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Abstract

In 2010, the Northeast groundfish fishery transitioned from an effort-control system (Days-

at-Sea) to an output-control system (catch shares). Simultaneously, a large decrease in aggre-

gate catch was imposed in order to achieve biological objectives. This research examines the

welfare effects of the transition to catch-share management by combining an inverse demand

model for groundfish with a simulation based model of supply. The Generalized Differen-

tial Inverse Demand System is estimated for groundfish and imports using monthly data from

1994-2011 using a Generalized Method of Moments estimator. The estimated parameters

are combined with simulated landings derived from a counterfactual policy scenario had ef-

fort controls been retained instead of the catch share system. The simultaneous management

change to catch shares and reduction in aggregate catch reduced consumer welfare by ap-

proximately $11M. A counterfactual policy in which the Days-at-Sea system was adjusted to

meet the catch reductions would have reduced consumer welfare by approximately $37M; this

finding is robust to instrument choice in the demand model. Because the 2010 fishing regula-

tions and the counterfactual regulations were designed with the same conservation goals, the

difference, approximately $26M, can be attributed to the change in management institution.

Finally, reversion to the Days-at-Sea regulatory structure would reduce consumer welfare by

approximately $25M from the current (2010) levels.

1 Introduction

Cod and other bottom-dwelling fish referred to collectively as “groundfish” have been commer-

cially targeted in the New England waters for over 400 years (Kurlansky, 1998). Compared to

other fisheries in New England like lobster ($365 million annual ex-vessel value) and sea scallops

($400 million), groundfish is relatively modest in size ($50-100 million). Despite its small size,

this fishery continues to be important culturally and politically. The thirteen-species, twenty-stock

fishery is managed by the New England Fishery Management Council (NEFMC) under the North-

east Multispecies Fishery Management Plan; hereafter referred to as the Multispecies Plan. Since

1994, the fishery had been managed with an effort control system, Days-at-Sea (DAS), coupled

with permanent and seasonal spatial closures, gear restrictions, and minimum sizes designed to

achieve annual target catch levels. Exceeding a catch target did not result in a cessation of fish-
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ing; instead, annual adjustments were made to the effort control program to meet conservation

objectives. This process resulted in a regulatory treadmill in which frequent adjustments to the

effort control system were made as fishermen substituted non-regulated inputs for effort and tech-

nical change lead to more productive effort. These regulatory changes would affect all fishermen

whether or not they fished for the stocks whose catch target had been exceeded.

The Multispecies Plan was amended in 2004 to allow trading of DAS and offer an alternative

to DAS management that would allow groups of fishermen to voluntarily form “sectors.” Under

sector management, members agreed to be bound by a catch quota. In return, sectors were able to

request exemptions from certain regulations such as trip limits, access to closed areas, or fishing

gear restrictions. More importantly, as long as a sector did not exceed its quota, the sectors quota

in the following year would not be reduced even if the fleet as a whole exceeded its catch target.

By 2006, only two sectors were in operation, and these sectors represented just a small portion of

the groundfish fleet.

In 2006, the Magnuson-Stevens Fisheries Conservation and Management Act (MSFCMA),

which establishes Federal authority over fishery management, was reauthorized. In re-emphasizing

the requirement to end overfishing, the 2006 reauthorization added a new requirement to establish

Annual Catch Limits (ACLs) for all federally managed fisheries along with Accountability Mea-

sures (AMs) which prescribe actions to be taken in the event an ACL is exceeded. To meet these

new requirements, the Multispecies Plan was amended in 2010. These amendments established a

process for setting ACLs, authorized the formation of 17 sectors representing nearly 98% of the

aggregate ACLs, and designed an effort control program for “common pool” vessels which did not

voluntarily enroll in a sector. This management program was implemented in May of 2010 with

large reductions in ACLs needed to end overfishing and rebuild overfished stocks. Vessels which

did not join a sector continued to operate in the common pool under the Days-at-Sea system with

aggregate stock level ACLs. Input-based regulations made superfluous by the output caps were

waived for sector members, but were retained for the fishermen who continued to operate as part
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of the common pool.

The catch share program has been controversial, producing a coalition of fishing industry

groups, public officials from key fishing ports, and Congressional delegations which seek to aban-

don the program. However, there has been little consideration of an alternative management pro-

gram which would take the place of catch shares. While a matter of some speculation, reversion

to the DAS regulatory system, or some derivative, is one possibility since it had been the basis for

managing the groundfish fleet since 1994 and the regulatory structure remains intact for the small

portion of the fleet continuing to operate in the common pool.

This research disentangles the impact on consumer welfare associated with the reduction in

ACLs from the change in management institutions in order to examine two closely-related research

questions. First, what was the welfare impact on consumers of the policy change from DAS-based

management to the catch-share system with ACLs? To address this question, we estimate an

inverse demand model and compute consumer welfare changes resulting from the 2010 quantities

supplied under the catch share program relative to 2009 quantities supplied under the DAS system.

Second, what are welfare impacts on consumers of rolling-back the catch-share system in favor of

the DAS system? To address this question, we construct a counterfactual model of supply based

on regulatory alternatives considered by NEFMC. Using this model, we estimate quantity supplied

for 2010, if sectors had not been authorized and all vessels fished under the common pool effort

controls. Using these quantities, we can compute consumer welfare changes relative to both the

2009 and 2010 conditions.

The counterfactual regulatory scenario is the DAS regulatory structure with modifications to

achieve the conservation goals set for 2010. This regulatory structure mimics the actual regulations

that were implemented for common pool participants during 2010. It includes a 50% reduction in

allocated days from 2009 levels, a change in the way DAS were counted such that fishing time

accrued in 24-hour increments, and changes to possession limits for certain stocks. In all other

respects regulations in this counterfactual scenario (trip limits and area closures) are similar to
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historical regulations. Confronted with a reduction in available fishing days, fishermen may be

expected to adjust the timing of fishing effort to optimize returns from fishing. The monthly distri-

bution of fishing effort was determined using a math programming model developed to analyze the

biological impacts of the effort control program. This model incorporates temporal heterogeneity

in both catch rates and prices to determine the optimal distribution of fishing effort conditional on

total allocated days-at-sea.

The landings resulting from these policies are combined with an inverse demand system to

compute welfare changes. Estimation of inverse demand models is attractive when the motivating

policy analysis concerns quantity changes or when quantities are more likely to be exogenous

than price (Huang, 1994). Brown et al.’s (1995) Generalized Differential Inverse Demand system

(GDIDS) has frequently been used by many researchers to examine demand for fisheries products;

this demand system nests four popular inverse demand systems through the use of just two mixing

parameters.

The simultaneous reduction in aggregate catch and management switch to catch shares is found

to have reduced consumer welfare by approximately $11M per year. Relative to 2009, the counter-

factual policy scenario in which the Days-at-Sea system was adjusted to meet the catch reductions

would have reduced consumer welfare by approximately $37M. Because the 2010 fishing regu-

lations and the counterfactual regulations were designed with the same conservation goals, we

attribute the difference, approximately $26M, to the change in management institution. Finally, re-

version to the Days-at-Sea regulatory structure would reduce consumer welfare by approximately

$25M from the current (2010) levels.

2 Demand for Fish

Inverse demand models have frequently been used in modeling demand for fish and other perish-

ables. Use of an inverse, instead of direct, demand model is typically justified on two grounds.
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First, the supply of fish is inelastic in the short-run; therefore, quantities, not prices, are pre-

determined when trade occurs in the market. Second, the fisheries management policy which

motivates investigation of demand typically sets quantities, not prices. Anderson (1980) develops

some important theoretical properties of inverse demand models. While the Antonelli and Slut-

sky substitution matrices are generalized inverses, Huang (1994) cautions against inverting either

matrix if the other is desired for policy analysis.

Barten and Bettendorf (1989) is an early example of the application of inverse demand systems

to demand for fish. Brown et al. (1995) and Park (1996) independently formulated the GDIDS

model, which nests the inverse versions of the Rotterdam, Central Bureau of Statistics (CBS),

National Bureau of Research (NBR), and Linear-Approximate Almost Ideal Demand System (LA-

AIDS) models by using a pair of mixing parameters1. This econometric model of demand has been

popular in applied fisheries economics: Eales et al. (1997), Park et al. (2004), Lee and Kennedy

(2008), Hospital and Pan (2009) utilize the GDIDS to estimate demand for various fish and seafood

groups. In these applications, own-quantity flexibilities are typically small, and scale flexibilities

are found to be near -1. Because a good is a strong substitute for itself, the demand systems are

predisposed to finding complementarity. Alternatives to GDIDS include the Inverse Quadratic

AIDS specification (Beach and Holt, 2001; Holt and Bishop, 2002; Hilmer et al., 2010).

We briefly review the derivation of the GDIDS models, parameter restrictions, formulae for

flexibilities, and estimation method. The following four equations are the estimating equations

for the differential versions of the inverse Rotterdam, AIDS2, CBS, and NBR demand systems

1The Brown et al. (1995) and Park (1996) model is the inverse analogue of Barten’s (1993) Generalized Demand
System which nests the Rotterdam (Theil, 1965), CBS (Keller and Van Driel, 1985), NBR (Neves, 1987), and LA-
AIDS direct demand models (Deaton and Muellbauer, 1980).

2Moschini and Vissa (1992) note that while the term “Inverse Linear-Approximate AIDS” has been used to describe
an inverse demand system characterized by Equation (2), it is not actually the inverse of the LA-AIDS model. Those
authors refer to this as the Linear Inverse Demand System (LIDS). However, we follow the convention in the literature
and refer to this as IAIDS.
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respectively:

witdlnvit =
∑
j

rijdlnqjt + ridlnQt (1)

dwit =
∑
j

aijdlnqjt + aidlnQt (2)

witdln
pit
Pt

=
∑
j

rijdlnqjt + aidlnQt (3)

dwit − witdlnQt =
∑
j

aijdlnqjt + ridlnQt (4)

where i, j = 1, ...n indexes goods, t = 1, ..., T indexes time, wit are expenditure shares, vit is the

price normalized by total expenditure at time t, and the lnQt and lnPt terms are quantity and price

indices, defined as:

lnQt =
n∑

i=1

(wit + wit−1)

2
lnqit

lnPt =
n∑

i=1

(wit + wit−1)

2
lnpit

While equations 1 -4 contain different independent variables, the dependent variables are the same.

The inverse Rotterdam and CBS models share the same quantity effects (rij), while the IAIDS and

INBR models share the same quantity effects (aij). The inverse Rotterdam and INBR models share

the same scale effects (ri), while the IADS and ICBS models share the same scale effects (ai).

Barten and Bettendorf (1989) note that the coefficients a and r coefficients are related according

to:

ri = ai − wi

rij = aij − wiδij + wiwj,
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where δij is the Kronecker delta. Brown et al. (1995) and Park (1996) derive the synthetic nested

model by taking a scalar weighted average of all models and summing them, producing:

witdlnvit =
∑
j

πijdlnqjt + πidlnQt − θ1witdlnQt − θ2witdln
qit
Qt

(5)

=
∑
j

(πij − θ2witδij + θ2witwjt)dlnqjt + (πi − θ1wit)dlnQt

The mixing parameters, θ1 and θ2, are bounded between 0 and 1. The parameter restrictions on

θ1 and θ2 which simplify Equation 5 into one of the four simpler models are listed in Table 1.

There are also a set of symmetry, homogeneity, and adding-up restrictions which are required for

Equation 5 to be consistent with utility theory:

πij = πji ∀i, j (6)∑
i

πij = 0 ∀j (7)

∑
j

πij = 0 ∀i (8)

∑
i

(πi − θ1wi) = −1 (9)

The compensated cross-quantity flexibilities in the GDIDS are:

f c
ij =

πij
wi

+ θ2wj,

the compensated own-quantity flexibilities are:

f c
ii =

πii
wi

− θ2 + θ2wi,

7



and the scale flexibilities are:

fi =
πi
wi

− θ1.

The uncompensated quantity flexibilities are derived from the Antonelli equation:

fu
ij = f c

ij + wjfi

Equation 5 can be converted to an estimable form by replacing the differentials with the first-

or seasonal-difference operator, adding a constant and an error term:

wit∆lnvit = αi +
∑
j

πij∆lnqjt + πi∆lnQt − θ1wit∆lnQt − θ2wit∆ln
qit
Qt

+ εit. (10)

In addition to the constraints in equations (6)-(9), the additional adding-up constraint:

n∑
i

αi = 0

must be imposed. Equation 10 is typically estimated using Seemingly Unrelated Regression (SUR)

or Three-Stage Least Squares (3SLS). One equation is usually dropped from the system and the

parameter estimates are recovered through the parameter restrictions. When estimated on a time

series, residual autocorrelation is frequently encountered; the Feasible GLS procedure described

by Parks (1967) was used by both Park et al. (2004) and Hospital and Pan (2009) to allow for

valid inference and improve efficiency3. However, Greene (2003) notes that this particular FGLS

estimator cannot be iterated to produce the maximum likelihood estimator.

Instead of using SUR, a Generalized Method of Moments (GMM) estimator is used to esti-

mate the parameters of Equation 10. This method avoids the iterative GLS procedure required for

3An alternative to statistically correcting the model for autocorrelated errors is to respecify the estimating equation.
Blanciforti and Green (1983) estimate a dynamic LA-AIDS model by including lagged quantities in the intercept term;
however, the authors note that this is an ad-hoc adjustment without a basis in utility theory.
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inference in the presence of residual autocorrelation. Statistical inference in the presence of auto-

correlated errors can be performed using standard errors which are robust to heteroskedasticity and

autocorrelation (Newey and West, 1987). Because the system is overidentified due to the parameter

restrictions of utility theory, the criterion function-based GMM tests of overidentifying restrictions

can be interpreted as general specification tests. Finally, estimation of the full system of equations

is not plagued by the singular variance-covariance matrix problem; moment conditions derived

from all equations in the system can be used for estimation of all parameters.

However, the GMM method also has disadvantages. It requires an estimation of a weighting

matrix, which can be difficult to estimate in practice. While additional moment conditions improve

efficiency asymptotically, an excess of moment conditions can lead to biased estimates of the model

parameters.

In general, a linear GMM estimator minimizes the function:

J(β) = [
1

T

T∑
t=1

Zt · (yt −Xtβ)]′W [
1

T

T∑
t=1

Zt · (yt −Xtβ)], (11)

where Xt is the 1xK vector of data for observation t, β is a Kx1 vector of parameters to be

estimated,W is a symmetric positive definite matrix which weights the moment conditions, and

et is an error term. In addition, Zt is a 1xL vector of instruments which is uncorrelated with εt,

correlated with Xt, and may contain elements of Xt. Finally, L must be greater than or equal to K.

The minimization typically proceeds iteratively; the initial matrix W is typically set to the identity

matrix and consistent estimates of the parameters are estimated. In the next step, a new weighting

matrix is constructed using the inverse of the variance matrix of the sample moment conditions; the

model is iterated to convergence to produce the optimal GMM estimator. The value of the criterion

function can be used as a general specification test (Sargan, 1958; Hansen, 1982). If the model is

overidentified, validity of subsets of overidentifying restrictions can be examined using the C- or

difference-J statistic; this requires computing two J-statistics, one for the unrestricted model and
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an additional J statistic in which the suspect overidentifying restrictions are omitted (Eichenbaum

et al., 1988).

When the model in equation 10 is estimated on the system of 5 share equations, there are 5

“groups” of moment conditions, one for each equation. Under the assumption that the independent

variables are exogenous (Z = X), there are 9 moment conditions per equation, for a total of 45

moment conditions. While there are 37 parameters to be estimated, the symmetry, homogeneity,

and adding-up restriction imply that there are only 20 independent parameters to be estimated: 10

quantity effects, 4 scale effects, 2 mixing effects, and 4 constant terms.

In the Northeast United States, the National Marine Fisheries Service (NMFS) collects first-

sale data for federally managed fish from all entities which buy fish directly from fishing vessels.

Much of the fresh and imported fish in the Northeast US is purchased by wholesalers, process-

ing facilities, retailers, or integrated firms. These raw materials are then processed into fillets or

steaks, and then distributed through the retail channel. Included in these data are species, market

category, quantity, and total value. The dealer report data from 1994-2011 are used to construct a

monthly time series of domestic fish prices and quantities. Miscellaneous market categories like

cheeks, milt, or livers were excluded from the analysis under the assumption that demand for these

categories is weakly separable from demand for whole white fish. Domestic groundfish products

were aggregated into three large categories (Table 2): Round 1 (Cod and Haddock), Round 2 (Pol-

lock, White Hake, and Redfish), and Flat (Witch Flounder, Winter Flounder, Yellowtail Flounder,

and Plaice)4. Monkfish was included as a single species. Quantities and values of imported fish

were extracted from a NMFS database which is compiled by the Foreign Trade Division of the

U.S. Census Bureau5. Most of the round fish are delivered by the vessel with the head on and the

gut removed, while the flat fish are typically delivered with the gut intact. A notable exception

4While Ocean Pout, Windowpane Flounder, and Halibut are also managed under the NE Multispecies Fishery
Management Plan, these were both excluded from the analysis. Ocean Pout and Windowpane Flounder are not directed
fisheries and are infrequently landed. Halibut are landed in very limited quantities and are not likely to be substitutes
or complements with the rest of the groundfish species.

5Available at http://www.st.nmfs.noaa.gov/st1/trade/index.html

10



is Monkfish, which is valued for both its meat and large liver. The wholesalers and processors

which purchase domestic fish in the Northeast are likely to view minimally-processed imports as

substitute goods for domestic fish. Therefore, fresh and frozen products of species similar to the

domestic fish under examination were aggregated into a single category of imports. Two species

were excluded, those containing the large flat fishes (Halibut and Turbot). In addition, the filleted

fish and non-specified product forms were excluded as well.

All prices and values are deflated using the Bureau of Labor Statistics Producer Price Index

for unprocessed finfish, with the base period set to Jan 2010. In general, expenditure shares,

particularly the Round 1 and Imports display major seasonal changes (Figure 1). Domestic flatfish

expenditure share has declined through time while imported fish have become more important.

Real prices have declined moderately over the time series (Figure 2, left panels). Quantities of flat

fish and monkfish have declined slightly since 2005; the other quantities have been fairly constant,

though seasonally volatile, through the time series (Figure 2, right panels).

Prior to estimating the demand model, the data are tested for stationarity by using a set of

Dickey-Fuller tests. The equation:

∆yt = α + βyt−1 + εt (12)

is separately estimated for shares, quantities, real prices, and seasonal differences of those variables

in this analysis. The augmented Dickey-Fuller test rejects the hypothesis of a unit root for all

variables considered, ruling out spurious regression due to unit roots.

3 Simulating Counterfactual Supply and Welfare Measures

The counterfactual policy scenario is our best estimate of the regulatory system which would have

been selected by the NEFMC as an alternative to the catch share system. Relative to 2009, available
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fishing days were reduced by 50%, possession limits were reduced for some stocks of fish, and the

manner in which days were counted was changed such that any day or portion of a day was counted

as 24 hours. All of these regulatory changes were actually enacted for common pool fishing vessels

in 2010. In fact, the majority of other measures affecting fishing gear, area closures, minimum fish

sizes, and most possession limits in effect for 2010 were simply carried over from prior years. This

means that with the exception of the substantially higher trip limit during 2010 for Georges Bank

cod (see Table 3) fishing trips taken during 2008 and 2009 are likely to be representative of trips

taken during 2010.

In light of the large reduction in available DAS, fishing vessels are likely to adjust their tempo-

ral distribution of fishing. This reallocation was modeled by using a fleet-level math programming

model which was initially developed to estimate the biological impacts of the groundfish manage-

ment alternatives (NEFMC, 2006). This model optimizes operating profits, by allocating effort in

spatial and temporal dimensions, given constraints on available DAS, prices, and average catch.

Fishermen engaged in the Northeast groundfish fishery are required to submit a vessel trip

report (VTR) for every trip. Trips which occurred during 2008 and 2009 are the basis for simulating

supply under the counterfactual policy. VTR data includes information about fishing gear, area

fished, crew, weight of all species retained for sale, and estimated weight of all species discarded,

the port of landing, the date sailed, and date landed. Date sailed and date landed provide an

estimate of the elapsed time or days absent between the start and end of a fishing trip. Of the

required variables, only weight by species, date sailed, and date landed for the 2008 and 2009

fishing years (May 1 to April 30) were needed for each trip to estimate counterfactual landings.

Trip data, stratified by month to match the inverse demand model, forms the population from

which counterfactual supply is simulated. Two adjustments were made to the trip data to model

the counterfactual policy. First, the estimated number of days absent for each trip was rounded up

to the nearest whole 24-hour day. For example, an 8-hour trip was converted to 24-hours and a

25-hour trip was converted to 48 hours. Second, if a 2008/2009 trip retained any species or stock
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with a zero possession limit in 2010, the pounds of fish were set equal to zero for that species.

After adjusting for prohibited species, a trip was included only if it retained at least one of the

species aggregates modeled in the inverse demand system.

The counterfactual supply of each aggregate plus monkfish was simulated by drawing trips,

with replacement, from the adjusted population of groundfish trips until the monthly DAS used

was equal to the optimal temporal distribution of DAS. Monthly quantities were aggregated from

the trip-level landings. Approximately 75% of monkfish are landed on trips where no groundfish

were landed. Monkfish supplied outside of the groundfish fishery were deducted from monkfish

landed on groundfish trips and held constant at 2009 levels. Import quantities are also assumed to

be fixed.

Variability and uncertainty in our welfare measures were included in the simulation using the

Krinsky and Robb (1986) method. Parameters values are drawn from a multivariate normal distri-

bution with mean and variance-covariance matrix taken from the econometric model; each random

draw is paired with a simulated fishing year. The simulation was implemented in EXCEL with the

@RISK add-in. A total of 500 fishing years were simulated.

Kim (1997) describes the appropriate welfare measures for quantity space. Given a well-

behaved utility function U = F (X) and the corresponding indirect utility function V (P̂), where

P̂ = {p̂1, p̂2, . . . p̂n} and X = {x1, x2, . . . xn} are vectors of (normalized) prices and quantities

respectively, the dual expenditure and distance functions can be defined as:

E(P̂, u) = min
X
{P̂′X : D(u,X) ≥ 1} (13)

and

D(u,X) = min
P̂
{P̂′X : E(P̂, u) ≥ 1} (14)

Shephard’s lemma can be applied to the distance function to produce the normalized compensated
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inverse demand system:

Pi =
∂D(u,X)

∂xi
= ai(u,X) (15)

The corresponding set of normalized uncompensated inverse demand equations are:

bi(X) = ai(F (X),X) (16)

The Compensating and Equivalent Variation welfare measures associated with changes in

quantities are given by:

CV = D(u0,X1)−D(u0,X0) (17)

EV = D(u1,X1)−D(u1,X0). (18)

For a change in quantity of single arbitrary good k , equations 17 and 18 can be written as:

CV =

∫ x0
k

x1
k

ak(u0,X)dxk

EV =

∫ x1
k

x0
k

ak(u1,X)dxk.

When considering change in multiple quantities, equations 17 and 18 can be expressed as:

CV = −
∫
L

a(u0,X)dX

EV =

∫
L

a(u1,X)dX,

where a(u,X) is the system of inverse demand equations and L is an arbitrary path of integration

with initial point X0 and ending point X1.

The GDIDS model in equation 5 is not derived from a distance or expenditure function ap-

proach and does not have a closed form equation for the associated expenditure function. However,
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the appropriate welfare measures can be approximated by numerically integrating under the inverse

demand curves. A “second-order” approximation is frequently used; this method assumes that the

inverse demand curve is linear across the quantity change and the area under the inverse demand

curve can be approximated using a trapezoid (Park et al., 2004). This may not be appropriate for

large changes in quantities. Therefore, welfare measures are calculated by decomposing the large

quantity changes into smaller quantity changes, over which the “second-order” approximation is

more likely to hold.

The CV computation is straightforward and uses the compensated flexibilities. However, be-

cause the GDIDS is not derived from a closed form expenditure or distance function, computation

of EV requires use of the uncompensated demand curve to compute prices at the final set of quan-

tities. The EV measure will consistently rank 2 or more policy alternatives and is, itself, an indirect

utility function (Mas-Colell et al., 1995). The EV and CV measures are both invariant to the path

of integration. However, the traditional consumer surplus measures and prices along the uncom-

pensated demand curve are not path independent. The uncompensated demand curve is used to

construct the “initial” prices for the EV measure; this implies that EV measure will depend on the

path taken along the uncompensated demand curves.

4 Results

The demand model is estimated using three specifications. The first specification (“Exogenous”) is

estimated under the assumption that independent variables are exogenous and therefore can serve

as instruments for themselves. The second specification (“IV”) is estimated under the assumption

that the independent variables are endogenous and first lags of the seasonal differences are ap-

propriate instruments. Finally, the third specification (“Large”) is estimated under the assumptions

that both the independent variables and first lags are uncorrelated with the error terms. Researchers

have included monthly dummy variables in the estimation, to account for seasonality in supply or
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demand which occurs on a monthly time scale (See Eales et al. (1997) and Hospital and Pan (2009)

for examples). Incorporating monthly dummy variables would greatly increase the number of mo-

ment conditions; instead, the demand model is estimated using seasonal differences.

Table 4 contains parameter estimates for three estimated GDIDS models. Standard errors pre-

sented are robust to heteroskedasticity and autocorrelation and calculated using the Newey and

West (1987) method, setting the bandwidth equal to 4. Also included in Table 5 are the J-and

C-statistics. The J-statistic is the optimized value of the GMM criterion function. Under the null

hypothesis of correct specification of the moment conditions, the J-statistic is distributed χ2 with

degrees of freedom equal to the number of overidentifying restrictions. The J-statistics in Table

5 can be interpreted as evidence that all three models are properly specified. However, the large

p-value for the “Large” model may be symptomatic of too many moment conditions; this specifi-

cation test is known to have low power when the number of instruments is large (Roodman, 2009).

The C-statistic is the difference in J-statistics corresponding to alternative instrument sets and is

used to test for appropriateness of a subset of excluded instruments. Under the null hypothesis

of correct specification of the moment conditions, the C-statistic is distributed χ2 with degrees of

freedom equal to the number of overidentifying restrictions in the subset of excluded instruments.

Similarly, the C-statistics do not clearly prefer the “Exogenous” model to the “IV” model. The

GDIDS model can be simplified to alternative models depending on the mixing parameters, θ1 and

θ2. The Wald test statistics corresponding to the nested models in Table 6 support the generalized

model, with possible exception of the IROT and ICBS nested models estimated using the IV spec-

ification. This finding is due to an imprecisely estimated θ1 parameter in this specification. The

GMM criterion-based statistics do not strongly advocate for either of the three econometric spec-

ifications. Excess moment conditions in the “Large” model may lead to biased estimates of the

model parameters. We opt for estimates which are less likely to be biased, but have less precision,

and present flexibilities and and conduct policy analysis using the results from the “Exogenous”

and “IV” models under the most general version of the GDIDS specification.
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Tables 7 and 8 contain the compensated own-quantity, cross-quantity, and scale flexibilities

evaluated at the means of the data for the “Exogenous” and “IV’ models. The scale effects describe

the price response to a proportional shift in all quantities. The estimated scale flexibilities in both

models are very similar in magnitude and degree of precision; the Round 1 and Monkfish scale

flexibilities are close to -1, while the Import flexibility is much smaller in magnitude, while the

Round 2 and Flat flexibilities are fairly large in magnitude. The own-quantity flexibilities are all

negative and relatively small in magnitude; this is similar to findings by previous researchers. In

addition, some goods are found to be complementary, a finding which is also prevalent in the

literature. These findings are likely to be related to the parameter restrictions required under utility

theory; because all goods are relatively strong substitutes for themselves, the demand system is

predisposed to finding complementarity.

Tables 9 and 10 contain the uncompensated own-quantity and cross-quantity flexibilities. The

uncompensated flexibilities describe the slope of the demand curve along which the consumer has

not been compensated with additional income. With a single exception, all of the uncompensated

flexibilities are negative. The Antonelli matrix is confirmed to be negative semi-definite for both

the “Exogenous” and “IV” specifications; all eigenvalues of the Antonelli matrix are either zero or

within machine precision of zero.

The counterfactual model of supply agrees well with the historical trends in landings, although

it does produce lower quantities due to the dramatic reduction in available DAS (Figure 3). For

example, Round 1 landings increase from May to June in both 2009 and the counterfactual model,

declining through October and then increase steadily through the fishing year. In 2010, Round 1

landings remained relatively high in May and June, decreased sharply in July and then roughly

followed the 2009 pattern for the rest of the fishing year. The counterfactual model of Round

2, Flat and Monk also follows the 2009 patterns closely. While the general patterns of landings

are similar the nominal changes between the three landings scenarios are often very large: the

counterfactual DAS model frequently produces decreases of 50% or greater relative to both 2009
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and 2010 in many months. The exception is for Monkfish; this occurs because the only a small

amount of Monkfish are caught jointly with the other species.

Figure 4 plots compensating variation for various policy scenarios and econometric models.

The comparison of 2009 to 2010 landings is evaluated by fixing landings at the 2010 levels and

computing compensating variation using parameters from the exogenous demand system. The

mean compensating variation for the actual policy change from 2009 to 2010 landings is approx-

imately $11M, implying that consumers of groundfish would require $11M in compensation in

order to restore 2009 utility levels, given 2010 landings. The variation associated with this esti-

mate is low because only parameter variability is captured since supplies are fixed at their observed

levels. The second column of Figure 4 contains the CV estimate for the Days-at-Sea counterfactual

policy using the simulated landings and parameters from the exogenous demand system. In this

scenario, consumer welfare losses are approximately $37M. The third column of Figure 4 contains

the CV estimate for the Days-at-Sea counterfactual policy using the simulated landings and param-

eters from the IV specification of the demand system. Welfare losses are similar; however,there is

greater dispersion in the estimates of CV. The final column of Figure 4 contains the CV estimate

associated with the transition from 2010 actual landings to the Days-at-Sea counterfactual pol-

icy using the simulated landings and parameters from the exogenous specification of the demand

system. Mean welfare losses for consumers are approximately $25M.

Figure 5 contains analogous plots of equivalent variation for various policy scenarios and

econometric models. The EV measures are less precise than the CV estimates. This is caused

by the approximation method used. Because the GDIDS does not have a closed form expenditure

or distance function, the uncompensated demand curves are used to “move” the consumer from

initial utility to final utility level.
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5 Discussion and Conclusions

In this research, a model of supply is combined with a model of demand to examine the effects

of hypothetical changes in policy on groundfish consumers in the Northeast United States. The

GDIDS model has been frequently used in applied research, even though the exact estimation

method used herein has not. The estimated parameters are similar to estimates found in the liter-

ature of other aggregates of fish. The relatively large scale flexibilities for the species aggregates

indicate that these goods are, in a broad sense, substitutes for each other. The scale flexibility

for Imports is substantially smaller in magnitude than the rest of the estimated scale flexibilities

suggesting that imports do not as readily substitute for fresh fish. However, imported unprocessed

fish are often sourced from Canada, Iceland, or Norway. It is likely that buyers and sellers are

contracting for future delivery and are operating in a slightly different market from the fresh fish

market. If this is the case, a richer model of imports may be warranted.

When computing welfare measures related to the policy changes, imports are assumed to re-

main constant relative to the baseline year. Because a large reduction in fishing effort and land-

ings is embedded in the counterfactual model, this assumption seems doubtful from a theoretical

standpoint. Indeed, prior research (Jin et al., 2006) found that processors do substitute imports

for domestically available fish. Processors may be expected to anticipate lower levels of supply

and contract for delivery of more imported fish as substitutes leading to lower prices for all fish.

By holding import quantities constant, the prices of domestic fish embedded in the counterfactual

welfare measures are likely to be higher than they would be if imported quantities were allowed to

change. This model shortcoming means that the counterfactual scenarios are likely to overestimate

losses in CV and EV.

Meeting the statutory requirement in the MSFCMA to end overfishing and manage fisheries

using ACLs is difficult. Catch-shares, and other well-designed property rights, can be a way to meet

those requirements. This institutional change in New England has disadvantaged some resource
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users, producing vocal opposition to the catch share program. This research finds that the transition

to catch shares in the groundfish fishery reduced consumer welfare by approximately $11M. Had

the DAS regulatory system been retained, the aggregate quantity of groundfish supplied would

have been substantially lower and would have reduced consumer welfare by approximately $37M.

While some loss in consumer welfare was unavoidable, the catch share program mitigated these

losses substantially.
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6 Tables

Parameter IROT IAIDS ICBS INBR
θ1 0 1 1 0
θ2 0 1 0 1

Table 1: Parameter restrictions in the GDIDS result in simplification to four alternative models.

Species 2010 Landings 2010 Value Average price Aggregate Grouping
(’000s of pounds) ($000s)

Cod 20,153 12,467 $1.62 Round1
Haddock 15,436 16,683 0.93 Round1
White Hake 3,515 3,609 0.97 Round2
Pollock 7,370 10,629 0.69 Round2
Redfish 1,826 4,196 0.44 Round2
Monkfish 14,017 8,281 1.69 Monkfish
Winter Flounder 5,256 3,450 1.52 Flat
Witch Flounder 2,678 1,470 1.82 Flat
Yellowtail Flounder 2,838 2,991 0.95 Flat
American Plaice 3,215 2,958 1.09 Flat
Windowpane Flounder 46 98 0.47 -
Atlantic Halibut 192 36 5.27 -
Ocean Pout < 1 < 1 0.38 -
Import 39,315 48,487 0.81 Import

Table 2: Groundfish landings, prices, and aggregation levels used in this analysis. Economic values
normalized to Jan 2010 real dollars.
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Species 2008-2009 2010
Georges Bank cod 1,000 lbs/ day 2,000 lbs/ day

10,000 lbs/ trip 20,000 lbs/trip
Cape Cod, Gulf of Maine 250 lbs/day 250 lbs/day
yellowtail flounder 1,000 lbs/trip 1,5000 lbs/trip
Southern New England, Mid-Atlantic 250 lbs/day 250 lbs/day
yellowtail flounder 1000 lbs/trip 1,500 lbs/trip
Southern New England, Mid-Atlantic
winter flounder, ocean pout & window-
pane flounder

no limit 0 lbs

Table 3: Summary of possession limits in 2008/2009 and 2010.
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Coefficient Exogenous IV Large
αr1 0.00498*** 0.00115 0.00310***

(0.00168) (0.00221) (0.000939)
πr1r1 -0.0227* 0.0116 -0.0372***

(0.0121) (0.0167) (0.00692)
πr1r2 0.0168*** 0.0150*** 0.0146***

(0.00232) (0.00404) (0.00160)
πr1mk 6.56e-05 -0.0118 0.000773

(0.00405) (0.00867) (0.00247)
πr1fl 0.0257*** 0.0122 0.0372***

(0.00498) (0.00918) (0.00297)
πr1 -0.135*** -0.0719 -0.203***

(0.0285) (0.101) (0.0160)
θ1 0.508*** 0.739* 0.206***

(0.125) (0.432) (0.0679)
θ2 0.190*** 0.228** 0.0743**

(0.0613) (0.103) (0.0336)
αr2 7.78e-05 0.000799 -8.49e-05

(0.00107) (0.00124) (0.000637)
πr2r2 -0.0268*** -0.0232*** -0.0254***

(0.00459) (0.00795) (0.00274)
πr2mk 0.00525** 0.00368 0.00907***

(0.00225) (0.00557) (0.00135)
πr2fl -0.000262 0.00858 -0.00168

(0.00268) (0.00582) (0.00160)
πr2 -0.0672*** -0.0546* -0.0853***

(0.0102) (0.0330) (0.00559)
αr3 0.00340 0.00520 0.00396***

(0.00294) (0.00392) (0.00148)
πmkmk -0.00756 -0.00665 -0.0235***

(0.0110) (0.0224) (0.00647)
πmkfl 0.0125*** 0.0142 0.0166***

(0.00474) (0.00898) (0.00258)
πmk -0.0732*** -0.0420 -0.124***

(0.0215) (0.0828) (0.0138)
αr4 -0.00663*** -0.00778*** -0.00639***

(0.00178) (0.00246) (0.00106)
πflfl -0.0443*** -0.0462*** -0.0698***

(0.0119) (0.0175) (0.00659)
πfl -0.162*** -0.107 -0.233***

(0.0289) (0.0907) (0.0149)
J 24.5 26.2 35.4
C 9.9 9.1

*** p<0.01, ** p<0.05, * p<0.10

Table 4: Parameter estimates for the Generalized Differential Inverse Demand system. Standard
errors below in parentheses, n=194.



Exogenous IV Large
J-statistic 24.5 26.2 35.4

DF 25 25 60
p-value 0.49 0.39 0.995

C-statistic (valid moments) 9.9 9.1 -
DF 35 35

p-value 0.99 0.99

Table 5: Criterion function based specification diagnostics of the GDIDS do not strongly prefer
any of the three specifications.

Exogenous IV Large
INBR 365 70.3 1090
θ1 = 0, θ2 = 1 (<0.0001) (<0.0001) <0.0001)
IROT 17.6 6.24 10
θ1 = 0, θ2 = 0 (0.0001) (0.044) (0.007)
IAIDS 192 57.8 759
θ1 = 1, θ2 = 1 (<0.0001) (<0.0001) (<0.0001)
ICBS 56.6 6.39 214
θ1 = 1, θ2 = 0 (<0.0001) (0.041) (<0.0001)

Table 6: Wald test statistic values (p-values below in parentheses) for the 4 models nested in the
GDIDS. Test statistics are distributed χ2

2 under the null hypothesis that the demand system is one
of the nested models.
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Round 1 Round 2 Monkfish Flat Import Scale
Round 1 -0.250 0.0889 0.0357 0.159 -0.0337 -1.116

(0.0187) (0.00866) (0.0157) (0.0147) (0.0198) (0.0386)
Round 2 0.279 -0.555 0.110 0.0396 0.127 -1.457

(0.0272) (0.0363) (0.0296) (0.0372) (0.0313) (0.0438)
Monk 0.0426 0.0416 -0.195 0.111 0.000334 -0.901

(0.0187) (0.0113) (0.0372) (0.0214) (0.0269) (0.0577)
Flat 0.155 0.0123 0.0904 -0.341 0.0832 -1.219

(0.0144) (0.0116) (0.0175) (0.0257) (0.0180) (0.0443)
Import -0.0256 0.0308 0.000213 0.0649 -0.0703 -0.693

(0.0150) (0.00757) (0.0171) (0.0140) (0.0147) (0.0427)

Table 7: Compensated Price flexibilities and Scale flexibility (standard errors below) for the “Ex-
ogenous” model, evaluated at mean quantities.

Round 1 Round 2 Monkfish Flat Import Scale
Round 1 -0.125 0.0836 -0.0106 0.107 -0.0547 -1.063

(0.0305) (0.0187) (0.0366) (0.0316) (0.0307) (0.0468)
Round 2 0.262 -0.539 0.0944 0.173 0.00922 -1.510

(0.0585) (0.0768) (0.0709) (0.0867) (0.0683) (0.0762)
Monk -0.0127 0.0359 -0.221 0.128 0.0697 -0.964

(0.0437) (0.0270) (0.0834) (0.0475) (0.0582) (0.0788)
Flat 0.104 0.0538 0.105 -0.379 0.116 -1.210

(0.0308) (0.0269) (0.0388) (0.0596) (0.0360) (0.0624)
Import -0.0415 0.00223 0.0444 0.0901 -0.0952 -0.688

(0.0233) (0.0165) (0.0371) (0.0281) (0.0384) (0.0444)

Table 8: Compensated Price flexibilities and Scale flexibility (standard errors below) for the “IV”
model.
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Round 1 Round 2 Monkfish Flat Import
Round 1 -0.498 0.00982 -0.172 -0.0956 -0.360

(0.0195) (0.00953) (0.0169) (0.0175) (0.0234)
Round 2 -0.0449 -0.659 -0.162 -0.293 -0.299

(0.0278) (0.0366) (0.0310) (0.0384) (0.0340)
Monk -0.158 -0.0222 -0.363 -0.0949 -0.263

(0.0201) (0.0125) (0.0452) (0.0210) (0.0221)
Flat -0.116 -0.0741 -0.137 -0.619 -0.273

(0.0108) (0.0124) (0.0210) (0.0285) (0.0230)
Import -0.180 -0.0183 -0.129 -0.0931 -0.287

(0.0159) (0.00907) (0.0225) (0.0137) (0.0349)

Table 9: Uncompensated Price flexibilities (standard errors below) for the “Exogenous” model.

Round 1 Round 2 Monkfish Flat Import
Round 1 -0.361 0.00835 -0.209 -0.135 -0.365

(0.0289) (0.0201) (0.0413) (0.0273) (0.0350)
Round 2 -0.0732 -0.646 -0.187 -0.171 -0.432

(0.0552) (0.0787) (0.0767) (0.0835) (0.0710)
Monk -0.227 -0.0324 -0.401 -0.0915 -0.212

(0.0414) (0.0289) (0.0936) (0.0454) (0.0493)
Flat -0.165 -0.0319 -0.120 -0.654 -0.238

(0.0339) (0.0293) (0.0443) (0.0559) (0.0381)
Import -0.195 -0.0465 -0.0839 -0.0668 -0.257

(0.0232) (0.0176) (0.0431) (0.0287) (0.0527)

Table 10: Uncompensated Price flexibilities (standard errors below) for the “IV” model.
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7 Figures
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Figure 1: Expenditure Shares for Domestic and Imported Fish.
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Figure 2: Timeseries of Real Prices (a) and Quantities (b) for the five aggregate fish groupings.
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(a) Round 1
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(b) Round 2
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(c) Flat
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(d) Monkfish

Figure 3: 25th to 75th percentiles of the countefactual landings along with actual 2009 and 2010
landings. In general, the counterfactual set of landings and the 2009 landings have a similar tem-
poral distribution, although the 2009 landings are typically much larger.
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Figure 4: Compensating Variation (CV) for the actual change from 2009 to 2010 quantities is
approximately $11M. CV for the change from 2009 to the DAS counterfactual is approximately
$37M; the “IV” demand model produces less precise estimates than the “Exogenous” demand
model. CV for the change from 2010 to the DAS counterfactual is approximately $25M.
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Figure 5: Compensating Variation (CV) for the actual change from 2009 to 2010 quantities is
approximately $14M. EV for the change from 2009 to the DAS counterfactual is approximately
$58M using parameters estimated from “Exogenous” demand model and approximately $54M
when using parameters estimated from the “IV” demand model. EV for the change from 2010 to
the DAS counterfactual is approximately $36M.
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