

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

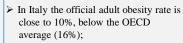
Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Food Access, Eating Habits and Adult Obesity in Italy

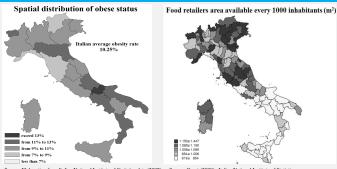
Francesco Bimbo¹, Alessandro Bonanno², and Gianluca Nardone³


1,3 Dipartimento di Produzione and Innovazione nel Mediterraneo, Università degli Studi di Foggia. 2 Department of Agricultural Economics and Rural Sociology, Penn State University.

The Obesity Epidemic – Italy

> The WHO defines obesity and overweight as abnormal or excessive fat accumulation that may impair health. The Body Mass Index (BMI: weight in Kg/ heigh² in m^2) is commonly used to classify adult individuals as: Normal Weight (20<BMI<25) - Overweight (25<BMI<30) - Obese (BMI>30)

> Adult obesity has reached worrisome levels across the globe with incidence >30% in the U.S.; in some European Countries the share of overweight and obese adult population has reached 50% (WHO).


This figure seems underestimated (Hansstein et al., 2009); epidemiology studies evaluates adult obesity incidence in Italy at 25% (Berghöfer, 2008).

Adult Obesity Incidence in Itali

The direct obesity cost in Italy are \notin 4.7 billion, the third highest in the EU (Fry and Finley, 2005).

Adult Obesity Incidence and Food Retail Surface Available in Italy

m Italian National Institute of Statistics data (2007) Source: Cozzi (2008) - Italian National Institute of Statistic

Obesity and the Food Environment

- > In 2007, the WHO highlighted the importance of promoting macroeconomic policies against the obesity epidemic to improve food availability and access.
- > Disparity in food stores' availability influences people's diets. Consumers may adopt better (worse) diets if they have access to outlets that sell a larger variety of healthy (unhealthy) food (Morland et al. 2006; Hawkes, 2008).
- > Does disparity in food access justifies the geographical differences in incidence of overweight and obese among the Italian population?
- ▶ Northern Italy shows a higher number of large food stores (almost twice as large) than the South, where instead there is a large concentration of fruit and vegetables stores
 - \rightarrow unclear patterns!!! Could other factors (i.e. eating habits) play a role?

Research Objectives

- > Measure the impact of food outlets' density on adult's BMI in Italy.
- Assess synergies between consumers' eating habits and food access.

Model Specifications

Following Courtemanche and Carden (2011):

$$BMI_{ir} = \alpha_0 + \sum_{k=1}^{K} \alpha_{SESk} SES_{irk} + \sum_{l=1}^{L} \alpha_{Bel} Be_{irl} + \sum_{j=1}^{J} \alpha_{FAj} FA_{jr} + \sum_{d=1}^{D} \alpha_d A_d + e_{ir}$$
(1)
Where:

SE: consumers' socio-economic characteristics (household size, age, gender, income, etc..); Be: behavioral variables (smoking, practice of physical activities, time spent watching TV); FA: variables capturing access to alternative food stores; A: regional fixed effect.

Accounting for consumers' eating habits (vector EH) one has:

$$BMI_{ir} = \beta_0 + \sum_{k=1}^{K} \beta_{SESS} SES_{kir} + \sum_{l=1}^{L} \beta_{Bd} Be_{lir} + \sum_{j=1}^{r} \beta_{FAj} FA_{jr} + \sum_{m=1}^{M} \beta_{EBm} EH_{mjr} + \sum_{d=1}^{D} \beta_d A_d + e_{ir}$$
⁽²⁾

To synergic role of EH and FA on BMI is captured via the specification:

$$3MI_{ir} = \beta_0 + \sum_{k=1}^{K} \beta_{SES} SES_{kir} + \sum_{l=1}^{L} \beta_{lid} Be_{lir} + \sum_{j=1}^{J} \beta_{jij} FA_{jr} + \sum_{m=1}^{M} \beta_{Ellm} EH_{mjr} + \sum_{m=1}^{M} \sum_{j=1}^{J} \beta_{FijEllm} FA_{jr} EH_{mr} + \sum_{m=1}^{D} \beta_d A_d + e_{ir}$$

(3)

Data Sources

- Multipurpose Household Survey (MHS) year 2007. Cross-sectional database of individual/household characteristics, adults (age>18) only ; [N=21,511]
- Eating habits: frequency of consumption for 15 food and beverage categories from the MHS; reduced to 4 via PCA, then rescaled to binary indicators: - alcoholic beverages (beer, wine, amaro, liquors),
- fruit and vegetables (fruit, vegetables, leafy vegetables),
- junk food (salted snacks, sweets, carbonate soft drinks),

- protein-rich food (meats, dairy, eggs, fish, and cold cuts).

Food Access variables – Regional aggregates (N stores/Population)

1) Hypermarkets and supermarkets - LOD [(G47111+G47112) / Pop*100,000] 2) Minimarkets and peddler - LOS [(G4781+G472 - G4721) / Pop*100,000] 3) Restaurants, fast food restaurants and pubs – FSS [I5610/ Pop*10,000]

4) Bakeries -BA [CA1071/Pop*10,000]

5) Fruit and vegetable stores - FVS [G4721/Pop*100.000] Sources: 3), 4) and 5) National Institute of Statistics - Unità economiche dell'industria e dei servizi; 1), 2) Osservatorio Nazionale Del Commercio (ATECO 2007 industry codes)

Identification Strategy and Estimation

- Store location is an equilibrium outcome: food stores density endogenous
- Tests for spurious correlation and IV methods (GMM) necessary.
- > Instruments chosen are aggregate market-level measures impacting store's location decision: Highways density (Km/1000Km²), % of land in public parks and gardens; number bus/1000 people; density of coasts (Km/Km²); secondary roads density (Km/1000Km²), crime rate (theft and robbery); population density (People/1000Km²).
- Data manipulation and estimation performed in STATA v.10

Empirical Results - SES & Be variables

Results consistent with previous literature; show similar magnitude and significance across specifications.

Selected Empirical Results - FA & EH										
	OLS Eq(1)	IV-GMM Eq(1)	IV-GMM Eq(2)	Food Access						
LDO	0.005	-0.086***	-0.080**							
	(0.008)	(0.032)	(0.031)	GMM estimates all statistically significant except food						
LOC	-0.002*	-0.013***	-0.012***	service stores; signs consistent with previous research						
	(0.001)	(0.003)	(0.003)	(Morland et al., 2010; Anderson and Matsa, 2010).						
FSS	-0.018***	0.021	0.021	Doubling LDO, LOC and FVS, results in BMI reduction						
	(0.005)	(0.013)	(0.013)	equal to 1.37, 0.60 and 1.214 points, respectively;						
BA	0.042*	0.108***	0.100***	Doubling BA would lead to an increase of BMI among						
	(0.022)	(0.034)	(0.034)	adult Italians of 0.576 points						
FVS	0.002	-0.042***	0.040***	> Once eating habits are controlled for, the coefficients of						
	(0.004)	(0.014)	(0.014)	the food access variables' become smaller.						
Alcoholic Beverages Fuit and Vegetables			0.119** (0.048) -0.214***	Eating Habits → Have statistically significant impact on BMI;						
r un and vegetables			(0.040)	Consuming alcohol and junk food more frequently than						
Junk Food			0.394***	the average has a positive effect (0.119 and 0.394,						
Junit 1 000			(0.045)	respectively) on adult Italians' BMI,						
Protein Foods			-0.086*	Consuming fruit and vegetables and proteins more						
			(0.040)	frequently than the average has a BMI decreasing effect (-0.214 and -0.086, respectively);						
R.Squared	0.309	0.303	0.308]						
Hansen J		2.418	2.259	Model performance and instruments' test:						
p-value		(0.298)	(0.323)	Low p-values of C statistics indicate that the FA						
GMM C-statistic		16.5365	15.5506	variables should be treated as endogenous;						
		(0.0055)	(0.0083)	> Instruments satisfy the orthogonality condition: p-value						
F-stat				of Hansen $J = 0.298$ (equation 1); 0.323 (equation 2).						
LDO_density		2966.31	2864.56	The F-stat for the joint significance of the instruments'						
LOC_density		28004.22	25043.52	parameters in first stage equations are large enough to						
FSS_density		65288.26	65005.16	discard weak instruments' problems.						
BA_density		18534.71	16867.90	uiscaru weak nistruments problems.						
FVS_density		11409.4	10506.4							
Note: *, ** and *** are 1	10, 5 and 1% s	ignificance levels								
in parenthesis										

Empirical Results-Eq.3: Marginal Effects of FA on BMI conditional on EH

LDO, LOC and FVS have a negative impact on BMI; frequent consumption of fruits and vegetables and proteins shows	$\boxed{ \left. \frac{\partial \mathbf{E} \mathbf{M}_{e}}{\partial \mathbf{E}_{A_{e}}} \right _{BH_{uv} = 1, \forall m, r}} = \beta_{\beta_{1}\gamma_{1}} + \sum_{m=1}^{M} \beta_{\beta_{1}\beta_{2}m} EH_{uv}}$						
a synergic effect with these stores; above average frequency of consumption of	Eating Habits	Junk	Fruits &	Alcoholic	Protein		
alcohol and junk food mitigates their	Food	Food	Vegetable	Beverages	Foods	Food Access	
beneficial impact on BMI.	Access					Alone	
FSS have a BMI increasing effect only for	LDO	-0.0911*	-0.1303***	-0.0989*	-0.1683***	-0.1049**	
those people who consume alcohol or	LOC	(0.0520) -0.0199*	(0.0484) - 0.0307***	(0.0597) -0.0170	(0.0571) -0.0334***	(0.0485) -0.0220**	
protein more frequently than the average		(0.0103)	(0.0098)	(0.0119)	(0.0117)	(0.0096)	
BA has a BMI increasing statistically	FSS	0.0230	0.0196	0.0323*	0.0385**	0.02477	
significant effect for those individuals	BA	(0.0168) 0.1822	(0.0156) 0.3652**	(0.0190) 0.1840	(0.0186) 0.3833**	(0.0158) 0.2744*	
consuming fruits and vegetables and		(0.1563)	(0.1471)	(0.1810)	(0.1809)	(0.1440)	
protein more than the average \rightarrow	FVS	-0.07039**	- 0.0916***	-0.0660*	-0.0958**	-0.0760**	
"compensation effect" : some may indulge		(0.0345)	(0.0322)	(0.0393)	(0.0370)	(0.0324)	
in the consumption of high caloric food if	EH marginal	0.3959***	-0.210***	0.116***	-0.0761		
they feel they are consuming enough of	Effect	(0.0440)	(0.0411)	(0.0504)	(0.0479)		
other "healthier" foods.	Note: *, ** and	*** are 10, 5	and 1% signifi	cance levels; s	tandard error	s in parenthesis	

Conclusions

- > Results confirm a causal relationship between different food outlets' density and adult BMI in Italy;
- > Synergic effects of food access and eating habits on adult BMI emerge;
- > Policy implications: policymakers may consider adopting an integrated approach to fight obesity, creating measures to improve the quality of the food environments.