -0.79455 0.439 -1.81 0.076 

ALLOCATION 0.2482 0.5028 0.4936 0.624 

DNET 1.2128 0.5091 2.382 0.021 

NORTH -0.37585 0.3048 -1.233 0.223 

CONSTANT 3.5938 0.6151 5.842 0 

  indicates statistically significant at p-value < 0.10     



 
Regression coefficients for the most consistently significant determinant of irrigation rate net 
ET were converted to elasticity estimates so that there implications could be more easily 
understood as shown in Table 6. These estimates provide new insight into the process and 
costs of MDB irrigation sector adaptation of drought. While there is at least one other recent 
studies that has accounted for what is essentially an ability to substitute rain for irrigation 
water as an input to production (Whittwer and Dixon, 2011), the study assumed 1 for 1 rain 
for irrigation application substitutability. Our elasticity estimates suggest that in fact, on 
average irrigators increase irrigation by nearly two percent for a one percent change in net ET 
for water stress and heat sensitive wine and wine grapes, and by about 1% for a 1% rise in net 
ET for horticultural and vegetable crops. In contrast the elasticity of irrigation application for 
a 1% change in net ET for annual crops is smaller (0.39 for cotton, and 0.42 for pasture, 0.74 
for Southern Basin cereals). 
 
Table 6: Estimated irrigation application rate elasticity with respect to net ET  
 
crop Net ET elasticity 

Pasture 0.42 

  cereal south 0.75 

  cereal north NS 

Cotton 0.39 

Rice NS 

Hort 0.95 

wine  1.74 

Vegetable 0.97 

NS indicates no statistically significant relationship 

 

3. Revenue regression estimation results 
 
A summary of revenue (or GVIAP in ABS language) regression outcomes for crop 
commodities is shown in Table 7 and for livestock based commodities in Table 8. These 
regressions generally had good explanatory power (R squares from 0.37 to 0.99). Explanatory 
power of regressions was generally higher for crop based commodities (R squares from 0.51 
to 0.99) than for livestock based commodities and pasture (R squares from 0.37 to 0.62). 
Whilst the R-square for the rice GVIAP was high (0.99) too few observations and the 
presence of a high degree of multicolinearity in explanatory variables (correlation amongst 
these variables) meant that this regression was unable to produce reliable estimates; signs on 
all coefficients reversed with small changes in specifications, and calculated elasticity 
numbers were implausible. See section 6 for further discussion. 
 
As expected area was found to be directly related to GVIAP and the relationship was 
statistically significant in all regressions. We calculated the elasticity of GVIAP with respect 
to land area and tested whether we could reject the hypothesis that the value was equal to one. 
We failed to reject this hypothesis in all cases indicating that the data is consistent with an 
assumption of a one to one relationship between predicted contraction in land area and 
contraction in GVIAP, all other factors such as crop prices and rain and evapotranspiration 
equal.  
 



For livestock based commodities estimated elasticities of GVIAP change with respect to 
changes in land area were less than one (0.31 for beef, 0.44 for sheep and 0.39 for dairy). 
This indicates that a 1% decline in the area in pasture and hay crops supporting these 
industries led to a less than 1% (0.31% to 0.44%) decline in the value of output. This is as 
expected and provides circumstantial evidence that feed was sourced from beyond irrigated 
production within the Basin for these industries during the drought. 
 
The estimated impacts of commodity prices on GVIAP were also positive as expected for all 
regressions. The relationship was statistically significant at 90% confidence or better (pvalue 
< 0.1) for three of these 10 regressions. We calculated the elasticity of GVIAP with respect to 
commodity prices and tested whether we could reject the hypothesis that the value was equal 
to one. We failed to reject this hypothesis in all cases indicating that it is consistent with the 
data to assume a one to one relationship between change in commodity price and change 
GVIAP, all other factors such as crop prices and rain and evapotranspiration equal.  
 
Kirby et al (2012) reviewed drought experience in the irrigation sector and found that over 
the drought, irrigated output per hectare of many commodities increased as conditions 
became hotter and dryer and irrigated land area contracted. It seems reasonable to infer that 
the net ET coefficient relate to yield impacts on GVIAP pick up this effect, given that price 
and area impacts are picked up by price and area explanatory variables. As shown in Table 9, 
we found that net ET does have a positive and significant correlation with GVAIP for beef, 
dairy and pasture and rice with elasticity of GVIAP with respect to net ET in the (0.16 to 0.85 
range). The result may suggest that, irrigators higher potential yields in years of high 
evapotranspiration may have been realised as irrigators deployed more yield enhancing inputs 
in the form of water or other inputs that are not captured in regression explanatory variables 
(e.g. capital or labour inputs that increase irrigation efficiency).  
 
We found the opposite effect of greater net ET on irrigation revenues for five crop (wheat, 
grapes, horticulture, beef, and cotton). Negative coefficients on the net ET variable for these 
crops are consistent with hotter and dryer conditions leading to decreased yields, though the 
relationship was only found to be statistically significant for cereals.  
 
 



Table 7: Irrigated crop commodity GVIAP regression results 

dependent 
variable 

R-
sauare 

explanatory 
variable coef std t-stat p-value 

wheat 0.86 PRICE 0.0128 0.0180 0.7105 0.481 

AREA 0.0008 0.0001 15.57 0 

DNET -17.436 10.33 -1.688 0.098 

CONSTANT -0.93659 5.568 -0.1682 0.867 

1 

rice 0.99 PRICE 74.539 6.221 11.98 0.053 

AREA 0.0047 0.0001 39.46 0.016 

DNET 186.4 18.38 10.14 0.063 

CONSTANT -126.52 10.53 -12.02 0.053 

1 

cotton 0.79 PRICE 218.22 190.8 1.144 0.296 

AREA 0.0104 0.0024 4.238 0.005 

NET -187.86 149.2 -1.259 0.255 

CONSTANT -24.149 263.1 -0.0918 0.93 

1 

pasture 0.63 PRICE 0.0049 0.0209 0.2366 0.815 

AREA 0.0001 0.0000 3.658 0.001 

DNET 52.739 11.77 4.48 0 

NORTH 5.4882 2.564 2.14 0.041 

CONSTANT -1.3687 6.476 -0.2113 0.834 

vegetable 0.75 PRICE 138.06 71.22 1.938 0.066 

AREA 0.0270 0.0046 5.85 0 

DNET 57.458 49.54 1.16 0.259 

CONSTANT -167 81.99 -2.037 0.054 

horticulture 0.51 PRICE 86.768 138.1 0.6282 0.538 

AREA 0.0110 0.0042 2.63 0.017 

NET -131.63 106.6 -1.235 0.233 

NORTH -6.6332 38.2 -0.1736 0.864 

CONSTANT 76.128 209.9 0.3627 0.721 

grapes 0.9 PRICE 105.26 40.71 2.585 0.023 

AREA 0.0072 0.0008 8.829 0 

DNET -5.7854 158 -0.0366 0.971 

NORTH -0.0778 24.49 -0.0032 0.998 

CONSTANT -111.64 46.13 -2.42 0.031 

  indicates statistically significant at p-value < 0.10     

 



 
Table 8: Irrigated livestock commodity GVIAP regression results 
 

dependent 
variable 

R-
sauare 

explanatory 
variable coef std t-stat p-value 

beef 0.37 PRICE 194.25 103 1.886 0.073 

AREA 0.00016 0.00009 1.869 0.075 

NET -47.26 36.19 -1.306 0.205 

CONSTANT -132.74 95.41 -1.391 0.178 

sheep 0.65 PRICE 848.91 1259 0.6745 0.505 

AREA 0.00014 0.00002 6.163 0 

DNET 17.237 9.829 1.754 0.09 

CONSTANT 1.9365 5.022 0.3856 0.703 

dairy 0.62 PRICE 102.73 96.19 1.068 0.299 

AREA 0.00094 0.00029 3.213 0.005 

DNET 693.99 132.2 5.248 0 

NORTH -46.34 35.14 -1.319 0.203 

CONSTANT -121.44 117.1 -1.037 0.313 

  indicates statistically significant at p-value < 0.10     
 
Table 9: Estimated GVIAP response elasticity with respect to net ET 

crop Net ET elasticity 

Pasture 0.48 

Cereal -0.11 

Cotton NS 

Rice 0.58 

Hort NS 

wine  NS 

Vegetable NS 

Dairy 0.84 

Sheep 0.16 

Beef NS 

NS indicates no statisitcally significant relationship 

 



4. Statistical issues and their treatment 
Error in dependant variable estimates is one statistical issue with our source data. Dependant 
variables values in the regressions are estimates for an entire NRM region from survey 
samples and not a census of the entire relevant population.  In regions where the commodity 
in question has a relatively small population of producers, sample sizes are small and as a 
result standard errors of population inferences from these survey samples is large. The result 
is potential for errors in measurement of dependent variables used in the regressions. To deal 
with this issue data was omitted where: the ABS indicated very large standard error in 
estimation, this was judged to be the case where less than 3 years out of the four possible 
were available for a variable in a given NRM region and the estimates appeared to vary 
implausibly from year to year.  
 
Further statistical issues that arose had to do with the nature of errors in regression prediction. 
In the first instance all equations were estimated with straight forward ordinary least squares 
regression. We then tested for presence of three potential statistical problems: 
 

1. Heteroscedasticity – this is the tendency for errors in prediction to be systematically 
correlated with the size of the dependent variable. When errors in regression 
prediction are heteroscedastic and this is not corrected for with an with an 
appropriately adjusted weighting in regression, the standard errors of regression 
coefficients and thus inferences about coefficient significance are inaccurate. The 
extent of  hetroscadasticity was tested with the Gljeser test (Greene, 1990). As 
summarised in Table 8 hetroscadasticity was identified (a less than a 10% probability 
of rejecting the hypothesis that errors are heteroskedastic) in seven of twenty four 
regressions. To ensure meaningful statistical interpretation in these cases, the five 
equations where hetroscadisticity was identified by not autocorrelation, the equations 
were re-estimated with a heteroscedasticity adjustment (the hetcov option in Shazam 
v.10 statistical software which implements the White 1980 correction) to ensure 
accurate estimates of all regression coefficient standard errors. These 
heteroscedasticity corrected standard errors and result t-tests of coefficients are what 
is reported and used in calculation in Tables 2-7. 

2. Autocorrelation – this is the tendency for errors in prediction to be related across time 
periods – rather than being independent (not correlated with one another). When 
errors in regression prediction are auto-correlated and this is not corrected for with an 
auto-corellation adjusted weighting in regression, the standard errors of regression 
coefficients and thus inferences about coefficient significance are inaccurate. An 
appropriate indicator of the presence of autocorrelation is the Durbin Watson statistic 
(Greene, 1990). Results of the Durbin Watson test for our regressions are shown in 
Table 8. Based on these statistics we could not reject the presence of auto-correlated 
errors (at p-value of 10% or less) for nine of the twenty five regressions. Subsequent 
analysis by trialling regression models of prediction error on one period lagged error 
and other lagged models confirmed significant 1st order autocorrelation for all nine 
case. To ensure meaningful statistical interpretation in these cases and for cases of 
both autocorrelation and heteroskedasiticity, all nine equations were re-estimated with 
a first order autocorrelation adjustment using the Shazam statistical software v. 10 
(autcov=1 procedure following Greene, 2003, p257) to ensure accurate estimates of 
all regression coefficient standard errors. These autocorrelation (and 



heteroskedasticity where this was also present) corrected standard errors and result t-
tests of coefficients are what is reported and used in calculation in Tables 2-7. 

3. Multicolinearity – is correlation amongst explanatory variables. Its presence can make 
it difficult to isolate the partial impacts of highly correlated variables and result in 
statistically insignificant impacts and relatively large changes in coefficient including 
changes in estimated directions of influence with relatively small changes in 
regression specification. We tested for multicolinearity by calculating a measure 
know as the variance inflation factor (VIF); it is a measure of the extent to which each 
explanatory variable can be predicted as a combination of the other explanatory 
variables. A VIF value greater than 5 indicates a problematically high level of 
multicolinearity. Estimated VIF values for all regressions are summarised in table 8. 
As can be seen none of the estimated VIF values indicated severe multicollinearity in 
explanatory variables and thus no modifications to regression were pursued to address 
multicolinearity. The single exception to this is the rice revenue regression. As 
discussed above 

A final potential statistical issue is cross equation correlation in errors – the equations 
describing land area, water use per hectare, and GVIAP are expected to have correlated errors 
in prediction as they are explained by many of the same and correlated explanatory variables. 
Estimating systems of simultaneous equations is possible when this is the case and can result 
in improved statistical identification of the main determinants of land and water use and 
GVIAP in irrigated cropping. Such an approach is possible but involves intensive efforts and 
new specialised software for our case study where the data is what is known in econometrics 
as “unbalanced panel data” that is it is time series and cross section but with different cross 
sectional and time series observations for different crops. . 
 



 
Table 10: Summary of multicollinearity, autocorrelation, and hetroskedasticity testing results 
Dependent 
variable 

Variance 
inflation 
factor 

Probability of 
rejecting 
positive auto-
correlation 

Probability of 
rejecting 
negative auto-
correlation 

Prob. of 
rejecting 
hetero-
skedasticity  

Regression 
type 

Revenue regressions  
Pasture 1.7 0.18 0.82 0.02 Hetcov 
Dairy 1.48 0.02 0.98 0.28 Autcov=1 
Wine 2.26 0.87 0.13 0.05 Hetcov 
Vegetable 1.29 0.01 0.99 0.03 Autcov=1 
Horticulture 1.30 0.38 0.62 0.08 Hetcov 
Cotton 2.52 0.69 0.31 0.06 Hetcov 
Rice 8.82 0.36 0.64 0.81 OLS 
Sheep 1.74 0.03 0.97 0.05 Autcov=1 
Beef 1.91 0.08 0.92 0.24 Autcov=1 
Cereal 1.27 0.11 0.89 0.01 Hetcov 

Land area regressions  
Rice 3.45 0.49 0.51 0.76 OLS 
Cotton 1.55 0.66 0.34 0.77 OLS 
Cereal 1.14 0.02 0.98 0.39 Autcov=1 
Cereal south 1.28 0.40 0.60 0.24 OLS 
Cereal north 1.43 0.21 0.79 0.59 OLS 
Wine  1.41 0.71 0.29 0.43 OLS 
Horticulture 1.98 0.69 0.31 0.89 OLS 
Vegetable 1.34 0.32 0.68 0.78 OLS 
Pasture 1.18 0.68 0.32 0.81 OLS 

Water per hectare regressions  
Rice 5.5 0.62 0.38 0.30 OLS 
Cotton 1.49 0.82 0.18 0.37 OLS 
Cereal 1.57 0.46 0.54 0.12 OLS 
Wine 1.40 0.01 0.99 0.53 Autcov=1 
Horticulture 1.75 0.01 0.99 0.14 Autcov=1 
Vegetable 1.62 0.001 0.999 0.07 Autcov=1 
Pasture 1.31 0.04 0.96 0.71 Autcov=1 

5. Summary and Conclusions 
 
Key conclusions arising from the crop area regressions are that allocation level was the most 
consistently statistically significant determinant of crop area. Small but significant area 
changes in perennials and vegetables could be explained by changes in allocations available 
to irrigators. Moderate (cotton, pasture, cereal) to large (rice) changes in annual crop are were 
estimated in response to irrigation allocation changes. Neither price level changes or changes 
in net ET were found to be statistically significant determinant of some in irrigated crop area. 
 
Key water application rate regression conclusions were that the most statistically significant 
determinant of irrigation application is the net ET – crop potential ET less crop available rain 
Statistically significantly greater application rates are correlated with greater ET – rain for 6 
of 8 crops. The estimated elasticity of application for a 1% change in irrigation water 



requirement is estimated to be large for perennials and vegetables, and small for annual crops. 
Higher prices and higher allocation levels were statistically significantly correlated with 
higher water application rates for rice. 
 
Key revenue (gross value of irrigated agricultural production) regression conclusions were 
that the most consistently significant determinant of estimated GVAIP across all commodities 
considered was estimated area of crop (or pasture for livestock commodities). The hypotheses 
that GVIAP is in a 1:1 relationship with percentage area and percentage price change could 
not be rejected for any of the commodities considered. The yield impacts of hotter and drier 
weather appeared to be positive for some crops and negative for others. Statistically 
significantly greater GVIAP in years of greater ET – rain was estimated for Sheep, Dairy, 
Pasture and Rice. Less GVIAP was statistically significantly attributable to hotter and drier 
weather for wheat. A negative but not statistically relationship was estimated for horticulture, 
wine, beef, and cotton. 
 
A notable characteristic of both datasets is relatively small sample sizes – for several of the 
regressions smaller than would commonly be used in regression analysis. From an 
econometric perspective, larger samples based on micro data from farm level surveys would 
be more desirable. However, the underlying motivation for this analysis is not the regression 
analysis itself. Rather, we are motivated to demonstrate an approach to irrigation sector 
modelling based on precisely, the type of sparse and aggregated data that is readily available 
in the MDB and likely also to be readily available in other basins where such an approach 
could also be applied. Connor et al. (2012) describes testing of alternative simulation model 
specifications for applying these regressions and application of the final model specification 
to simulating irrigation sector adjustment to alternative price, climate and irrigation water 
availability scenarios.   
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