

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Public and Secret Reserve Prices in Repeated Auctions

Jafar Olimov
Department of Agricultural, Environmental \& Development Economics
Ohio State University, 2120 Fyffe Road, Columbus, OH 43210
Contact Author: olimov. 1 @osu.edu

Poster prepared for presentation at the Agricultural \& Applied Economics Association 2012 AAEA Annual Meeting, Seattle, Washington, August 12-14, 2012.

Copyright 2012 by Jafar Olimov. All rights reserved.
Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Public and Secret Reserve Prices in Repeated Auctions

Jafar Olimov, Dept. of Agricultural, Environmental \& Development Economics

Abstract

I study the effect of secret and public reserve prices on the seller's revenue. In particular, I analyze the data from eBay auctions on tractors to estimate the extent of this effect.

The analysis helps to explain the following empirical facts from Ebay auctions: multiple relisting of similar items, the use of secret reserve prices, and the convergence of sale prices to buy-it-now prices.

Motivation

Sequential Auctions without Commitment
McAffee and Vincent (1997): Revenue equivalence between sequential auctions with publicly observed reserve prices and static auction without publicly observed reserve price when the time between sequential auctions goes to zero

Myerson (1981), Riley and Samuelson (1981), Xu(2010): revenue optimality of publicly observed reserve prices in independent private values environment - screening; Milgrom and Weber (1982), Cai, Riley and Ye (2007): revenue optimality of publicly observed reserve prices in common value environment - signaling;

Theoretical conclusions

Theory predicts no repeated auctions
Theory predicts no use of secret reserve prices

Empirical Evidence

Existence of repeated auctions
Widespread use of secret reserve prices

Data and Methods

Data

The dataset of English auctions on tractors sold on Ebay between 11/17/04 and 5/30/07. The total number of observations is 39441.

Estimation Approach

Rust's (1994) nested fixed point algorithm:
Stage 1: Find revenue-maximizing choice vector (secret reserve price, public reserve price) (inner loop)
Stage 2: Use MLE to estimate expected seller revenue given the revenue-maximizing choice vector (outer loop)

Empirical Evidence from Ebay dataset

Table 1. Frequency of Relistings

Tractors	Number of tractors	number of sold tractors	\% of sold tractors
$\mathbf{1}$ listing	23253	13251	56.99
$\mathbf{2}$ listings	4031	1448	35.92
3 listings	1069	344	32.19
4 listings	404	117	28.96
5 listings	197	60	30.46
6 listings	102	30	29.41
$\mathbf{7}$ listings	61	20	32.79

Table 2. Use of Secret and Public Reserve Prices

		Percent of
Tractors with one listing	number of listings	listings
Total number of listings	23253	100.00
listings with reserve prices	10705	46.04
listings with first bids $\mathbf{> 1 0 0}$	15573	66.97
listings with both reserve prices and first bids	7544	32.44

Testable Hypotheses
Hypothesis 1: The effect of secret reserve prices on seller revenue is positive in repeated auctions and negative in single stage auctions
Hypothesis 2: The effect of public reserve prices on seller revenue is positive in repeated auctions and in single stage auctions
esis 3: The effect of buy-it-now prices on seller revenue is positive in repeated auctions when interacted with secret reserve prices.

References

Cai, H., John Riley, and Lixin Ye, (2007), "Reserve Price Signaling, Journal of Economic Theory, 135 (1), 253-268;
Cramton, Peter C., (1992), "Strategic Delay in Bargaining with Two Sided Uncertainty," Review of Economic Studies, vol. 59(1), 205-225; Sided Uncertainty," Review of Economic Studies, vol. 59(1), 205-225;
McAfee, R. Preston and Daniel Vincent, (1997), "Sequentially Optimal McAfee, R. Preston and Daniel Vincent, (1997), "Sequen
Auctions," Games and Economic Behavior, 18, 246-276;
Milgrom, P. R., and Weber, R. J., (1982), "A Theory of Auctions and Competitive Bidding," Econometrica, 50(5), 1089-1122;
Myerson, R. B., (1981), "Optimal auction design," Mathematics of Operations Research, 6, 58-73;
Riley, John, and Samuelson,W., (1981), "Optimal auctions," The American Economic Review, 71(3), 381-392;

Rust, J. (1994) "Structural Estimation of Markov Decision
Processes." In R. F. Engle and D. L. McFadden (Eds.), Handbook of Econometrics, Volume 4, Amsterdam. North Holland.
Xu, Xiaoshu, (2010), "Optimal Sequential Auctions with the Arrival of New Bidders," PhD dissertation, Ohio State University;

Table 3. Dynamics in Sale Prices

	\# of sold with buy-it- now	\% of sold listings with buy-it-now	mean of pale price as \% of BIN	stde of sale price of\% of BIN
1 listing	2556	19.29	90.57	20.40
2 listings	539	37.22	93.52	11.52
3 listings	134	38.95	95.41	7.46
4 listings	55	47.01	95.01	7.83
5 listings	23	38.33	96.22	6.56
6 listings	13	43.33	97.49	4.51
7 listings	9	45.00	96.99	3.68

