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Sexton: A Survey of Noncooperative Game Theory: Part 1

Review

A Survey of Noncooperative Game Theory with
Reference to Agricultural Markets: Part 1.

Theoretical Concepts

Richard J. Sexton*

This paper is the first of a two-part survey on noncoop-
erative game theory relevant to agricultural markets. Part
1 discusses types of noncooperative games and reviews
important developments in noncooperative game theory
solution concepts, including Nash equilibrium, subgame
perfect equilibrium, and perfect Bayesian equilibrium.
Strengths and weaknesses of game theory as a modelling
tool are also assessed. Part 2 of the survey will discuss
specific applications to agricultural markets.

1. Introduction

The advent of game theory is considered to be the
publication of von Neumann and Morgenstemn’s
book, The Theory of Games and Economic Behav-
ior in 1944. In the immediately succeeding years
important advances in game theoretic analysis
were made by game theory’s other pioneers includ-
ing Nash (1950, 1951) and Shapley (1953). The
state of the art during this era was summarized in
Luce and Raiffa’s classic book, Games and Deci-
sions: Introduction and Critical Survey, published
in 1957. However, few results useful to economics
were developed over the next twenty years, and
Luce and Raiffa’s book remained a definitive
source on basic game theory.

An upsurge of interest in pure and applied game
theory in economics began in the mid 1970s as
research began to emphasize decision makers who
were rational but had limited information and who
interacted with others in explicitly dynamic set-
tings. Game theory texts published today bear little
resemblance to Luce and Raiffa’s book. With the
publication in 1990 of David Kreps text, A Course
in Microeconomic Theory, game theory is now
being integrated into the training of most new
Ph.Ds in economics and agricultural economics.

This paper is part 1 of a two-part survey on nonco-
operative game theory for agricultural economists.
In part 1, I review recent conceptual advances in
game theoretic analysis relevant to economics and
assess its successes and failures. Inpart 2 to appear
in the next issue of this Review, I consider applica-
tions of noncooperative game theory to agricultural
markets. To date, the methodology has been little
used by agricultural economists. Agricultural eco-
nomics is an applied field and game theory is a tool
of economic theory, so perhaps the infrequency of
usage is not surprising. Another factor may be that
agricultural markets are often regarded as proto-
type competitive markets, and game theory is a tool
of imperfect competition.

I reject this latter argument, but I do' agree that
agricultural economics is and should remain an
applied field. Most, however, would accept the-
ory’s role in guiding application, and agriculture as
an industry is sufficiently unique that we cannot
necessarily rely upon theory developed without
reference to these distinctive features of agricul-
tural markets. For example, concems about mo-
nopsony or oligopsony power are relatively unique
to agriculture, given the typical immobility of the
raw product and fewness of processors. The fact
that the marketing process for agricultural products
is initiated by the production and sale of a particular
raw product that is relatively nonsubstitutable for
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other inputs is also unique. Third, at the retail level,
the emerging power of large food chains is impor-
tant and relatively distinctive. Given that food
manufacturers are also often powerful, this consid-
eration raises important bilateral monopoly/ oli-
gopoly and principal-agent issues. Fourth,
agriculture is quite unique among industries in that
producers are allowed, even encouraged or forced,
to form coalitions for the purposes of procuring
inputs and marketing production.

For these reasons, I argue that the potential for
application of game theory to agricultural markets
is quite high. Perhaps then a survey emphasizing
applications in agriculture can stimulate interest in
the topic among agricultural economists. The goal
here is not to provide a comprehensive introduction
to noncooperative game theory. Rather, I hope to
describe and illustrate in part 1 some of the key
concepts in use today, and then in part 2 to demon-
strate their relevance to analysis of agricultural
markets. A number of book-length treatments of
the subject have appeared in recent years for those
interested in detailed study.’

2. Some Basic Classifications and
Concepts

Games are partitioned into two broad classes: co-
operative and noncooperative. Players in coopera-
tive games can make binding commitments,
whereas in noncooperative games they cannot.
This distinction must be interpreted narrowly. For
example, communication among players can be
modelied under either game structure. And players
in a noncooperative game setting can agree to co-
operate and sign contracts if the game structure
allows it. However, if it is individually desirable
for a player to defect from an agreement or breach
his/her contract, he/she will do so in a noncoopera-
tive game setting. Cooperative game theory is
most useful in settings where players can form
groups or coalitions. The analysis then focuses on
what these coalitions can accomplish with little or
no emphasis on the processes whereby these out-
comes are achieved within the coalition. Most of
the recent progress and interest in game theory has
been in the area of noncooperative games, and,
hence, those games are the focus of this review.?

12

Noncooperative games are analyzed in either their
normal or extensive form. The extensive form is
manifest as the familiar game tree. It specifies the
order of play, information, and actions available to
each player and the ensuing payoffs that are con-
tingent upon the players’ actions. A player’s strat-
egy specifies his/her action at each point (node) in
the game tree where the player has to move. The
normal or strategic form is a summarized descrip-
tion of the extensive form. It usually is depicted as
a matrix associating payoffs with each possible
combination of (pure) strategy choices by the play-
ers.

Every extensive form has a corresponding normal
or strategic form, but different extensive forms may
be represented by the same normal form. A main
reason is that the normal form necessarily abstracts
from the dynamic aspects of most interesting
games. Kreps (1990a) argues that the "great suc-
cesses of game theory in economics” have arisen
primarily due to the opportunity to think about the
dynamic character of competitive interactions af-
forded by the extensive form. Constructing the
extensive form is the very essence of the art of game
theoretic modelling.

! These include Kreps’ microeconomic theory text (1990a) and
a second book by Kreps (1990b) that is not concept oriented,
but, rather, is a thoughtful discussion of noncooperative game
theory’s successes, failures, and future prospects. Rasmusen
(1989) is an excelient, modem introduction to noncooperative
game theory. Tirole’s text (1988) in industrial organization is
a masterful presentation of noncooperative game theory appli-
cations. The Handbook of Industrial Organization (Schmalen-
see and Willig 1989) focuses heavily on noncooperative game
theory applications and includes a chapter on noncooperative
game theory methods by Fudenberg and Tirole, who have also
recently published a book on the subject (Fudenberg and Tirole
1991).

Books that treat both cooperative and noncooperative games
include Friedman (1986) and the two volume treatise by Shubik
(1982, 1984). For readers primarily interested in cooperative
game theory, Luce and Raiffa remains an excellent reference.

2 This focus is for brevity and is not to suggest that cooperative
games do not provide a useful tool for analysis of agricultural
markets. Indeed institutions such as agricultural cooperatives,
marketing orders, and marketing boards enable coalitions of
farmers to organize and make the type of binding agreements
that are fundamental to cooperative game theory.



Sexton: A Survey of Noncooperative Game Theory: Part 1

Because the discussion here will focus on games in
extensive form, it is useful to review terminology
relating to the extensive form using an example.
Figure 1 is a simple model of moral hazard. There
are two players, a farmer (the principal) and a
marketer (the agent). If the farm product is mar-
keted effectively (e.g., no spoilage), it is worth 3.0
at retail. A marketing agent can provide these
services at a cost of 0.5, or the farmer, who is less
efficient at marketing, can provide them at a cost
of 1.0. The farm product net of marketing costs is
worth 2.5 if the agent expends a high effort in
marketing it. 1 assume that there are many compe-
ting agents, so that agents’ services are priced at
cost. The product is worth 2.0 if the farmer verti-
cally integrates and markets the product him/her-
self. The product is only worth 1.5 if the agent
shirks and expends low effort.

The points in Figure 1 at which either player takes
an action are referred to as nodes. A successor to
anode is any node that may occur later in the game
if the given node has been reached. An end node
is a node with no successors. A branch is one
action from among a player’s set of potential ac-

tions at a particular node. A path is a sequence of
nodes and branches from the starting node to anend
node. Payoffs for (grower, agent) are denoted at
each terminal node.

The comerstone solution concept for noncoopera-
tive games is the Nash equilibrium. A strategy
combination si,...,sn is a Nash equilibrium if no
playeri=1,...,n would wish to deviate from his/her
strategy, given that no other player(s) deviate. In
other words, taking his/her opponents’ actions as
given, if no player would wish to change his/her
own action, the resulting strategy combination is a
Nash equilibrium. To state the concept formally,
define strategy sets Si and payoff functions
Ti(S1,...,5n) for*each playeri= 1...,n. The strategy
combinations = {s1*,...,sn*} isa Nashequilibrium
if

Ti(s1*,...,50%) 2 W(S1*,...,8i-1%,8i,8i+1%,...,8n%),
forallsie Sj,and foralli=1,...n.

Many well-known results in economics are Nash
equilibria of their associated games. The most

Figure 1: An Extensive Formn Game: Post-Contractual
Opportunism
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famous is mutual defection or "finking" in the
various incarnations of the prisoners’ dilemma
garne.3 The Cournot equilibrium is the Nash equi-
librium to the static game where oligopolists
choose quantities, and the Bertrand equilibrium is
the Nash equilibrium to the static game where they
set prices. Von Stackelberg’s leader-follower
equilibrium is a Nash equilibrium to a dynamic
game where the leader moves first and then the
follower moves. The Nash equilibrium to the
moral hazard game in Figure 1 is for the agent to
expend low effort (if given an opportunity to play)
and for the grower to vertically integrate.

A number of existence results for Nash equilibria
have been proven, many of which are summarized
by Friedman (1986). A fundamental result due to
Nash (1951)is that every game with a finite number
of pure strategies has at least one Nash equilibrium,
possibly in mixed strategies. Mixed strategies in-
volve a player randomizing among his/her pure
strategies.4 Similar existence results can be proven
for games with a continuum of actions (such as the
choice of a price or quantity), but complications
enter when payoff functions are discontinuous or
nonquasi-concave in the strategy choices (Das-
gupta and Maskin 1986).

The process of finding pure strategy Nash equili-
bria is usually quite straightforward. The analyst
merely proposes a candidate equilibrium strategy
combination and then checks for each player if
his/her strategy is optimal given the candidate
strategies for all other players. If so, the candidate
strategy combination is a Nash equilibrium.

It is worth commenting upon the Nash equilibrium
as a solution concept because its problems have
inspired refinements of the equilibrium concept
that have comprised much of the recent progress in
pure noncooperative game theory. The mutual best
reply property of a Nash equilibrium is indeed an
appealing property. However, two important criti-
cisms of the Nash equilibrium as a solution concept
can be raised:

1. Many games have multiple Nash equilibria,

raising the question of how to choose among
them.
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2. Nash equilibria are very "noncooperative" in
that the solutions they characterize often in-
volve players doing distinctly worse than if
they were somehow able to coordinate their
actions.

I will consider each argument in turn. The games
mentioned above in introducing the Nash equilib-
rium concept generally have a unique equilibrium,
but many games have a multiplicity of equilibria
in pure and/or mixed strategies. Consider, for ex-
ample, the simple game of entry and entry deter-
rence illustrated in extensive form in Figure 2. In
this game the entrant moves first and chooses to be
IN the market or OUT. The incumbent then re-
sponds by choosing either PREDATE or ACCOM-
MODATE, where the former implies a price war
and the latter might imply either Coumot or collu-
sive behavior. Denote the entrant and incumbent
by subscript E and I, respectively and monopoly,
predation, and accommodation by superscripts M,
P and A respectively. Then

™M > mA > P, and
TeA > 0 > neP.

The Nash equilibria for this game are (IN, AC-
COMMODATE) and (OUT,PREDATE).

3 Everyone is familiar with the two prisoners whose finking on
each other produces long prison terms for each. However, the
term "prisoners’ diltemma" is applied broadly to contexts where
cooperation is in players’ mutual interests, but individually each
has incentive to behave noncooperatively. Examples are
duopolists setting prices or output levels, nations choosing trade
policies, or communities competing for industry through tax
incentives. A stimulating book by Axelrod (1984) is devoted
to the study of prisoners’ dilemma situations.

4 Most often economists are interested in pure strategy equili-
bria because mixed strategies are often difficult to interpret from
an economic perspective. Many games may have both pure and
mixed strategy equilibria, and the modeller will emphasize the
pure strategy equilibria. See Fudenberg and Tirole (1989) and
Sutton (1990) for discussion of alternative interpretations of
mixed strategy equilibria. Rubinstein (1991) expresses the
view that nonexistence of equilibrium in pure strategies should
not necessarily cause the modeller to tum to analysis of mixed
strategies. Rather, nonexistence of a solution should alert the
modzll~t to possible deficiencies in the game description or
assumptions underlying the solution concept.
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A multiplicity of Nash equilibria might signal
either that the formal game specification fails to
capture real-world elements that might suggest an
obvious way to play the game or that the Nash
equilibrium concept is ill-suited to analyze the
game at hand. This is the case in the entry-deter-
rence game, where the equilibium (QUT, PRE-
DATE) involves a noncredible threat by the
incumbent, i.e., if actually called upon to choose
between PREDATE and ACCOMMODATE by
the entrant’s choice of IN, the incumbent rationally
chooses ACCOMMODATE. Situations such as
this have inspired refinements of Nash Equilibrium
that we will examine shortly.

The notion of an obvious way to play a game is
based on the pioneering work by Schelling (1960).
The idea is that in many games that have multiple
Nash equilibria, players may still know what to do.
These equilibria are called focal points. They are
Nash equilibria that are compelling for psychologi-
cal reasons not easily incorporated in the formal
game specification. Focal points may be based on
past experience or a general sense of how people
will behave.

The concern about the extreme "noncooperative-
ness" of Nash equilibria is that they often predict a
distinctly suboptimal outcome from the perspec-
tive of the collective welfare of the players. All of
the games mentioned at the outset are this way.
The "prisoners” in the prisoners’ dilemma game
both get long jail sentences from finking on each
other, the Bertrand and Coumot equilibria both
earn the oligopolists less than the joint profit maxi-
mum output. And in the moral hazard game in
Figure 1, the Nash equilibrdium outcome with ver-
tical integration is Pareto dominated by contracting
with an agent who expends high effort.

Two comments are in order. First, in these games’
static contexts, the noncooperative outcomes are
probably realistic. Although superior outcomes to
the Nash equilibrium are available in each instance,
players have unilateral incentives to defect from
these solutions. People can be their own worst
enemies. Second, the divergence between equilib-
rium and optimum (in the sense of maximizing total
payoffs) behavior may signal that the model is a
poor representation of real-world behavior. For
example, in single play games, reputation is not an

Figure 2: Multiple Nash Equilibria: Entry Deterrence
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issue, nor are players able to make precommit-
ments that might subsequently bind them to a more
advantageous course of action. These considera-
tions suggest the importance of including dynamics
and information in game specifications, which, in
fact, have been important dimensions of recent
game theory research.

3. Information and Extensive
Form Games

Having established the Nash equilibrium as a foun-
dation, we now consider the advancements that
have lead to the recent years’ explosion of interest
in game theory modelling. A player’s information
Set at any point in the game consists of the different
nodes in the game tree that he/she knows might be
the actual node but cannot distinguish among by
direct observation. Consider the simple coordina-
tion problem among farmers illustrated in Figure 3.
There are two market periods, early and late, and
either farmer can plant a perishable crop for harvest
during one but not both periods. The early harvest
period is more lucrative due to greater demand, and
Farmer A, who runs a larger scale operation is
better able to take advantage of the early market
than is Farmer B. However, if the farmers can
coordinate their plantings to smoothen supply
across market periods, they will each do better than
if they harvest for the same period and create a glut.
A similar coordination story might involve sched-
uling harvests to best utilize fixed processing ca-
pacity. The payoffs under the alternative cutcomes
are listed at the end nodes in Figure 3.

Panels (a) and (b) in Figure 3 illustrate two alterna-
tive ways this game might be played. In panel (a)
the players commit to planting decisions simulta-
neously. Thus, although Farmer A is depicted first
on the game tree, Farmer B does not know A’s
choice when it is time to make his/her own choice,
i.e., he/she does not know whether B or B3 is the
actual node. His/her information set consists of
{B1,B2}. Information sets are depicted on game
trees by either encircling nodes that comprise an
information set as in panel (a) or connecting the
nodes with a dashed line.
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Panel (b) depicts a case where Farmer A is able to
move first. How he/she achieves this position
might be an interesting strategic question. For
example, he/she could sign a labour contract speci-
fying an early planting cycle and containing a large
penalty for breach. In this case Farmer B knows
what action farmer A has taken when it is time to
make his/her decision. Every information set in
panel (b) consists of a single node or in game theory
parlance is a singleton.

Figure 3 illustrates the distinction in game theory
between perfect information and imperfect infor-
mation. In a game of perfect information each
information setis a singleton; otherwise it is a game
of imperfect information.

What are the pure strategy Nash equilibria to the
coordination games in Figure 3?7 The game in panel
(a) has two equilibria for (A,B): (EARLY,LATE)
and (LATE, EARLY). The total payoff from
(EARLY, LATE), exceeds that from (LATE,
EARLY), but there is no way in this noncoopera-
tive game structure for Farmer A to necessarily
persuade Farmer B to undertake that option.

Farmer B’s strategy choices are complicated some-
what in the game depicted in panel (b). They must
specify his/her move in response to either of A’s
possible actions. Three Nash equilibrium strategy
combinations emerge:

1. (EARLY, if EARLY then LATE; if LATE
then EARLY) with outcome that A plays
EARLY and B plays LATE.

2. (LATE, if EARLY then EARLY; if LATE
then EARLY) with outcome that A plays
LATE and B plays EARLY.

3. (EARLY, if EARLY then LATE; if LATE
then LATE) with outcome that A plays
EARLY and B plays LATE.

Animportant refinement of Nash equilibrium is the
concept of subgame perfect equilibrium (SPE) due
to Selton (1975). The game depicted in Figure 3(b)
is dynamic in that A moves first and B observes
his/her move. Yet the construct of Nash equilib-
rium requires A to take B’s strategy as given in
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Figure 3: Coordination Games Between Farmers
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choosing his/her own move. This fact tends to
produce Nash equilibria in dynamic games that
involve noncredible threats on the part of some
player(s). Both the second and third equilibrium to
the game in panel (b) involve such threats. Equi-
librium 2 involves a threat by B to play EARLY
regardless of A’s action. Taking this strategy as
given, A’s best reply is LATE. However, if A
chose EARLY so that it was fait accompli, B’s
optimal response is to choose LATE, not EARLY.
Similarly, the threat to play LATE if LATE in
equilibrium 3 makes no sense, yet because B is
never called upon to make that move in equilib-
rium, the strategy combination is a Nash equilib-
rium.

Subgame perfection works to eliminate noncred-
ible threats. To understand the concept it is neces-
sary to define a subgame. A subgame is a game
consisting of a node that is a singleton for all
players, that node’s successors and the payoffs at
the associated end nodes. The game in Figure 3(b)
has three subgames: the complete game itself and
the games beginning at nodes By and B2. Con-
versely in panel (a) the only subgame is the game
itself. The game of entry and entry deterrence in
Figure 2 has two subgames: the game itself and the
game beginning at the node following the entrant’s

choice of IN. The moral hazard game in Figure 1

also has two subgames.
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A SPE s a set of strategies for each player such that
the strategies comprise a Nash equilibrium for the
entire game and also for every subgame. Subgame
perfection requires strategies to be in equilibrium
everywhere along the game tree, not only along the
equilibrium path.

The concept is exceedingly useful for analyzing
dynamic games of perfect information such as
those depicted in Figures 1,2 and 3(b) and also
games of ‘almost perfect’ information. These are
dynamic games where at a given date t players
choose actions simultaneously knowing all actions
taken during the preceding periods 1,...t-1. The
within-periods simultaneity is a deviation from per-
fect information. The most common example of
these games are repeated games where players
repeatedly play a simultaneous single period game,
such as a prisoners’ dilemma or choices of price or
quantity by oligopolists in a static market environ-
ment.

The virtues of the SPE concept are twofold: SPE
are usually straightforward to derive using back-
ward induction, and requiring subgame perfection
is often very effective at eliminating nonplausible
Nash equilibria in dynamic games. Solution by
backwards induction involves proceeding to the
final play (a node whose successors are all end
nodes) and deriving the optimal behavior for the
player who has the move at that node. The solution
at this point will be simple common sense; the
player will choose whatever option maximizes
his/her payoff among the alternatives. That portion
of the game tree can then be replaced with the
optimal action to take place there and the associated
payoffs, and the analyst can proceed up the game
tree to the next node or set of nodes. Optimal play
can be derived here given thatitis now known what
will transpire subsequently. In this manner the
game can continue to be folded back and solved.
The manner in which the solution is derived insures
that the properties of a SPE are satisfied, i.e., opti-
mal behavior was derived at each node.”

The backwards induction algorithm can be used to
solve the dynamic games posited thus far in this
paper. In Figure 1’s moral hazard game, if the
agent gets the move, his/her best response is to
exert LOW effort. Given the Nash equilibrium to
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this subgame, the grower’s best response at his/her
move is to vertically integrate. Thus (INTE-
GRATE, LOW) is the unique SPE.

Subgame perfection eliminates one of the equili-
bria in the entry-deterrence game. Given a choice
of IN by the entrant, the monopolist’s best response
in the ensuing subgame is to ACCOMMODATE.
Given accommodation, the entrant’s best move at
his/her play is to choose IN. Thus, (IN, ACCOM-
MODATE) is the unique SPE, and the Nash equi-
librium (OUT, PREDATE) is eliminated as a
noncredible threat.

Finally, the coordination game in Figure 3b had
three Nash equilibria. Two of them involve non-
credible threats by B, and, thus, do not satisfy the
requirements of subgame perfection. These are the
threat to play EARLY inresponse to EARLY by A
in the second equilibrium, and the threat to play
LATE inresponse to LATE by A in the third. The
unique SPE then involves A playing EARLY and
B playing LATE.

Consider now dynamic games with "almost per-
fect” information. Two classic examples are the
iterated prisoners’ dilemma and the chainstore
game due to Selton (1978). They are useful to
consider because they suggest the failure of sub-
game perfection in certain contexts which has led
to the search for further refinements of equilibrium.

Consider playing a prisoners’ dilemma game over
some large but finite number of periods. Whereas

5 This solution algorithm is effective so long as the game tree
isn’t too big or complicated. Circumstances where players are
indifferent among alternatives can also create problems because
the manner in which ties are resolved likely will effect play of
the game. Usually the analyst has leeway to resolve ties, and
some justification from theory can often be given for a particular
resolution. Figure 1 illustrates this point. In many games one
type of player will be assumed to behave competitively and earmn
just some reservation level of payoff, usually normalized to
zero. The agent in Figure 1 eams zero both from accepting a
contract and expending high effort and from staying out of the
market under grower integration. Any payoff to the agent
strictly above his/her reservation payoff cannot be an equilib-
rium because another payoff that paid him/her slightly less
could be proposed and would be accepted.
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the Nash equilibrinum of mutual finking and joint
punishment is intuitive in any single play of the
game, it seems sensible that as the players repeated
the game several times they would learn eventually
to cooperate and, thus, each achieve a better payoff.
Such is not the case. Solving the game via back-
ward induction, it is clear that mutual finking is the
unique Nash equilibrium in the final period, be-
cause there can be no gain from playing a coopera-
tive strategy. Since the final period’s play is now
determinate, there is no gain from cooperating in
the penultimate period, so mutual finking ensues
there also. And so the game unravels to produce a
unique SPE wherein each player finks at any and
every opportunity.

The chainstore game is essentially a many period
replication of the entry-deterrence game of Figure
2. Whereas accommodation of a single entrant
makes sense, the intuition is that a firm facing entry
in different markets in successive periods ought to
respond aggressively early in the game (choose
FIGHT) in hopes of deterring subsequent entrants.
Such is not the case, however, as the SPE calls for
accommodation and entry in every period, a solu-
tion verified easily by backward induction.

3.1 Infinitely Repeated Games

If the game is repeated infinitely, the backward
induction algorithm that generated the SPE de-
scribed above breaks down,; there is no final period
to solve to begin folding the game back. The
fundamental result for infinitely repeated games is
the folk theorem which asserts that almost any
outcome can be a Nash equilibrium provided play-
ers are sufficiently patient {don’t discount the fu-
ture too heavily). The idea is that any feasible,
individually rational payoffs can be supported as a
Nash equilibrium by the players espousing strate-
gies to punish anyone who deviates from the pre-
scribed equilibrium path. These strategies will
satisfy the properties of a Nash equilibrium if the
one period gain from cheating does not exceed the
subsequent discounted losses from punishment.

Such strategies need not be subgame perfect, i.c.,
players may not have incentive to play their threat
strategies if actually called upon to do so. How-

ever, restricting attention to SPE is not helpful in
infinitely repeated games as another version of the
folk theorem shows that this refinement does not
reduce the limit set of equilibrium payoffs.

What are the implications of repeated games and
the folk theorems for applied researchers who may
wish to use game theory? Most fundamentally,
considerable suspicion is called for if anyone puts
much emphasis on a particular equilibrium for an
infinitely repeated game. A second point is that
infinitely repeated games are not very reflective ot
real-world contexts. Most decision makers do not
have infinite horizons, but it is notable that this
feature does not undermine the message of the folk
theorems because the theorems also hold for games
with a finite probability of ending in any period,
provided this probability is sufficiently low.5

A more significant indictment of repeated games
(whether finite or infinite) is that life does not
usually involve repeated play of the same game.
Consider, for example, repeated play of Figure 1's
moral hazard game. LOW effort by an agent may
be interpreted to mean letting product quality dete-
riorate. Consequentially, consumers may be alien-
ated from the product in subsequent periods, and,
hence, the structure of those games is altered. In
other words, what happens today usually affects the
games to be played in the future.

The main virtue of repeated games lies not in their
value as realistic modelling paradigms, but, rather,
in suggesting through the stark results they gener-
ate that richer and more realistic specifications of
the game environment are called for. Providing
richer game structures has also inspired further
refinements in equilibrium that we now examine.

3.2 Games of Incomplete or Imperfect
Information

An element missing from either the iterated prison-
ers’ dilemma or chainstore games is reputation. It

® If y< 1 is the discount parameter and 6< 1 is the probability
that play continues at each period, then players should merely
use the factor 0 to discount the future.
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Figure 4: The Centipede Game

0,0

(-1,3)

2,2)

(1,5)

(10, 10)

(7,11)

would seem that the "prisoners” have a great inter-
estin acquiring a cooperative reputation. Similarly
the chainstore should value a reputation as one who
responds aggressively to entry. These elements
have no way of emerging in the prototy pe finite-ho-
rizon versions of these games. Another important
game that illustrates a shortcoming of finite-period,
perfect-information games is Rosenthal’s centi-
pede game (1981) illustrated in Figure 4. By play-
ing their cards right (i.e., choosing DOWN),
players A and B can each secure payoffs of 10 in
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this game. Yet the unique SPE results in A playing
RIGHT at his/her first opportunity, leading to pay-
offs of (0,0).

The intuition in the iterated prisoners’ dilemma or
centipede games is that a player might "take a
chance” on playing cooperatively at the outset just
to see what might happen. The backward induction
algonthm of subgame perfection does not permit
this intuition to emerge. The environment where it
can emerge is in games of incomplete information.
Analysis of these games was facilitated by Har-
sanyl’s observation (1967) that a game withincom-
plete information could be transformed into a game
with imperfect information by introducing Nature
as a player who moves first at the outset of a game.
The choices made by Nature define a player’s type,
including possibly his/her strategy set, payoff func-
tions, and knowledge concerning locations on the
game tree--information partition in game theory
parlance. When nature moves in these environ-
ments, this is said to establish a state of the world.

I will now illustrate the modelling procedure for
games with incomplete information and describe
the refinements in equilibrium they have inspired.
We can then demonstrate how incomplete informa-
tion can be used to unravel the logic that produces
the paradoxical equilibria in the games just dis-
cussed.

Figure 5 illustrates the modelling process for the
sequential-choice version of the coordination game
among farmers. The incomplete information con-
cems player B’s type. He/she might be either a
"profit maximizer"” or "mean spirited." A profit-
maximizing B has the same payoffs as in Figure 3.
A mean-spirited B, however, obtains utility from
inflicting pain upon his/her neighbour, and, hence,
will always time his/her planting to diminish A’s
payoff. The way to model this uncertainty is to let
Nature choose between (maximizer, mean) with
probabilities (P, 1-P).

Moves by Nature at the outset of a game convert
the game to one of incomplete information when-
ever at least one of the players is uninformed of
Nature’s choice. If some players observe nature’s
choice and others do not, then the game involves
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Figure 5: Coordination Between Farmers Under Incomplete
Information

(a) Player A is uninformed

Maximizer
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asymmetric information, and some players have
valuable private information.

In Figure 5 the more sensible alternative is that A
is uninformed, which produces the extensive form
in Figure 5(a). The less realistic alternative in this
particular example but the alternative with more
important consequences tor game theoretic model-
ling is that B is uninformed as illustrated in Figure

7 In technical terms private information means that some

player’s information partition is finer than some other player’s
partition. Games of asymmetric information are necessarily
games of imperfect information because if the players’ informa-
tion partitions differ, the information sets cannot all be single-
tons. Games can have asymmetric information without having
incomplete information. For example, players may undertake
moves at the outset of a game that are not revealed to other
players but which influence the way they play subsequently in
the game.
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5(b). The dotted lines depict information sets
which are not singletons. In Figure 5(a) Farmer A
does not know Nature’s choice and, hence, whether
the actual node is A1 or Az. Player B’s information
sets are all singletons because he/she observes both
Nature’s and A’s move.

InFigure 5(b) B cannot distinguish between By and
B3 or between B2 and B4. The introduction of
incomplete information in the manner depicted in
Figure 5(a) does not complicate solving the game
in any meaningful way. A knows that Maximizer
B will choose the opposite of A’s choice of EARLY
or LATE, and Mean B will choose the same as A.
To solve this type of game, A is assumed to have a
von Neumann-Morgenstern utility function and
choose between {EARLY, ILATE} to maximize
his/her expected payoff. In this case EARLY is a
dominant choice for A regardless of the value of P,
so equilibrium involves A choosing EARLY and B
choosing EARLY (LATE) if he/she is mean spir-
ited (a profit maximizer).

The type of game depicted in Figure 5(b) is inter-
esting because it possibly allows the uninformed
player to update his/her information based upon the
informed player’s move.® This type of scenario has
prompted further important refinements of Nash
equilibrium.

Figure 5(b) illustrates the problem that arises for
subgame perfection as a solution concept for these
types of games. Because of the imperfect informa-
tion, the nodes where B moves are no longer sub-
games; none of nodes B1 - B4 are singletons. Thus,
the only subgame is the entire game itself, and
requiring subgame perfection does not eliminate
either of the Nash equilibria that involve noncred-
ible threats.

It is natural that a refinement of Nash equilibrium
to accommodate games of incomplete and asym-
metric information should consider both players’
strategies and their beliefs and the manner in which
those beliefs are updated as the game is played. A
refinement that accomplishes this objective is per-
fect Bayesian equilibrium (PBE). In a PBE, play-
ers’ strategies are optimal given their beliefs and
beliefs are obtained from strategies and observed
actions using Bayes’ rule whenever possible.9
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The following is a formal definition of a PBE based
on Rasmusen (1989): A PBE consists of a strategy
combination and a set of beliefs such that at each
node of the game: (1) the strategies are Nash for the
remainder of the game, given the beliefs and strate-
gies of the other players, and (2) the beliefs at each
information set are rational given the evidence, if
any, from previous play in the game. Condition (1)
is a perfectness condition, and condition (2) says
that beliefs should be formed using Bayesian up-
dating whenever pos sible.!?

8 Notice that this happens not to be the case in the Figure 5(b)
game because A has the dominant strategy of EARLY regard-
less of B's type.

% Credit for the development of perfect Bayesian equilibrium
is somewhat hard to pinpoint. The concept is aligned with
Selton’s work (1975) on perfection and Kreps and Wilson’s
work (1982a) on sequential equilibrium. Early signalling mod-
els such as Akerlof (1970) and Spence (1973) implicitly use the
concept. The first explicit application is Milgrom and Roberts
(1982a). Kreps (1990b) credits Fudenberg and Tirole (1988)
with formalizing the concept.

10 The following example illustrates using Bayes rule to calcu-
late posterior probabilities. Itis bad form and perhaps illegal to
inquire about the marital status of an applicant for a faculty
position. Still, however, inquiring minds want to know. Sup-
pose an interviewer’s prior probability that an applicant is
married (M) is:

P(M)=04.

The data observed by the interviewer is that the applicant is a
homeowner, a fact revealed in casual conversation. The inter-
viewer knows the conditional probabilities of observing this
information for a2 married or unmarried (UM) person of the

applicant’s age:

P(H/M) = 0.6
P(H/UM) = 0.2.

The marginal probability of observing home ownership among
this applicant’s age cohort is

P(H) =[P(H/M) * P(M)] +[P(H/UM) * P(UM)]
0.36 = (0.6 * 0.4) + (0.2 * 0.6).

In other words, homeowners are twice as likely to be married
as not. Thus, the posterior probability that the applicant is
married is

P(M/M) = P(H/M) * PM)YP(H) = 2/3.

Because the interviewer observed data more consistent with M
than UM, it is intuitive that the prior on M should be revised
upward. The above equations can be converted to general
formulae by replacing H with "data,” M with "event,” and UM
with "not the event."
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There is no general solution method to calculate
PBE comparable to the backward induction algo-
rithm for SPE. Rather, solution is a thought process
that involves proposing plausible strategy combi-
nations and testing to see if they are best responses
(i.e., Nash). Then each player’s strategy is tested
at each node to see if it is a best response given the
player’s beliefs at each node. Out-of-equilibrium
beliefs and strategies are an important part of con-
structing a PBE. In particular, the analyst must
check whether any player would like to take an
out-of-equilibrium action in order to influence
other players’ beliefs. I illustrate application of the
PBE concept to an important class of incomplete
information games known as signalling games.

3.3. Signalling Games

The basic signalling game is a two-period dynamic
game. The player who moves first (the leader) has
private information about his/her type that affects
the player who moves last (the follower). Signal-
ling’s origin is Spence’s model (1973) of educa-
tion. The model has proven to be rich in application
in the succeeding years.

The following definition of PBE for a signalling
game is from Fudenberg and Tirole (1989). Player
I (the leader) observes private information as to
his/her type t1 and chooses action aj. Player 2
observes a) and chooses action az. Payoffs for each
player are mi(ar,az,t1). Prior to play, player 2 has
beliefs P1(t1) concerning player 1’s type. Player 2
can update his/her belief about t; based upon
his/her observation of 1’s action, aj. Denote this
posterior probability as Py*(ti/ay). However,
player 1 anticipates that his/her action will influ-
ence player 2’s posterior beliefs and, hence, his/her
action. A PBE is a set of strategies a;*(t;) and
az*(a1) and posterior beliefs Py *(t1/a1) that satisfy
the following conditions:

1. ar*(t1) maximizes m(a1,a2(a;),t1),
2. ap*(a1) maximizes Ty P1*(ti/a1)m(ar,az, t1)

3. P1*(u/a1) is derived from the prior Py, aj, and
Bayes rule whenever possible.

Conditions 1 and 2 are perfectness conditions, and
condition 3 is the Bayesian updating requirement.
Notice that condition 1 requires player 1 to take into
account his/her role in influencing player 2’s ac-
tion. The qualifier on condition 3 is important
because Bayes rule is not applicable for events that
occur off the equilibrium path. These events occur
with zero probability, which implies a division by
zero in Bayes formula (see footote 10), making
the posterior undefined. Any posterior beliefs are
compatible with Bayes rule in these cases. This
result, in turn, admits many perfect Bayesian
equilibria for some games and has inspired a search
in recent years for further refinements to eliminate
some of the equilibria.

To illustrate the application of PBE, consider the
entry deterrence model of Milgrom and Roberts
(1982a). Milgrom and Roberts wished to show that
limit pricing might emerge as a rational strategy
under incomplete information. The asymmetric
information concerns the incumbent firm’s unit
costs, which may be either HIGH or LOW and
denoted respectively as cy and c.. If the entrant
enters, he/she incurs a sunk cost K > 0, and post-
entry play is assumed to be Cournot. Let the en-
trant’s profits net of K be denoted by 1tz and assume
that

RE(cH) > 0 > me(cL),

i.e., entry is profitable if the incumbent is high cost
but not if he/she is low cost.!!

Signalling enters the Milgrom-Roberts model be-
cause a low-cost incumbent produces more and
charges less than a high-cost counterpart under
normal conditions. For example, denote the static
profit-maximizing monopo]l&! outputs for high- and
low-cost incumbents as q (cH) and qM(cL), re-
spectively. However, producing q" (cL) may not
be sufficient for a low-cost incumbent to signal its
type because a high-cost incumbent may be willing
to produce this output, thereby reducing its period

" A low-cost incumbent will produce more in a Coumnot

equilibrium than will a high-cost version, and, thus, post-entry
profits will be lower if the incumbent is low cost.
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1 profit in order to masquerade as low costin hopes
of deterring entry.

Whether or not players succeed in signalling their
types is an important dimension of signalling mod-
els. A PBE where signalling does distinguish
among types is known as a separating equilibrium.
A PBE where the types remain undistinguished is
known as a pooling equilibrium. Many signalling
games have both types of equilibria. 12

In general three types of constraints must be satis-
fied to establish a separating equilibrium. In the
context of the limit pricing application, they are: (1)
Participation--the payoffs available in equilibrium
must be financially viable for the uninformed
player; (2) Incentive compatibility-- a high-cost
firm must not have incentive to choose the low-cost
firm’s output;13 and (3) Nonpooling--the low cost
firm must earn higher profits through signalling its
type than through pooling.

In a separating equilibrium, observing the equilib-
rium choices of the informed players allows a com-
plete inference to be made as to their types. The
limit pricing model tends to have both pooling and
separating equilibria. A separating equilibriumin-
volves a low-cost incumbent producmg an output,
q (cL) sufficiently in excess of q (cL) that a high-
cost version would not be tempted to pool (con-
stramt (2) above) and, rather, would choose
q (CH) The entrant correctly mfers this result and
chooses not to enter if it observes q (cL) To com-
plete specification of the PBE, posterior beliefs,
P () on the part of the entrant for outputs other than
q (cL) orq  (cH) must be specified that support the
proposed equilibrium. These behefs are arbltrary )
so P (HIGH/q’)=1forallq’ € {q (cH), q L)}
is a valid choice to support the equilibrium.

If the cost of signalling is sufficiently great a
low-cost incumbent will instead choose q (cL)
(constraint (3) above is violated) and a pooling
equilibrium will ensue where both high- and low-
cost incumbent types produce the same output. In
this case the entrant enters if its expected profit is
positive, given its priors on the incumbent’s type.
An important implication of this type of model is
that the introduction of just a small probability in
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the entrant’s mind that the incumbent is high cost
possibly causes the rational low-cost incumbent to
discretely increase its period 1 output above its
profit-maximizing monopoly level to signal its

type.

3.4 Reconsidering the Paradoxical
Equilibria in Finite-Horizon Games

The preceding observation is the key to unravelling
the paradoxical equilibria in the iterated prisoners’
dilemma, chainstore, and centipede games. The
key references are Kreps and Wilson (1982b) and
Milgrom and Roberts (1982b) on the chainstore
game and Kreps, Wilson, Milgrom and Roberts
(1982) on the prisoners’ dilemma. The modelling
approach is similar in each case. The game is
converted to one of incomplete and asymmetric
information by introducing the probability that a
player’s type is not as modelled in the original
specifications of the game. For example, Kreps et
al. consider the possibility that one of the "prison-
ers” can only play a "tit-for-tat" strategy that calls
for him/her to cooperate at the outset of play and at
any subsequent period t if his/her opponent coop-
erated at period t-1. Or in the chainstore game, the
possibility of a "rapacious” incumbent who enjoys
predation is introduced by Kreps and Wilson.

A key facet of these (and any other) games is that
the game structure is common knowledge. This
means that each player knows the configuration of
the game tree and the other player(s) know that
he/she knows and so on. This point is important
because it means that an informed player has an
opportunity to exploit an uninformed player’s un-
certainty. For example a rational (non tit-for-tat)
prisoners’ dilemma player can play cooperatively
at the outset of the game to give the impression that
he/she is tit for tat. The other player is not fooled
by this behavior, but, nonetheless, as long as his/her
partner is playing cooperatively, it may be in his/

12 In addition, a third type of equilibrium may exist, where, in
the context of the Limit pricing model, the high-cost firm ran-
domizes between masquerading and not masquerading as a
low-cost firm.

13 The fact thal the high-cost firm’s profits are lower at q (c]')
than at q Mty is the key feature in meeting this constraint.
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her interest to play along by choosing to cooperate
also.

Analogously, in the chainstore game, a nonrapa-
cious incumbent has incentive to predate during the
early periods of play of this game to perpetuate the
possibility in entrants’ minds that he/she is rapa-
cious. Potential entrants, being aware that even a
nonrapacious incumbent may fight entry during
early periods of play, elect rationally not to enter.

Introducing uncertainty into these models is, thus,
seen to rather drastically alter the equilibria from
the stark results obtained by applying subgame
perfection to the perfect information versions of
these games. The new equilibria call for players in
the prisoners’ dilemma to cooperate in early peri-
ods and only fink towards the end of play, or in the
chainstore game for the incumbent to fight entry in
early periods and accommodate only towards the
end of play. These outcomes sit better with intui-
tion and, moreover, with actual play of the games
in experimental settings (see, for example, Axelrod
1984 and McKelvey and Palfrey 1992). A further
key point is that these new equilibria are obtained
even with very modest degrees of uncertainty, e.g.,
low probabilities that a prisoner is tit for tat or an
incumbent is rapacious.

3.5 Further Refinements

I discuss briefly here other refinements to Nash
equilibrium that have emerged in the literature in
recent years. Two equilibrium concepts that were
developed contemporaneously with PBE and have
similar properties (and, hence, yield similar equili-
bria) to PBE are Selton’s (1975) concept of trem-
bling-hand perfect equilibrium and Kreps and
Wilson’s (1982a) sequential equilibrium. The idea
behind trembling hand perfection is that players
may make mistakes (their hands may tremble) dur-
ing play of a game. A trembling-hand perfect
equilibrium strategy continues to be optimal for a
player even if there is a small chance that some
otherl 4player will pick an out-of-equilibrium ac-
fion.

The concept of sequential equilibrium is also based
upon the specification of strategy profiles that are

Nash for the remainder of the game, given the
beliefs and strategies of the other players, and up-
dating beliefs using Bayesian inference whenever
possible. Kreps and Wilson add a further consis-
tency requirement for sequential equilibrium
which for some games limits the range of equilibria
relative to perfect Bayesian equilibrium. The con-
sistency requirement, for example, would require
that two players observing another player’s actions
should form the same beliefs as to that player’s
type. It also imposes consistency of beliefs over
time.

The concepts of SPE, PBE, trembling-hand perfect
equilibrium, and sequential equilibrium can be re-
lated as follows: Every sequential, perfect
Bayesian, and trembling-hand perfect equilibrium
is also subgame perfect. Every trembling-hand
perfect equilibrium is a sequential equilibrium, and
every sequential equilibrium is also a perfect
Bayesian equilibrium but not vice-versa

As noted, the problem of multiplicity of PBE due
to the arbitrariness of out-of-equilibrium beliefs
has stimulated the search for ways to restrict these
beliefs and, hence, limit the admissible PBE. This
has been an area of considerable on-going research
and is beyond the scope of this survey. For inter-
ested readers, the book by Van Damme (1987) pro-
vides a comprehensive discussion, although some
work1 6has been accomplished since its publica-
tion.

* For an example of how trembling-hand perfection refines

equilibrium consider the coordination game between farmers in
Figure 3(b). One Nash equilibrium involves A, who moves
first, playing EARLY and B playing (if EARLY then LATE, if
LATE then LATE). Aslong as A plays EARLY, B’s strategy
is a best reply, but if there is a chance that A will tremble and
play LATE, then it is certainly not optimal for B to respond with
LATE, i.e., this Nash equilibrium is not trembling-hand perfect.
The equilibrium where A plays LATE and B plays (if EARLY
then EARLY, if LATE then EARLY) can be eliminated by the
same argument.

15 The additional restrictions on equilibrium imposed by se-
quential equilibrium relative to PBE imply a mechanical check
of the PBE to see whether they satisfy the consistency require-
ment.

16 Additional key references include McLennan (1985),
Kohlberg and Mertens (1986), Grossman and Perry (1986),
Banks and Sobel (1987), Cho and Kreps (1987), and Fudenberg,
Kreps, and Levine (1988).
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4. Problems in Noncooperative
Game Theory

1 end part 1 of this survey by summarizing what are
considered to be some of modern game theory’s
major problems. Kreps (1990a) and Sutton (1990)
provide a more complete discussion. A first ob-
servation is that game theory requires clear and
precise specification of the rules of the game. This
means that modes of "free-form" competition are
not amenable to game theory analysis. More sig-
nificant is the problem that the equilibria of games
often shift dramatically due to seemingly minor
modifications of the rules. This situation is ob-
served most vividly in games of bargaining, a topic
discussed in part 2 of this survey. Related to this
point is Kreps’ concern that the rules of the game
are specified exogenously by the analyst and taken
for granted. Where do the rules come from? Might
they be endogenous? The response to these con-
cerns is Rubinstein’s (1991) point that careful
specification of the rules of the game is the essence
of game theoretic modelling and why indeed it is
an "art."

A problem discussed by both Kreps and Sutton is
the multiplicity of equilibria that often emerge and
the associated problems of choosing among them.
As Sutton (p. 506) notes, "given any form of behav-
iour observed in the market, we are now quite likely
to have on hand at least one model which. . .
[derives] that form of behaviour as the outcome of
individually rational decisions." This problem has
led to the search for refinements as we have just
seen, but Kreps and Sutton are also concemned with
the method of most refinements. Most refinements
focus upon out-of-equilibrium actions, but Kreps
(p. 114) notes that most are "based on the assump-
tion that observing a fact that runs counter to the
theory doesn’t invalidate the theory in anyone’s
mind for the rest of the game." This concern has
led Kreps to focus on so-called complete theories,
whereby no action is absolutely precluded, but
out-of-equilibrium actions are held to be unlikely a
priori (see Fudenberg, Kreps, and Levine 1988).

Kreps’ final concem is with the mode of equilib-
rium analysis itself. Again, to quote (p. 139):
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Equilibrium analysis is based formally on
the presumptions that every player maxi-
mizes perfectly and completely against the
strategies of his/her opponents, that the
character of those opponents and their
strategies are perfectly known (or any un-
certainty on the part of one player about
another player is fully appreciated by all the
players and the strategy as a function of the
other player’s character is also known), and
that players are able to evaluate all their
options.

The point is that none of these conditions are met
fully in reality, and the approximation may be
appropriate in some cases but not others.

5. Conclusion

This paper, part 1 of a two-part survey, has re-
viewed noncooperative game theory concepts that
might be used to analyze agricultural markets. In
the next issue of this Review, part 2 will consider
application of the concepts to agricultural markets.
The review began by explicating the concept of
Nash equilibrium, the cornerstone solution concept
in noncooperative game theory. We then pro-
ceeded in section 3 to examine refinements of Nash
equilibrium to handle dynamic games (subgame
perfect equilibrium) and games of asymmetric in-
formation (perfect Bayesian equilibrium).

The key deficiencies of game theory, as judged by
its leading practitioners, were discussed in section
4.

Despite its deficiencies, noncooperative game the-
ory is certainly in vogue among economists and
probably will become even more popular as it
integrates fully into graduate curricula. It remains
to be seen what role the subject will play in agricul-
tural economics. Through the applications sug-
gested in part 2 of the survey, I hope to show that
it has potential to play an important role in research
on agricultural markets.
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