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Abstract

In this paper we present a model of the optimal crushing season length for sugar

cane. The approach taken is to view the optimal season length problem as an optimal

stopping problem for both the Mill and a representative grower. We formulate the optimal

stopping problems for both Mill and grower based on \real option" theory using Ito

calculus. Because the interests of the Mill and growers do not coincide this results in a

stochastic di�erential game of optimal stopping. We solve the model numerically using a

�nite di�erence algorithm.

Keywords Sugarcane Harvesting, Seasonality, Real Option Theory, Optimal Stopping, Ito
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1 Introduction

Canegrowers have responded positively to the progressive relaxation over the past decade
of the constraints on the area planted to sugarcane. The area under cane has increased by
about 30 percent during that time while production has expanded to record levels. Milling
capacity has not kept pace with the increase in farm production. Sugar mills were able to
take advantage of an approximate 30 percent increase in crushing capacity for a relatively
small capital outlay by converting to continuous crushing (7 days per week crushing instead
of �ve). In spite of this increase in milling capacity, there has been a tendency for the length
of the crushing season to be extended, particularly in years like 1997 when there was a very
large tonnage of cane to process. This has been due in part to the relatively high yields
obtained in recent years from newly released varieties of cane, better seasonal conditions, and
the conversion to trash retention farming by growers in many areas.

The cane harvesting and crushing season has traditionally been conducted over a 20-week
period starting in June and which was normally completed by mid- to late-November. This
allowed suÆcient time for ratoon crops to become established prior to the start of the rainy
season some time in January or February. However, with the larger tonnages to crush in recent
years, the harvesting season has extended beyond 23 weeks in some cases. The problem with



extending the crushing season into mid- or even late-December is that their growing season
of the subsequent ratoon crop is potentially reduced if these crops are not to be harvested
late again the following year. When the adverse e�ects of exposing the young ratoon crops
to early onset of the wet season are added, growers can experience quite poor yielding crops
from late-cut ratoons.

With a cropping cycle that normally includes a plant cane crop and four or more ratoon
crops, growers are unable to manage their harvesting operations to avoid harvesting any cane
that is to be ratooned during the last month of the season. If it was practical to do so,
growers would avoid this problem by reserving cane that is to be ploughed out and replanted
for harvesting during this period but it is not possible to do this. Adverse weather early in the
harvesting season will often cause growers to harvest crops that are destined to be ploughed
out when it does not matter if the �eld gets damaged during harvesting.

The whole question of optimum season length is a controversial issue with the two principal
parties having quite di�erent interests. The milling companies would like to extend the
crushing season because it allows them to run a smaller capacity plant and thereby reduce
�xed costs. Growers, on the other hand, want a crushing season that is decidedly shorter
than the millers so that it is possible to maximise payments for cane and allow the subsequent
ratoon crop a growing season that is as long as possible.

Of interest is the question who is correct, growers or mills, and whether or not their
interests diverge. In order to address this issuer we study a stochastic di�erential game of the
optimal season length for sugarcane harvesting in the Australian sugar industry. the problem
falls in to a class of game theoretic problems known as games of timing. Although these are
usually and somewhat idiosyncratically static games they need not be static. We have chosen
to model the problem in continuous-time because as was pointed out earlier both harvesting
and crop growth occur in continuous-time and not discrete time. Mills run 24 hours a day
seven days a week during the harvest season. Thus our justi�cation for using continuous-time
is essentially the same as that used to justify the use of continuous-time models in �nance, if
anything the case for a continuous-time approach to the present problem is in fact stronger
than the case for their use in �nancial applications.

For previous discussions of both stochastic di�erential games and games of timing we
would refer the reader to Baser and Olsder (1982) and Dresher (1961). the seminal paper on
stochastic di�erential games is by Friedman (1971).

The season length problem is viewed from the perspective of a representative mill using
real option theory as a problem of whether to continue crushing cane or to stop2. The problem
is thus an optimal stopping problem. Growers on the other hand, although they also view
the problem of season length from the perspective of optimal stopping, may disagree with the
mill as to the value of options of continuing crushing/harvesting or stopping.

Previous work on the optimal season length in sugar cane has not attempted such a
detailed analysis. The Boston Consulting Group (1996) developed a simple model of the
optimal season length based on competitive market assumptions. Their model can be seen as
a simple parametric bugeting exercise. The model presented here generalises that approach
considerably by taking into account seasonal uctuations in CCS, the impact of season length
on cane yield uncertainty and the strategic nature of the relationship between growers and a
representative mill.

The model should not be considered as a completely accurate depiction of the real rela-

2For a discussion of real option theory see Dixit (1993) and Dixit and Pindyck (1994).
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tionship between growers and a Mill, as we abstract from a number of important features. For
example, we ignore the di�erence in yield between di�erent ratoon crops, spatial aspects of
the problem and consider only a single representative grower. The model should be viewed as
a �rst approximation to what is a quite complex problem. Our intent in this paper is �rst to
develop the methodology as a �rst step to solving a more general and more realistic problem.

2 The Model

Harvestable cane yields are modelled as a lagged Ito process whereby the mean harvestable
yield at any point in time is a function of season length.

dy =

�
�y(t� �)(1 �

y(t� �)

ymax
)� h(t)

�
dt+ �dw

where y is the available yield at time t, h(t) the amount harvested, � the intrinsic growth
rate of sugar cane, T the maximum length of the growing season, � the amount by which the
growing season is reduced, i.e. the length of the harvest season. Note that this equation is
a stochastic delay-di�erential equation3. We assume that all of the cane harvested is ratoon
cane of equal age. If we were to drop this assumption, the dynamics of cane supply would
have to be represented using an age-structured formulation with di�erent \starting dates" for
di�erent crops.

We use a logistic growth function for cane yields that depends on the length of the growing
season t� � . In the following we make the substitution h(t) = y(t) where necessary.

The pool price of sugar ps is assumed to be constant and the mills pro�t is de�ned by

�m = psccs�y � C(y)� c2�

where ccs is the sugar content of cane as a percentage, � a parameter to convert this to
decimals4, c2 the marginal time cost of lengthening the season and C(y) the variable crushing
costs of the mill.

The sugar content of cane CCS is assumed to uctuate seasonally, depending on when
cane is harvested. The change in CCS is therefore represented as follows by a seasonally
forced stochastic di�erential equation.

dccs = cos(��)dt+ �̂dz

We assume that cane yields y and CCS are uncorrelated.
If the mill were to stop crushing cane then it would incur during the idle period the dis-

counted costs of maintaining �xed capital �rKe�Æt plus the opportunity cost of not crushing
cane which is the same as the foregone pro�t �e�Æt�. These �xed costs are not decision
relevant as they are incurred whether the Mill crushes or not.

The Mills objective function in time � is given by5

F (�m; y; ccs; �) = max
n
0;�m(y; ccs; �) + (1 + Æd�)�1EF (y + dy; ccs+ dccs; � + d�)jy; ccs

o

3For a discussion of delay-di�erential equations see Kuang (1993).
4This is a necessary addition if one whishes to avoid an additional application of Ito's lemma.
5See (1994) for the derivation of the objective function.
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Because of the dependency of the Wiener noise terms w(t) and z(t) on t and not � , it

is simpler to work at �rst in terms of t. This is because the derivatives dw(t)
dt

and dz(t)
dt

do
not exist making it impractical to reparameterise the noise terms in terms of � . Thus we
reparameterise the objective function in terms of t.

F (�m; y; ccs; t) = max
n
0;�m(y; ccs; t) + (1� Ædt)�1EF (y + dy; ccs+ dccs; T � t� dt)jy; ccs

o

This leads to the following partial di�erential equation.

�Ft + (�y(2t� T )(1�
y(2t� T )

ymax
)� y(t))Fy + cos(��)Fccs + ÆF (�m; y; ccs; t) + �m(y; ccs; t)

+
1

2
�̂2Fccsccs +

1

2
�2Fyy = 0

This needs to be solved in harvest time � , thus we reparameterise by substituting every-
where for t to obtain the following partial di�erential equation in � .

F�+(�y(T�2�)(1�
y(T � 2�)

ymax
)�y(T��))Fy+cos(��)Fccs+ÆF (�m; y; ccs; �)+psccs�y(T��)�C(y(T��))�c2�

+
1

2
�̂2Fccsccs +

1

2
�2Fyy = 0

The problem for a representative grower is similar, although pro�t is de�ned di�erently.

�� = pc(ccs)y � c(y)

where pc = 0:009ps((ccs� 4) + 0:0575).
Growers face the same yields as millers.

dy = �y(t� �)(1 �
y(t� �)

ymax
)dt+ �dw

The optimisation problem for growers is given by

G(y; ccs; �) = max
n
0; �� + (1 + Æd�)�1EG(y + dy; ccs+ dccs; � + d�)

o

Reparameterising this by replacing � with t gives.

G(y; ccs; t) = max
n
0; �� + (1� Ædt)�1EG(y + dy; ccs+ dccs; T � t� dt)

o

This leads to the following partial di�erential equation in t.

�Gt + (�y(2t � T )(1�
y(2t� T )

ymax
)� y(t))Gy + cos(��)Gccs + ÆG(��g; y; ccs; t) + ��g(y; ccs; t)

+
1

2
�̂2Gccsccs +

1

2
�2Gyy = 0

Reparameterising this by replacing t with � gives.

G�+(�y(T�2�)(1�
y(T � 2�)

ymax
)�y(T��))Gy+cos(��)Gccs+ÆG(��g; y; ccs; �)+pc(ccs)y(T��)�c(y(T��))
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+
1

2
�̂2Gccsccs +

1

2
�2Gyy = 0

Simultaneous solution of the partial di�erential equations gives a solution to the game in
terms of the value matching and smooth pasting conditions. Note that the decision problems
of the mill and the grower are linked by the stochastic di�erential equation for cane yield,
both players bene�t from the cane harvest it is this linkage which leads to the problem being
a game in the sense of (1971). The game di�ers from most stochastic di�erential games in
that the strategy set is time. The game is thus what is termed in game theory a \game of
timing" the game is further complicated by the need for two di�erent time scales, growing
period and harvesting period.

3 Numerical Solution of the Stochastic Di�erential Game of

Optimal Switching

In order to numerically solve the optimal switching game between harvesting-crushing and
laying idle a �nite di�erence method is employed utilising a �xed step in the y, ccs and �

directions.
The pair of partial di�erential equations is then solved simultaneously. Value matching

and smooth pasting conditions are then applied to determine the optimal point in time �� at
which the mill and the grower would switch strategies. This is the optimal crushing season
length.

3.1 The Finite Di�erence Algorithm

The �nite di�erence method is a standard method of solving option pricing problems numer-
ically (See Hull (1997)) and indeed for solving partial di�erential equations and systems of
partial di�erential equations generally(Burden et al. 1981).

The technique involves approximating the derivatives in the equation to be solved by
\�nite di�erences", hence the name.

The partial di�erential equation for the Mill's payo� may be written in �nite di�erence
form as

F�+1 = F�+��

��
�y(T � 2�)(1 �

y(T � 2�)

ymax
)� y(T � �)

�
Fy+1 � Fy

�y
+ cos(��)

Fccs+1 � Fccs

�ccs
+

ÆF (y; ccs; �) + psccs�y(T � �)� C(y(T � �)) +
1

2
�̂2

Fccs+1 � 2Fccs + Fccs�1

�ccs2

+
1

2
�2

Fy+1 � 2Fy + Fy�1

�y2

�

where step sizes are represented by � terms.
The partial di�erential equation for the growers payo� may be written in �nite di�erence

form as.

G�+1 = G�+�

��
�y(T � 2�)(1 �

y(T � 2�)

ymax
)� y(T � �)

�
Gy+1 �Gy

�y
+ cos(��)

Gccs+1 �Gccs

�ccs

+ÆG(y; ccs; �) + pc(ccs)y(T � �)� c(y(T � �)) +
1

2
�̂2

Fccs+1 � 2Fccs + Fccs�1

�ccs2
+

5



1

2
�2

Gy+1 � 2Gy +Gy�1

�y2

�

It can be implemented in spreadsheets for cases up to and including three (3) independent
variables including time. For higher order equations it is advisable to use either a specialist
package or a higher level programming language. In our case although we have three indepen-
dent variables in each equation y, ccs and � , the lag terms make spreadsheet implementation
more diÆcult. Therefore we have implemented the algorithm in C++. The source code is
available from the authors on request.

4 Results

The results of the model depend critically on the mills crushing costs. This was to be expected.
Unfortunately data on this is con�dential and one can only guess at the likely magnitude of
this factor. In a number of runs of the model it was found that for low crushing costs growers
favoured a season length much shorter than the mill. For large crushing costs this situation
was reversed.

The following parameter values were used in the model

ymax = 10 measured in units of 10 tonnes

� = 0:01

T = 1

ps = 300

� = 0:01

Æ = 0:06

max grid value yield 10

max grid value ccs 15

max grid value time 10

� = 0:01

�̂ = 0:1

� = 0:05

variable production cost of grower 15

boundary values 10

Note that we varied the size of c2 between 0 and 10000. At high values around $10000
per unit � the mill began to lose money very quickly, i.e. during the �rst iteration in the time
direction and at high CCs and yield values. If one reduced c2 to the other extreme, growers
pro�t always remained positive up to a � of 0:8. The programme then terminated due to lack

6



Pro�t � Time index CCS index yield index

0.97 0.7 7 10 8
0.97 0.7 7 10 9
0.97 0.7 7 10 10
0.87 0.7 7 11 7
0.932 0.7 7 11 8
0.932 0.7 7 11 9
0.932 0.7 7 11 10
0.53 0.8 8 9 8
0.53 0.8 8 9 9
0.53 0.8 8 9 10
0.58 0.8 8 10 1
0.58 0.8 8 10 2
0.58 0.8 8 10 3
0.58 0.8 8 10 4
0.58 0.8 8 10 5
0.58 0.8 8 10 6
0.44 0.8 8 10 7

Table 1: Pro�t, Harvest duration and Grid Position

of memory6. The model produces approximately 10,500 numbers per run (1500 iterations)
making it's memory requirements quite demanding.

Nevertheless grower pro�t did drop considerably although never quite going negative.
The following table gives an indication of the grid positions at which grower pro�t was at a
minimum.

These �gures for � of 0:7 and 0:8 translate to a crushing season length of about 36 and
41 weeks as opposed to currrently 23 weeks.

In comparing our results with the (1996) study it should be noted that they summed
pro�ts for the whole mill area obtaining results of between about 26 and 31 weeks. On
proceeding in the same manner we obtain very similar �gures. However summing pro�ts
involves introducing an additive welfare function for the mill area that may not be compatible
with individual incentives, thus mill and growers may prefer season lengths that diverge from
the joint pro�t solution.

5 Conclusion

In our model the optimal length of the harvest season appears to be primarily determined
by the mills marginal cost of increased season length rather than by the shorter growing
seasons experienced by growers in subsequent seasons. The model does not support growers
claims that the crushing season is at 23 weeks too long, rather it suggests that the crushing
season could be considerably lenghthened if the mill so desires. It should however be noted
that longer crushing seasons are likely to reduce grower pro�ts although it would still pay
growers to accept the longer season length. The model takes growers objectives to be pro�t

6We ran the model using the GNU C++ compiler running under Linux Redhat 5.2 on a Pentium II with
333 Mhz and 64 Mb of RAM.
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maximisation. The reason for growers current concerns may however have less to do with
pro�t maximisation and more to do with their demand for leisure. It would be a relatively
simple matter to extend the model to incorporate utility maximisation and leisure. This
modi�cation may explain growers concerns and lead to di�erent results to those found here.

The model might also be extended to incorporate more than one grower. Mathematically
this is relatively simple but it would greatly increase tthe computational requirements. As mill
areas typically have around 200 growers such problems would require parallel computation
and supercomputing facilities.

Another possible extension of the model would be to incorporate crop classes into the
model with crops of di�erent starting dates. This would lead to some very complicated
mathematics, as it necessitates the optimal control of a stochastic partial di�erential equation.
Our intent with this paper was simply to illustrate one possible approach to the solution of
the optimal season length problem and to do this for the simpli�ed case of identical ratoons.
Extending the model to incorporate di�erent crop classes would appear desirable but at this
stage must be left for another paper.
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