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Fiscal and Farm Level Consequences of “Shallow Loss” Commodity Support 

Abstract 

 

As with the 2008 Farm Act, the 2012 Farm Act is likely to have some sort of revenue-

based support for producers of qualifying crops.   Much debate over the negotiations on 

the 2012 Farm Act focuses on new programs for providing producers with support 

payments covering “shallow losses” in revenue. The main goal of this paper is to develop 

an approach to examine the sensitivity of the farmer’s downside risk protection and 

federal budgetary costs of marginal changes in the deductible in shallow loss program 

scenarios based on the Average Risk Coverage (ARC) program in the Senate’s April 26
th

 

draft of the 2012 Farm Bill.  We find that average payments are elastic with respect to the 

revenue program’s coverage rate. In addition, using this approach, the paper compares 

payments and their impacts on farm revenue for county and farm level implementations 

of the revenue program.  We find that based on expected payments and impacts on 

downside revenue risk, producers are likely to prefer the county level implementation of 

the revenue support program to the farm level version.
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Fiscal and Farm Level Consequences of “Shallow Loss” Commodity Support 

 

Introduction 

 

U.S. Federal Crop Insurance covers deep losses in crop revenue but the deductible leaves 

producers exposed to potential for out-of-pocket loss (i.e., shallow loss). What percentage 

loss is the dividing point between deep and shallow losses is somewhat arbitrary.  Deep 

revenue losses can be considered as those exceeding 30 percent of expected revenue, 

based on the World Trade Organization’s Agreement on Agriculture (in Annex 2, section 

7(b)). We will consider “deep” losses to be revenue losses exceeding 20 percent of 

expected revenue, and shallow losses being those somewhere between 0 and 20 percent 

of expected revenue.  Federal crop revenue insurance provides protection for losses 

exceeding 25% to 50% of expected revenue (in some areas, as low as 15% of expected 

revenue).     

Many policy recommendations for Title I of the   2012 “Farm Act” – usually the 

main section dealing with commodity support – that is currently under negotiation have 

focused considerable debate over whether federal farm support programs should focus 

mainly on protecting farmers against “deep losses” in revenues (or yields) or also include 

protection against shallow losses (Shields and Schnepf, 2011).  One possibility is for 

Federal crop insurance to cover deep losses, as it now does, and for Farm Act legislation 

to cover shallow losses.
1
 In fact, the Average Crop Revenue Election Program (ACRE) in 

Title I of the 2008 Farm Act requires that state level crop revenue falls by at least 10% 

                                                 
1
 Much federal farm policy is included in “Farm Acts” – the most recent being the 2008 Farm Act – for 

which certain key support legislation expires at the end of the 2012 crop year. The “2012 Farm Bill” is the  

negotiations over the 2012 Farm Act legislation that will presumably cover the next 5 years. Note that 

Federal Crop Insurance, and major biofuel support for that matter, is covered in other legislation.  
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relative to the benchmark revenue in order to trigger a revenue payment (in addition, a 

farm level trigger with no deductable must be met).   The 2012 Farm Act’s Supplemental 

Revenue (SURE) program is a whole farm standing disaster assistance program that 

provides additional support on top of federal crop insurance, covering some of the 

deductible in the Federal crop insurance program for disasters occurring through the end 

of September, 2011.  While the SURE program covered only shallow losses, the ACRE 

program cannot be truly be considered a shallow loss program. While the ACRE program 

has a 10% state level deductible, payments cannot exceed 25% of benchmark revenue, 

therefore fully covering State revenue losses when State revenue is between 67.5% and 

90% of expected revenue, but with the payment at the cap when revenue is 67.5% or less 

of expected revenue.  Even with the cap on payments, a portion of the deep losses are 

covered. 

However, Title I of the April 26 Manager’s Amendment of the  2012 Senate Farm 

Bill (U.S. Senate, 2012),  has a new revenue, Agricultural Risk Coverage (ARC), with an 

11% deductible  (i.e., the coverage rate is 89% ), but  payments cannot exceed 10% of 

benchmark revenue. Effectively then, the ARC is purely a shallow loss payment, with  a 

per acre payment rate fully covering farm or county revenue losses when revenue is 

between 80% and 89% of expected revenue. Presumably, the seemingly arbitrary 89% 

coverage rate was not chosen based on any general principles for farm risk management, 

but simply as a result of a budgetary scoring exercise. This choice of coverage rate begs 

the question of what the impacts of different coverage rates would be on farm revenues 

and government costs. 
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The main goal of this paper is to develop an approach to examine the sensitivity 

of average payments as well as the farmer’s downside risk protection of marginal 

changes in the deductible in shallow loss program scenarios, based on one percent 

increments over the 15% to 5% deductible range (i.e., revenue coverage rates in the range 

of 85 to 95 percent).  Given that the program that we examine has a payment ceiling of 

10% of benchmark revenue, our analysis covers a program that provides support for 

actual revenues in the range of 80 % to (85 to 95)% of expected revenue, i.e., losses 

between (5 to 15)% and 20% of benchmark result are examined.  To analyze the change 

in the payment distribution over small changes in the coverage rate requires an estimation 

approach that can differentiate over small changes in the coverage rate, such as the 

kernel-based approaches in Cooper (2010) and Goodwin and Ker (1998). However, those 

approaches have never been simultaneously applied to more than one region. 

We conduct this analysis for all counties that grow corn, soybeans, winter wheat, 

and upland cotton (albeit not an ARC crop) for which the National Agricultural Statistics 

Service of the USDA reports data. Since yields are spatially correlated across counties, 

national figures need to account for this correlation. To date, the only published 

approaches to estimating Farm Act support that address the spatial correlation across 

regions use block bootstrap approaches (e.g., Cooper, 2010; Dismukes et al., 2011). 

These approaches work by simply drawing with replacement vectors of a year’s worth of 

detrended historical data.  Since the random draw is a vector of a year’s worth of data for 

however many regions are included in the analysis, the historical correlations between the 

regions are maintained. However, by imposing no other assumptions on the data, the 

empirical distribution for each region are only defined in 1/T probability increments, 
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where T is the total number of data points for each region in the analysis. Since US 

county level data is relatively sparse before 1975, and full county level data beyond 2010 

is not available at the time this paper was written, we have approximately 35 years of 

county level data for a broad coverage of the US. This is equivalent to estimating a 

density in 2.87% increments, which is not sufficiently defined for addressing incremental 

changes in the shallow loss coverage rate.  

In response, this paper uses a copula approach with nonparametric price and yield 

distributions that can simultaneously estimate revenue distributions across all counties 

reporting yields for the four crops using empirical distributions that are defined over 

arbitrarily small probability increments. In addition, using this approach, we compare 

payments and their impacts on farm revenue for county and farm level implementations 

of ARC.  Finally, we compare ARC support payments and their revenue impacts to those 

under the existing ACRE program.   

 

Background 

Like the ACRE program, the proposed ARC program is complex and we will only 

describe its principle properties here. Under the ARC Program, a qualifying producer 

would make a one-time choice for the life of the 2012 Farm Act to receive the revenue 

support based on farm or county level benefit calculations.    

The ARC revenue payment (denoted as ARCijt) to producer i of crop j in period t 

is:  

(1) ARCijt  = max{ 0, min[(0.10 ∙ ARCGtj ), (ARCGtj − ACRtj )]} ∙  EEij ∙ ijtA , 

where:   
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ARCGtj is the Agricultural Risk Coverage Guarantee Revenue for crop j in crop 

year t, calculated as the 5-year Olympic moving average (an average that 

removes highest and lowest values) yield per planted acre for the 

individual or county times the national average marketing year price times 

89%. In the case of the farm level payment, the national average 

marketing year price is the 10-year average, and in the case of the county 

level payment, it is the 5-year Olympic average price. If average yield for 

the individual is less than 60% (70 percent in 2013 cop years or later), 

then 60 (70)% of the applicable “transitional yield” is used in its place
2
; 

ACRtj is Actual Crop Revenue for crop j in period t, calculated as yield (county or 

farm) for crop year t times the higher of the U.S. average midseason cash 

price for the marketing year t or the crop’s marketing assistance loan rate;  

EEij is the percentage of eligible acres planted to the commodity, and is 65% for 

the farm level payment and 75% for the county level payment. The 

prevented planting rate is 45% in either case.
3
 

  

To the extent possible, the proposed legislation calls for making separate ARCG 

calculations for irrigated and nonirrigated acres. Note that unlike the 2008 Farm Act, this 

proposed 2012 legislation does not give the farmer the choice between enrollment in the 

revenue-support program or the “traditional” price-based supports, and the latter are 

eliminated. ARC payments are subject to total limits per recipient and spouse, as well as 

                                                 
2
 The “transitional yield’ is defined as per the Risk Management Agency (USDA) and generally mirrors 

average county yield. 
3
 A functionally equivalent statement to Equation (1) is ARCijt  = min{ (0.10 ∙ ARCGtj ), max[0, (ARCGtj − 

ACRtj )]} ∙  EEij ∙ ijtA  . 
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limits based on adjusted gross income (as defined in Federal tax code).  The ARC does 

not cover cotton, which has its own support option under Title XI of the proposed bill. 

Nonetheless, the benefit of the research process is that we can still model cotton support 

under ARC. Title XI also has a various supplemental support options, but those are 

beyond the scope of this study. 

There are a number of differences between the ARC program and the ACRE 

program that are too numerous to cover here. Besides differences in the coverage rate and 

the maximum payment rate, these include the omission of the farm to aggregate yield 

ratio and the double trigger. Unlike under ACRE, the farmer enrolling in ARC does not 

receive a percentage of Direct Payments; the April 26
th

 version of 2012 Farm Bill does 

not include Direct Payments.  Like ACRE, ARC payments are made to planted acres, but 

while total acres receiving payments under ACRE are limited to base acres on the farm, 

total planted acres receiving payments are limited to acres planted on the farm over the 

2009 to 2012 crop years (plus some allowed acreage adjustments).  Unlike the ACRE 

revenue guarantee, the ARC’s revenue guarantee has no floor and ceiling on how much it 

is allowed to move from year to year, but on the other hand, the ARC’s revenue 

guarantee uses a longer time frame than ACRE for calculating average prices. For the 

sake of brevity, we do not include a detailed description of the ACRE program here. Such 

a description is available in Cooper (2010).  

  

Methodology for Estimating the Density Function for ARC Payments 

 For the simulation of ARC payments, we need to generate the distributions of market 

year price and county or farm yields.  However, the procedure for doing so is 
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considerably complicated by the fact that prices and yields are temporally correlated with 

each other, and yields across regions are spatially correlated. Hence the estimated 

distributions must take this correlation into account or measures of the variability of 

payments and their impacts on revenue variability will be incorrect. We estimate the 

density function for payments based on: 1) estimates of price and yield densities for a 

particular base year; and 2), an empirical method for imposing the historical correlations 

on this simulated data.   

 

Modeling the Price-Yield Relationship Using Price and Yield Deviates   

Our focus is on estimating the distribution of payments for a given reference crop year t, 

given that at pre-planting time in t, season average prices and realized yield are 

stochastic.  As such, sector level modeling that separately identifies supply, demand, and 

storage is unnecessarily complex and would divert the focus of this article. A convenient 

way to address our questions is to model prices and yield as percentage deviations of 

realized prices and yields at the end of the season from the expected values at the 

beginning of the season when planting decisions are made.     

While the academic literature is rich with papers on price estimation for 

commodities (see Goodwin and Ker 2002, for an overview), few express prices in 

deviation form. One example that does is Lapp and Smith (1992), albeit as the difference 

in price between crop years rather than between pre-planting time and harvest within the 

same crop year. As price deviation in their paper was measured between years, yield 

change was not included in that analysis.  Paulson and Babcock (2008) provide a rare 

example of the examination of the price-yield relationship within a season in an 
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examination of crop insurance. Like them and Cooper (2010), we re-express the historic 

price and yield data as proportional changes between expected and realized price and 

expected and realized yield within each period, respectively.  

For the model, the realized county average yield, Yt , is transformed to the yield 

deviation tY  according to tY  =  
  

 t

tt

YE
YEY 

, where the county and crop 

subscripts are omitted.  To generate a distribution for 2011Y  based on historic yield shocks, 

the historic yields must be detrended to reflect the proportional change in the state of 

technology between that in 2011 and that in time t, i.e., Yit is detrended to 2011 terms as 

(1)   2011 1d

it i itY E Y Y   , i counties, t periods, t ≠  2011. 

It is convenient to specify the yield deviate as the deviation of detrended yield from 

expected yield in the base year used for detrending, which we denote as d

tY .  We 

detrend yield based on the standard practice of using a linear trend regression of Yt = f(t). 

The expected value of Yt, or E(Yt),  is calculated from the fitted trend equation.   

 As with yield, price is transformed into deviation form, i.e., the change in the 

realized price at harvest, tP , is the difference between the expected and realized (harvest 

time) price, or tP  =  
  

 t

tt

PE
PEP 

. Given the estimated trend yields as the 

predictions of E(Yt), we can construct d

tY .  Then, we simulate the distributions of tP
 

and d

tY
 
 and next, impose the historical correlations among the  tP

 
and d

tY , where 

the d

tY
 
 include the county yields for all counties for which NASS has provided data 

over the study period.  We simulate farm level yields from county level yields when 

necessary based on assumptions of county-to-farm noise.  
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Generating the Distribution of Yields and Prices 

Like Deng, Barnett, and Vedenov (2007) and Goodwin and Ker (1998), we utilize the 

nonparametric kernel-based probability density function (Hardle, 1990; Silverman, 1986) 

for generating a smoother yield density than that which would be supplied by a block 

bootstrap. This function, as applied to our notation, is  

(2)  












 
 

 h

Yy
K

Th
yf

d

t

d

j
T

t

d

j

1

1ˆ , j = 1,…,J.  

This function allows us to generate values of dY for each county for distributions that 

approaches a continuous function as J approaches infinity. This function gives support to 

generating yield values over the observed range of detrended yields, i.e., the (J x 1) 

vector d
y  is drawn over the range {min( d

tY )…max( d

tY )}, t = 1…T, where d

iy  are the 

yield points for which the density function is estimated. The function K(.) is a Gaussian 

kernel (ibid.).
4
  The optimal bandwidth h for smoothing the density is calculated 

according to equation 3.31 in Silverman (1986), which is a common choice for single 

mode densities such as those being evaluated here.
5 

  We simulate the yield distribution 

by taking N = 10,000 draws of yield values, denoted as *d

nY , from the estimated kernel 

density. The draws are generated using an inverse CDF approach that is table-based 

combined with interpolation (e.g., Derflinger et al., 2009).  That is, tables of the yield 

                                                 
4
 We found the estimated density of program payments to be insensitive to the choice between Gaussian 

and biweight kernels. 
5
 The bandwidth                                    , where    is the (Nx1) variable for which the 

density is to be estimated,       is the  standard deviation, and             , is the inter-quartile range, 

where    and    are the 75th  and 25th  percentile values of the values of    sorted in ascending order. 
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values and their associated probabilities are saved in the computer's memory. Then, for 

randomly chosen probabilities in the tables, the associated yield value is looked up in the 

table. Continuous distributions are constructed by linear interpolation between the yield 

points in the tables. Given the expected (trend) yield for a reference year, the yield 

deviate *d

nY  is calculated for each *d

nY .  The simulated price deviations are generated 

using the same kernel approach, again with 10,000 draws from the inverse CDF. 

Yields and prices generated from a kernel-based density function can be expected 

to have a lower standard error than the actual data given the smoothing of the density (but 

greater than with a parametric functional form). We bring the standard error of the kernel 

generated yields back to the level of the actual data by assuming that any difference 

between the kernel yield and the actual yield is normally generated noise with mean zero, 

and add this noise to each *d

nY .  This approach is discussed in more detail below in its 

application to generating farm level yields. 

County level yields are the lowest aggregation of yield data available from the 

USDA that has the same time series as the state and national data. We build our farm 

level yields ( *SdY ) off of the county level *CdY .   

 

Generating the Farm Level Yield Distribution 

In general, farm level yields with adequate time series and relevance to specific regions 

are not available from the USDA. One approach to developing farm level yield is to infer 

it from Federal crop insurance premiums in conjunction with information from NASS on 

county yields, using the assumption that the premiums are actuarially correct, that the 

NASS county yields have the same distribution as the county yields for the crop 
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insurance participants, and that the difference between county and farm level yield is 

distributed normally with mean zero (Coble and Dismukes 2008).  These first two 

assumptions are strong assumptions and are hard to test in general, but Cooper et al., 

(2012) suggest some empirical evidence for the third.  Here we use the relatively simple 

approach of Goodwin (2009) of simply adding a normally distributed random shock with 

mean zero to the simulated county yield data.  While Goodwin assumed that the standard 

deviation of the shocks are equal to 75% of the standard deviations of the detrended state 

yield distribution, we use 50%, which appears more appropriate for inflating county level 

distributions, based on our analysis of the Kansas and Illinois farm management 

association data used in Cooper et al. (2012).  

   

Imposing the historic correlations on the simulated densities 

Of course, as drawn, the simulated national, state, and county yields, being i.i.d., do not 

have the same Pearson correlation matrix as the original actual yield data, even if they 

have the correct means and variances.  The historic correlations between the national, 

state, and county level yields need to be imposed on their simulated counterparts, but 

without changing the means and variance of each yield vector.  To do so we rely on a 

copula-based approach (Nelsen, 1996). We start by generating 10,000 draws of 

multivariate random normals with means and variance-covariance matrix from the 

historic yield vectors. By applying the inverse cumulative distribution function (CDF) of 

the standard normal distribution, we obtain the probabilities (or quantiles)  P  associated 

with each generated correlated normal value. We then generate discrete correlated 

simulated county, state and national yield distributions by using  the same table-based  
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inverse CDF functions for the kernel marginal densities discussed earlier, in which the 

P's from the multivariate normal are used to find the corresponding prices and yields 

from the nonparametric distributions (that is, the P-values from the multivariate normal 

are matched with same P-values in the linearly interpolated tables for the kernel density, 

and the associated price and yield values for the latter P-values are looked up in these 

tables). Spearman rank correlations are maintained throughout the successive steps. 

The copula approach imposed the historic correlations on the simulated densities 

for 1,171 corn counties, 1,017 soybean counties, 734 winter wheat counties, and 117 

upland cotton counties.   

 

Data 

Data on county, state, and national planted yields for corn, wheat, and soybeans are 

supplied by the National Agricultural Statistics Service (NASS) of the U.S. Department 

of Agriculture.  We assume that each farmer’s benchmark yield for the insurance and 

ARC calculations is simply the county average yield.   

 For each crop, we follow RMA definitions of the expected and realized prices. 

For example, for realized price Pt for corn, we use the average of the daily October prices 

of the December CBOT corn future in period t.   For the expected value of price Pt, or 

E(Pt),  we utilize a non-naive expectation, namely the average of the daily February 

prices of the December Chicago Board of Trade corn future in period t, t = 1975,…,2011. 

For corn and soybeans, the values of  E(P2011) are the same as the official RMA base 

prices for the RA insurance products for the 2011 crop year.   
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ARC actual revenue is calculated using the midseason average national cash 

price, but as this value tends to follow the season average cash price quite closely over 

time, we assume a 0 basis value between the two.
6
 We convert P2011 to the cash price 

using the basis defined as the median difference between Pt and the NASS price in t over 

the ten years prior to 2011.  

  

Discussion of the payment simulation results 

Tables 1 and 2 present the simulation results for ARC Payments per acre, gross revenue 

per acre, and total gross revenue with ARC payments for the 2011 crop year for corn, 

soybeans, winter wheat, and upland cotton (noting that upland cotton is not included as 

an ARC eligible crop in the proposed legislation). The results are weighted by planted 

acres for all counties for which NASS reported county level data over 1975 to 2010.  

 Table 1 has the results assuming producers have chosen the farm level option, and 

Table 2 the results assuming farmers have chosen the county level option.  To conserve 

space, the lower bound of the 95% confidence intervals for payments per acres (section A 

in the tables) is not shown, but the values are close to zero. Similarly, the upper bound of 

the confidence intervals are not shown for gross revenue plus the payments (section C), 

but these are the same as in the gross revenue only case (section B).  To preserve the 

impacts of spatial correlation in the reported national-level statistics,  the data in the 

(number of counties) x10,000 matrix of simulation results is summed vertically through 

each of the 10,000 columns to derive the 1x10000 draws of the national level impacts.   

                                                 
6
 Based on an examination of monthly cash prices and sales volumes over the last 30 years for corn, 

soybeans, and winter wheat, we find that the mid-season price is on average 97% to 98% of the season 

average price.  
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As can be seen in the first output column of Tables 1 and 2, average payments per 

acre tend to be relatively low, and not exceeding $2.77/acre in any scenario. The county-

based average payments are larger than the farm-level ones except in the case of cotton. 

Note that the difference between the farm and county payments is not only attributable to 

differences in yield risk between the two tables (and we expect payments to be increasing 

in yield variability), but also to the farm level program paying to a lower share of planted 

acres than the county level program.  Hence, without an empirical analysis, one cannot 

say which program would provide greater benefits.     

The programs in Tables 1 and 2 also produce relatively low decreases in the 

coefficient of variation of revenue (last column), with the maximum change being a 3 

percent decrease in the case of wheat.  However, the coefficient of variation is limited in 

informational value in the case of the asymmetric distributions assessed here. As an 

alternative, the tables also provide the change in the lower bound of the empirical 95% 

confidence interval of revenue in moving from the case of gross revenue (section B of the 

table) to gross revenue plus the payment (section C).  The lower bound of the 95% 

confidence interval of revenue increases from 4.5% to 24.5% depending on the scenario, 

with the latter being for winter wheat in with the county option in Table 2. Hence, while 

the average benefits provided by the ARC appears small for 2011, its impact on reducing 

downside revenue risk does not appear trivial, particularly for the winter wheat farmers.  

In general for 2011, except for cotton, the county program tends to provide higher mean 

benefits and greater reductions in downside revenue risk than the farm  program, 

suggesting that most farmers would likely tend to prefer the county level program. 
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Table 3 has the same output format as Tables 1 and 2, but for the ACRE revenue 

payment.  The difference in program design between the ACRE and ARC revenue 

payments are big enough that a priori assessments of the empirical differences between 

these two programs are difficult to make. In general, the magnitude of the ACRE results 

are in line with those of ARC. Average payments under the ACRE were slightly lower 

than for ARC in table 2 except for cotton.  Based on the change in the lower bound of the 

empirical 95% confidence interval of revenue moving from the case of gross revenue to 

gross revenue plus the payment, the ACRE provided lower downside revenue risk 

protection than the individual level ARC for all crops, and lower downside revenue risk 

protection than the county level ARC for all crops except cotton.  Nonetheless, the results 

are similar enough that the farmer –  assuming he had a choice –  would prefer ACRE 

over ARC. In particular, under the ACRE program, the farmer receives 80% of the 

(fixed) Direct Payments, as well marketing loan benefits, albeit at a 30 percent reduction 

in marketing assistance loan rates, in addition to the revenue payment.
7
 

Finally, Figure 3 provides the change in the average ARC payment ($/acre) as a 

function of the ARC coverage rate, for both the farm and county level implementations of 

the program.  Moving from the 85% coverage rate to the 95% coverage rate, the largest 

change in the average payment was an 87% increase for the county level soybean 

program and the smallest a 28%  increase for the farm level cotton program. The 

functions tend to be relatively linear in the coverage rate although a couple of them 

exhibit a small positive second derivative.    In each case, the functions are elastic with 

respect to the coverage rate. 

                                                 
7
 Note that the 2012 Farm Act could have some additional form of support under Title XI, as a replacement 

for the SURE program in the 2008 Farm Act.  
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Conclusions 

 

As with the 2008 Farm Act, the 2012 Farm Act is likely to have some sort of revenue-

based support for producers of qualifying crops.   Much debate over the negotiations on 

the 2012 Farm Bill focuses on new programs for providing producers with support 

payments covering “shallow losses” in revenue. The main goal of this paper is to develop 

an approach for examining the sensitivity of the farmer’s downside risk protection and 

federal budgetary costs of marginal changes in the deductible in shallow loss program 

scenarios based on the April 26
th

 Senate Farm Bill.  In particular, this paper develops an 

approach with nonparametric price and yield distributions that can simultaneously 

estimate revenue distributions across all counties reporting yields for four major crops 

using empirical distributions that are defined over arbitrarily small probability 

increments.  We find that average payments are elastic with respect to the revenue 

program’s coverage rate. In addition, using this approach, the paper compares payments 

and their impacts on farm revenue for county and farm level implementations of ARC.  

We find that based on our estimates of expected payments and their impacts on downside 

revenue risk, producers are likely to prefer the county level implementation of the 

revenue support program to the farm level versions.    

For this analysis, no attempt was made to adjust the price deviates for exogenous 

variables (e.g., changes in interest rates) that may have caused a shift in the distribution 

of price deviates over time. An econometric approach for accounting for the effects on 

these variables on price deviates is addressed in Cooper (2010).  Future analysis can seek 



19 

 

to apply information from that approach to re-centering the price distributions as modeled 

here.   
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Table 1. Simulated ARC Payments Per Acre, Gross Revenue Per Acre, and Total Gross Revenue with ARC Payments, 2011 Crop 

Year, Farm-level trigger 

 
A. ARC revenue payment per acre B. Gross revenue per acre C. Revenue per acre w/ARC D. % Change C-B 

Crop 
Mean 

($/acre) 

Upper 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

% of 

time 

payment 

is made 
Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Upper 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 
Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

Lower 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

              Corn 1.12 4.42 1.030 5.40 842 633 1142 0.154 843 637 0.153 +0.60 -0.57 

              Soybean 0.82 2.54 0.802 5.49 576 435 762 0.154 577 437 0.154 +0.50 -0.57 

              Winter 

wheat 1.31 2.86 0.503 18.34 248 167 371 0.215 250 170 0.212 +1.71 -1.41 

              Cotton
a 2.77 7.60 0.709 16.15 770 404 1210 0.277 773 411 0.274 +1.73 -1.07 

 
a
Note that upland cotton is not included as an ARC eligible crop in the proposed legislation. 
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Table 2. Simulated ARC Payments Per Acre, Gross Revenue Per Acre, and Total Gross Revenue with ARC Payments, 2011 Crop 

Year, County-level trigger 

 
A. ARC revenue payment per acre B. Gross revenue per acre C. Revenue per acre w/ARC D. % Change C-B 

Crop 
Mean 

($/acre) 

Upper 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

% of 

time 

payment 

is made 
Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Upper 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 
Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

Lower 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

              Corn 1.90 9.96 1.438 5.88 842 633 1142 0.154 844 641 0.152 +1.29 -1.26 

              Soybean 1.75 7.74 1.175 7.72 576 435 762 0.154 578 441 0.152 +1.42 -1.76 

              Winter 

wheat 2.27 6.16 0.710 20.95 248 167 371 0.215 251 173 0.208 +3.66 -3.09 

              Cotton
a 2.45 11.04 1.269 11.74 770 404 1210 0.278 773 414 0.274 +2.43 -1.31 

 

a
Note that upland cotton is not included as an ARC eligible crop in the proposed legislation. 
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Table 3. Simulated ACRE Payments Per Acre, Gross Revenue Per Acre, and Total Gross Revenue with ARC Payments, 2011 

Crop Year
8
 

 
A. ARC revenue payment per acre B. Gross revenue per acre C. Revenue per acre w/ARC D. % Change C-B 

Crop 
Mean 

($/acre) 

Upper 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

% of 

time 

payment 

is made 
Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Upper 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 
Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

Lower 

bound, 

95% 

CI ($) 

Coefficient 

of 

variation 

              Corn 1.38 13.01 2.968 2.64 842 633 1142 0.154 844 644 0.152 +1.73 -1.47 

              Soybean 0.98 7.80 2.568 3.18 576 435 762 0.154 577 442 0.152 +1.50 -1.54 

              Winter 

wheat 0.87 4.88 1.745 5.74 248 167 371 0.215 249 171 0.211 +2.67 -1.73 

              Cotton 2.73 35.64 3.269 5.62 770 404 1210 0.277 773 434 0.271 +7.50 -2.23 

 

                                                 
8
 ACRE calculates revenue losses at the county level but also includes a farm level trigger. 
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