
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


ESTIMATING THE CHARACTERISTICS OF HOMOGENEOUS FUNCTIONS 

USING FLEXIBLE FUNCTIONAL FORMS 

 

by 

 

C.J. O'Donnell† 

School of Economic Studies 

University of New England NSW 2351 

email: codonnel@metz.une.edu.au 
 

 
 
 
 
 

Abstract 

 

A flexible functional form can provide a second-order approximation to an arbitrary 

unknown function at a single point.  Except in special cases, the parameters of flexible 

forms will vary from one point of approximation to another.  I use this property to 

show that, in general, if an unknown function is homogeneous then i) Euler's Theorem 

gives rise to linear equality constraints involving both the data and a set of 

observation-varying flexible form parameters, ii) the common practice of imposing 

homogeneity on flexible functional forms is unnecessarily restrictive, and iii) it is 

possible to obtain estimates of the observation-varying parameters of approximating 

flexible forms using a Singular Value Decomposition (SVD) estimator.  Two 

illustrations are provided: artificially-generated data is used to estimate the 

characteristics of a generalised linear production function; and Canadian data is used 

to estimate the characteristics of a consumer demand system. 

 

                                                            

†  Paper prepared for presentation at the 44th Annual Conference of the Australian Agricultural and 

Resource Economics Society (Sydney, 23-25 January 2000).  The author gratefully acknowledges 

helpful comments provided by Howard Doran and Prasada Rao.  All errors and omissions remain the 

responsibility of the author.  
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1.  Introduction 

 

Much of econometrics is concerned with estimating the parameters of second-order flexible functional 

forms (eg. translog, quadratic, generalised McFadden and generalised Leontief).  Flexible forms are 

popular in empirical work because they have the desirable property that, at a point of approximation, their 

first- and second-order derivatives can be set equal to those of an arbitrary unknown function.  

Unfortunately, most empirical flexible form models have the characteristic that the parameters are fixed 

across points of approximation.  This implies they can usually only provide an approximation to the 

unknown function at a single point.  In turn, this can severely limit the ability of the model to capture the 

behaviour of the unknown function across a range of points, including the points represented in the data.  

In this paper I show how to overcome this problem by allowing the parameters of flexible forms to vary 

deterministically from one point to another.  Estimation of these point-varying parameters is 

accomplished by i) specifying linear homogeneity constraints in the exact form prescribed by Euler's 

Theorem, and ii) imposing these constraints using the Singular Value Decomposition (SVD) estimator of 

Doran, O'Donnell and Rambaldi (1999).  Finally, with the aid of examples, I show that the usual practice 

of imposing homogeneity on flexible functional forms is unnecessarily, and sometimes severely, 

restrictive. 

 

To fix these ideas, consider a constant returns to scale generalised linear production function defined over 

the single output, yt, and the nonstochastic N  1 input vector xt = (x1t, ..., xNt)' (Diewert, 1973): 

 

(1) yt = h(xt) = 
i

N


j

N
 ij xit

1/2
xjt

1/2
  

where t identifies a particular observation (t = 1, ..., T) and the parameters satisfy the identifying 

restrictions ij = ji (i, j = 1, ..., N).  A quadratic function which can provide a second-order 

approximation to h(.) at the point xm is 

 

 (2) yt = fm(xt) = 0m + 
i

N
 im xit + 

i

N


j

N
 ijm xitxjt 

where the subscripts on the parameters, 0m, im and ijm = jim (i, j = 1, ..., N), make it explicit that they 

vary across points of approximation m = 1, ..., M.  To see this flexibility, simply note that fm(.) has 
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enough independent parameters to enable its first- and second-order derivatives to be set equal to those of 

h(.) at xm.  That is, there is a unique solution to the system of N + 1 + N(N + 1)/2 equations: 

 

(3) |fm(xt) xm
 = |h(xt) xm

 

 

(4) 

fm(xt)

xit xm

 = 

h(xt)

xit xm

 

and 

 (5) 

2fm(xt)

xitxjt xm

 = 

2h(xt)

xitxjt xm

.

 

The solution for ijm (i  j), for example, is: 

 

(6) ijm = ij xim
-1/2

xjm
-1/2

. 

 

It is apparent from equations such as (6) that the parameters of flexible forms will usually1 vary with 

variations in the point of approximation, xm.  Further examples of these types of equations can be found 

in Diewert and Ryan and Wales (1998).     

 

This 'point-sensitivity' of parameters has important implications for the way in which flexible forms such 

as (2) are used to estimate the characteristics of homogeneous functions such as (1).  Euler's Theorem 

(and its converse – see Silberberg, 1990, p.100) states that h(.) will be homogeneous of degree k (HDk) if 

and only if: 

 

(7) 
i

N
  


h(xt)

xit xt

 xit = k |h(xt) xt
  t = 1, ..., T. 

 

Thus, using (3) and (4) and setting m = t, the parameters of the functions fm(.) must satisfy: 

 

(8) 
i

N
  


ft(xt)

xit xt

 xit = k |ft(xt) xt
   t = 1, ..., T. 

                                                            

1  The parameters may not vary across points of approximation if fm(.) and h(.) have identical functional 

forms, or if all third-order derivatives of both functions are everywhere zero. 
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Importantly, Euler's Theorem and second-order flexibility does not necessarily mean 

 

(9) 
i

N
  


fm(xt)

xit xt

 xit = k |fm(xt)
xt

   m  t; t = 1, ..., T.  

 

Thus, even though h(.) is HDk, there is no requirement that the approximating functions fm(.) be HDk, and 

it is not usually necessary to impose this property on flexible forms in empirical work.  In the case of the 

constant returns to scale (ie. HD1) generalised linear function (1) and the quadratic function (2), for 

example, equations (8) and (9) take the form: 

 

(10) 0t - 
i

N


j

N
 ijt xit xjt = 0 

and 

 (11) 0m - 
i

N


j

N
 ijm xit xjt = 0. 

 

Equation (10) is the necessary and sufficient condition to ensure the generalised linear function (1) is 

constant returns to scale.  Equation (11) is an unnecessary constraint which will ensure that the quadratic 

function (2) is constant returns to scale.  Note that (11) will be satisfied if and only if (Diewert, p.294): 

 

(12) 0m = ijm = 0  for all i, j and m.  

 

The usual way forward is to set M = 1 (ie. use a single approximation point) and impose constraints of the 

form given by (12).  The effects of over-constraining the parameter space in this way can be severe and 

will be illustrated below in Section 3. 

 

It should be apparent from this discussion that a better way forward involves setting m = t for all t (ie. 

using observed data points as points of approximation) and directly estimating the observation-varying 

parameter model (2) subject to the necessary conditions for homogeneity given by (10).  There are two 

characteristics of this system which are relevant to the choice of estimator.  First, both the model (2) and 

the constraints (10) are linear in the parameters.  This makes it possible to estimate the model using either 

the Kalman filter estimator of Doran and Rambaldi (1997) or the SVD estimator of Doran, O'Donnell and 

Rambaldi.  The SVD estimator has considerable computational advantages over the Kalman filter 
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estimator and, in addition, possesses a number of desirable properties.  Second, variations in the 

parameters arise from variations in points of approximation and not, for example, from variations in 

underlying economic behaviour.  Thus, the parameters are deterministic, and this rules out most other 

estimators, including the estimators frequently used to estimate random coefficient models.  

 

The remainder of the paper is structured as follows.  In Section 2 I briefly describe the SVD estimator in 

the context of a general linear model where observation-varying parameters are subject to linear 

constraints.  In this section I also provide examples of models in applied production economics and 

demand analysis which fall into this class.  In Section 3 I use artificially generated data to illustrate the 

way in which the SVD estimator and the quadratic function (2) can be used to capture economically-

relevant information contained in the generalised linear production function (1).  A second illustration of 

the methodology is provided in Section 4 where I use the Canadian expenditure data of Ryan and Wales 

to estimate the observation-varying parameters of a Linearised Almost Ideal Demand (LAID) system.  A 

summary of the paper is provided in Section 6. 

 

 

2.  Linear Models, Linear Constraints and the SVD Estimator 

 

Most flexible functional form models consist of, or give rise to, single equations or systems of equations 

which are linear in the unknown parameters.  Examples from demand analysis include the LAID system 

of Deaton and Muellbauer (1980) and the absolute price version of the Rotterdam model used by Bewley 

(1983).  Examples from production economics are much more numerous and include the translog, 

generalised Leontief, and normalised quadratic production, profit and cost functions used by, for example, 

Lopez (1980), Binswanger (1974), Kako (1978) and Villezca-Beccerra and Shumway (1992).   

 

All of these models can be conveniently written in the general matrix form 

 

(13) yt = Xtt + et 

 

where yt is a known N  1 vector (N  1), Xt is a known N  K design matrix, et is an unknown N  1 

disturbance vector with zero mean vector and constant covariance matrix 2IN, andt is a K  1 vector of 
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observation-varying parameters to be estimated.  Several observation-varying parameter models appear in 

the econometrics literature, and these range from simple dummy variable models (eg. Judge et al, 1985, p. 

519-21, 530-33) to the more sophisticated random coefficients models of Swamy (1970, 1971), Hsaio 

(1975) and Hildreth and Houck (1968).  An important difference between the model given by (13) and 

these other observation-varying parameter models is that in (13) the parameters are deterministic and are 

permitted to vary across all t.  

 

Most of the economic models listed above have the property that they are HDk in at least some of their 

arguments.  For example, the profit function of the firm is known to be HD1 in output and input prices, 

the consumer's income compensated demand function is HD0 in product prices, and, of course, constant 

returns to scale production functions are HD1 in input quantities (see, for example, Varian 1992).  

Accordingly, using the rationale of the previous section, Euler's Theorem implies the parameters of 

flexible form models will be subject to linear constraints of the form 

 

(14) Rtt = rt 

 

where Rt is a known J  K matrix of rank J  K, and rt is a known J  1 vector.   

 

Estimating the econometric model given by (13) and (14) is problematic insofar as there are as many 

unknown parameter vectors as there are observations.  Economists typically deal with this problem by 

making an invariance assumption t = , then either i) imposing a subset of the JT constraints represented 

by (14), or, as we have already seen, ii) devising a set of constraints which are sufficient, but not 

necessary, for (14) to hold.  Examples of the first approach include Clements and Izan (1987) and 

Selvanathan (1989) who impose observation-varying constraints at a single point.  Examples of the 

second approach include O'Donnell and Woodland (1995) and Blake and Neid (1997) who use parametric 

adding-up constraints to ensure homogeneity constraints hold.  More details will be provided below in 

Sections 3 and 4.  Of course, neither of these approaches is satisfactory.   

 

A solution to these difficulties lies in a matrix decomposition of Rt and an associated reparameterisation 

of (13) and (14).  A suitable decomposition and reparameterisation is described by Doran, O'Donnell and 
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Rambaldi.  These authors have shown how the Singular Value Decomposition (SVD) Theorem can be 

used to decompose Rt as 

 

 (15) Rt = Ut St [ IJ, 0J,K-J]Vt' 

 

where Ut and Vt are orthogonal matrices of dimension J  J and K  K respectively, and St is a J  J 

diagonal matrix containing the singular values of Rt.  For more precise definitions of these matrices see, 

for example, Lütkepohl (1996).  Doran, O'Donnell and Rambaldi partition Vt as Vt = [V1t, V2t], where V1t 

and V2t are K  J and K  (K - J), before reparameterising and combining (13) and (14) into the form 

 

(16) wt = Zt t + et    

 

where t is a K  1 parameter vector, wt  yt - XtV1t S-1
t Ut'rt and Zt   XtV2tV2t' is of less than full rank.  

The important feature of the model given by (16) is that it is unconstrained (the constraints have been 

substituted out in the transformation from yt to wt).  Thus, no logical inconsistencies or practical 

difficultes arise from invoking the parametric invariance assumption t = .  Under this identifying 

assumption, a least squares estimator of  = (1, ..., K)' is 

 

(17) g = (Z'Z)+ Z'w 

 

where w = (w1', ..., wT')', Z = (Z1', ..., ZT')' and A+ denotes the Moore-Penrose generalised inverse of the 

matrix A.  Then an estimator of t is  

 

(18) bt = V1t S-1
t Ut'rt + V2tV2t'g. 

 

with variance-covariance matrix 

 

(19) Var(bt) = 2V2tV2t' (Z'Z)+ V2tV2t'. 

 

By construction, the estimator bt will yield estimates which satisfy the constraints given by (14), will 

yield point-invariant estimates of any parameters which are not subject to point-varying constraints, and, 
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unlike some other reparameterisation procedures, will yield estimates which are invariant to a reordering 

of the regressors in Xt.  A proof of these properties is contained in Doran, O'Donnell and Rambaldi.  

Finally, unlike the Kalman filter estimator of Doran and Rambaldi, the SVD estimator given by (17) and 

(18) is computationally simple: the singular value decomposition of Rt can be carried out using a single 

command in standard packages such as GAUSS and SHAZAM and, since Rt is of dimension J  K, the 

practical simplicity of this task is unaffected the sample size, T; and, since Z'Z is of dimension K  K, 

calculating the generalised inverse in (17) and (18) is also unaffected by sample size.  In the remainder of 

this paper I demonstrate the practical usefulness of the estimator using two different models and data sets. 

 

 

3.  Estimating the Characteristics of a Generalised Linear Production Function 

 

In this section I use an N = 2 input version of the quadratic production function given by (2) (with m = t) 

to approximate a two-input constant returns to scale generalised linear production function of the form 

given by (1).  The constant returns to scale property gives rise to the homogeneity constraint given by 

(10).  After appending an error term, et ~ N(0, 2), to (2), equations (2) and (10) can be written in the 

general matrix form given by (13) and (14).  Accordingly, the observation-varying parameters of the 

model can be estimated using the SVD estimator given by (17) and (18).  It is also possible to proceed 

using a restricted least squares (RLS) estimator (see Judge et al, p.858), by assuming the parameters are 

observation-invariant and imposing the sufficient conditions for homogeneity given by (12).  In this 

section I examine i) the performance of both estimators and ii) the sensitivity of the results to the choice 

of approximating functional form. 

 

I begin by generating T + S = 200 observations using (1) where, for illustrative purposes, I set 11 = 22 =  

1, 12 = 21 = 10, x1t = 100 + t and x2t ~ N(200, 100) for t = 1, ..., T + S.  These assumptions ensure that 

the production function is monotonic and concave, as required by economic theory.  The first T = 100 

observations are used for estimation purposes, and the remaining S = 100 observations are used for model 

validation. 

 

Selected parameter estimates are presented in Table 1: column A reports estimates of t =  = (1, ..., K)' 

obtained using the least squares estimator (17); column B reports estimates of t =  obtained using the 



9 

 

RLS estimator; and columns C to F report estimates of t for t = 1, 50, 100 and 150, obtained using the 

SVD estimator (18).  The numbers in parentheses are t-ratio's and indicate that all estimated slope 

coefficients are statistically significant at usual levels of significance.  It is noteworthy that i) the RLS and 

SVD estimates of the first-order coefficients, 1t and 2t, are similar; ii) the SVD estimates of 1t and 2t 

are point-invariant owing to the fact that these parameters do not appear in the constraints (10); iii) the 

estimates reported in column F (ie. for t = 150) are out-of-sample estimates (since T < 150); and iv) the 

SVD estimates of the ijt parameters are point-varying and quite large.  Of course, these estimates have 

no clear economic interpretation, and their magnitudes only matter to the extent that they are used to 

estimate yt and other economically-interesting characteristics of the production function. 

 

The RLS and SVD parameter estimates were used to generate within-sample estimates/predictions of yt 

using equation (2).  These predictions are denoted  ŷR(x1t, x2t) and ŷS(x1t, x2t) (t = 1, ..., T).  The within-

sample squared correlation between yt and ŷR(x1t, x2t)  was 0.9982, while the squared correlation between 

yt and ŷS(x1t, x2t) was 0.9999.  In practice, goodness-of-fit statistics of this size, together with t-ratio's of 

the size reported in Table 1, might cause researchers to use the RLS estimates for inference, rather than 

calculate the theoretically-appealing but somewhat more computationally-demanding SVD estimates.  In 

the remainder of this section I demonstrate that, even when goodness-of-fit statistics and t-ratio's are high, 

the consequences of persisting with the RLS estimator can be both undesirable and severe. 

 

The parameter estimates were also used to generate out-of-sample predictions of yt (ie. for t = T + 1, ..., T 

+ S), again using equation (2).   Both the within- and out-of-sample predictions were then used to obtain 

estimates of points on the unit isoquant, namely xt / ŷ
R(x1t, x2t) and xt / ŷ

S(x1t, x2t).  The within-sample 

estimates of these points are presented in Figure 1 and the out-of sample estimates are presented in Figure 

2.  Note that the RLS estimates lie on a straight line, reflecting the fact that they have been obtained from 

a single approximating quadratic function (and homogeneity-constrained quadratic functions are linear, 

an unsatisfactory characteristic of quadratic functions which has been noted by Diewert, p.294).  In 

contrast, each SVD estimate is obtained from a different approximating quadratic function, and 

collectively the SVD estimates smother the true isoquant.  Interestingly, each SVD approximating 

function can be represented as a straight line extending from the origin to a point on or near the unit 

isoquant, and the problem of estimating  can be viewed as one of choosing the slopes and lengths (ie. 

endpoints) of these straight lines. 
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The RLS and SVD parameter estimates have also been used to obtain estimates of the first- and second-

order derivatives of (1).  The RLS estimates of these derivatives are simply the estimated derivatives of 

the approximating quadratic function.  Thus, RLS estimates of the first-order derivatives of (1) are 

constants, and estimates of the second-order derivatives are zero.  Obtaining SVD estimates of the 

derivatives of (1) is not so straightforward, because the estimated first- and second-order derivatives of 

the SVD approximating functions cannot be regarded as estimates of the derivatives of (1), even at the 

appropriate points of approximation.  To see this, simply note that the first- and second-order derivatives 

of (2) can assume an infinite number of values and still satisfy (3) and (8), and there is not enough 

information in the sample to ensure (4) and (5) will hold.  Of course, SVD estimates of the derivatives of 

(1) can still be obtained as rates of change.  Estimates of yt /x1t, for example, can be obtained as: 

 

(20) 
yt

x1t
 = 

ŷS(x1t+ 0.5x1t, x2t) - ŷ
S(x1t- 0.5x1t, x2t)

x1t
 

 

where, in this paper, I set xjt = 0.01xjt (j = 1, 2).  Formulae for estimating the remaining derivatives are 

contained in the Appendix.  These formulae have been used to obtain estimates of the derivatives of (1) at 

each of the T + S points in the data set, and these estimates are presented in Figures 3 to 7.  Since the 

derivatives are plotted against t, the left-hand panel in each figure presents the within-sample estimates 

while the right-hand panel presents the out-of-sample estimates.  It is apparent from these figures that the 

common practice of using RLS to impose the homogeneity constraints (12) is severely restrictive: the 

RLS estimates are constant so that, in every case, the squared correlation between the RLS estimates and 

the true derivatives is zero.  In contrast, the SVD estimates of the derivatives of (1) are typically quite 

close to the true values.  Table 2 reports objective measures of this closeness in the form of squared 

correlation coefficients and root mean square percentage errors (RMSPEs).  Note from Table 2 and 

Figure 5 that the high RMSPE for the SVD out-of-sample estimates of 2yt /x1t
2  reflects the fact that these 

estimates are incorrectly signed.  In practice, incorrectly signed estimates of first- and/or second-

derivatives can be easily avoided using Bayesian methodology (see, for example, Terrell, 1996; 

O'Donnell, Shumway and Ball, 1999; and Griffiths, O'Donnell and Tan Cruz, 2000). 

 

To further illustrate the differences (and similarities) between RLS and SVD estimates of the 

characteristics of (1), I also consider the use of a translog functional form.  A translog function which can 

provide a second-order approximation to (1) at the point xm is 
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(21) yt = fm(xt) = exp{0m + 
i

N
 imln(xit) +  0.5

i

N


j

N
 ijmln(xit)ln(xjt)} 

where, again, the parameters, 0m, im and ijm = jim (i, j = 1, ..., N), vary across points of approximation.  

Conventional RLS estimates are obtained by assuming the parameters are observation-invariant (ie. im = 

i and ijm = ij for all i, j and m) and imposing the constraints 

 

(22)  
i

N
 i = 1    and   

i

N
 ij = 0   for j = 1, ..., N. 

 

In contrast, SVD estimates are obtained by setting m = t for all t (ie. using sample points as points of 

approximation) and imposing the constraints 

 

(23)  
i

N
 it + 

i

N


j

N
 ijtln(xjt) = 1   for t = 1, ..., T. 

 

Note that observation-invariance of the parameters and the constraints given by (22) are sufficient but not 

necessary for the constraints given by (23) to hold.   

 

The RLS and SVD translog parameter estimates are reported in Table 3.  Note that i) the RLS and SVD 

estimates are of similar orders of magnitude, ii) unlike the RLS estimates, the SVD estimates of the 

second-order coefficients are not significantly different from zero at usual levels of significance, and iii) 

the SVD estimates of 0t are point-invariant owing to the fact that these parameters do not appear in the 

constraints (23).  Despite the statistical insignificance of some of the SVD parameter estimates, SVD 

estimates of yt and the first- and second-order derivatives of (1) are still close to the true values:  RLS and 

SVD estimates of the unit isoquant are presented in Figures 8 and 9, and goodness-of-fit statistics are 

presented in Table 4.  Note that the SVD estimator still tends to outperform the RLS estimator.  

Interestingly, both estimators yield such good estimates of the characteristics of (1) that when RLS and 

SVD estimates of the first- and second-order derivatives of (1) are presented in graphical form, the 

differences between the estimated and true values are imperceptible. 

 

As a final illustration of the way in which the SVD estimator can be used to estimate the important 

characteristics of (1), consider the generalised linear function 
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 (24) yt = fm(xt) = 0m  +  
i

2
 imxit

1/2
 + 

i

2


j

2
 ijm xit

1/2
 xjt

1/2
  

 

where, yet again, the parameters, 0m, im and ijm = jim (i, j = 1, ..., N), are permitted to vary across 

points of approximation.  Conventional RLS estimates are obtained by assuming ijm = ij for all i, j and 

m, and constraining all other parameters to zero.  Under these assumptions and constraints, equation (24) 

collapses to equation (1) and, not surprisingly, the RLS estimator can be used to obtain a perfect fit.  In 

contrast, SVD estimates are obtained by setting m = t for all t and imposing the constraints 

 

(25)  0m  +  
i

2
 im xit

1/2
 = 0   for t = 1, ..., T. 

 

SVD estimation of (24) subject to the constraints (25) yields estimates of the ijm parameters which are 

identical to the true (constant) values.  Although the SVD estimates of the parameters in (25) are 

observation-varying and non-zero, equation (25) is satisfied and, consequently, the SVD estimator also 

yields a perfect fit.  Thus, RLS and SVD predictions and estimates of first- and second-order derivatives 

coincide exactly when the approximating functional form is identical to the true functional form.  The 

generality of this result is unproven.  If proven, it may provide a basis for designing tests of functional 

form. 

 

 

4.  Estimating the Characteristics of an Unknown Demand System 

 

In this section I use the Canadian expenditure data of Ryan and Wales to estimate the point-varying 

parameters of the LAID share equations (Deaton and Muellbauer) 

 

 (26) wit = im + 
j

N
 ijmln(pjt) + imln(Yt /Pt) i = 1, ..., N; t = 1, ..., T, 

 

where wit = pit qit /Yt is the budget share of the ith good in period t, pit is the price of the ith good, qit is 

quantity demanded, Yt is income, im, ijm = jim and im (i, j = 1, ..., N) are parameters to be estimated, 

and 
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 (27) ln(Pt) = 
j

N
 wjtln(pjt) 

 

is Stone's (1953) price index.   After appending N random error terms, et = (e1t, ..., eNt)' ~ N(0, 2IN), the 

system of N equations given by (26) can be written in the form of equation (13). 

 

The underlying expenditure function is HD1 in prices and, by Euler's Theorem, this means the budget 

shares given by (26) sum to unity.  Conventional RLS estimates are obtained by assuming the parameters 

are observation-invariant (ie. im = i, ijm = ij and im = i for all i, j and m) and imposing the 

constraints 

 

(28)  
i

N
 i = 1,     

j

N
 ij  = 0       and   

i

N
 i = 0. 

 

SVD estimates are obtained by setting m = t for all t and imposing the constraints 

 

(29) 
i

N
 it + 

i

N
  

j

N
 ijtln(pjt) + 

i

N
 itln(Yt /Pt)  =  1  for t = 1, ..., T. 

 

The constraints given by (29) and the cross-equation identifying restrictions ijm = jim can be written in 

the form of equation (14) with2 J  N(N – 1)/2.  Note, once again, that observation-invariance of the 

parameters and the constraints given by (28) are sufficient but not necessary for the homogeneity 

constraints given by (29) to hold3. 

 

The Ryan and Wales data consists of T = 47 annual observations on Canadian per capita expenditure on N 

= 3 broad commodity groups (food, clothing and miscellaneous) covering the period 1947 to 1993 

inclusive.  The data can be downloaded from the Journal of Business and Economic Statistics website. 

                                                            

2  At some data points these constraints may be linearly dependent, implying J may vary from point to 

point.  

3  Deaton and Muellbauer (p.316), among others, refer to the constraints given by (28) as adding-up 

constraints, and refer to the identifying constraints ij = ji as symmetry constraints.  Together these 

constraints imply 
j

N
 ji = 1, and this constraint is referred to as an homogeneity constraint even though 

it is not, by itself, sufficient for homogeneity to hold.    
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RLS and SVD estimates of the LAID system parameters are reported in Table 5, and goodness-of-fit 

statistics are reported in Table 6.  Note from Table 5 that most of the RLS and SVD parameter estimates 

are statistically different from zero at the 5% level of significance, and all the SVD estimates are 

observation-varying owing to the fact that all the parameters appear in the homogeneity constraints (29).  

From Table 6 it is clear that the SVD estimator dominates the RLS estimator in terms of predictive 

performance.  Note, in particular, that the squared correlation between w3t (the budget share of the 

miscellaneous group) and the RLS predictions is 0.79, while the squared correlation between w3t and the 

SVD predictions is 0.87.  In the case of the food and miscellaneous commodity groups, the SVD 

estimator also yields lower RMSPE statistics than RLS.  This goodness-of-fit is evident in Figures 10 to 

12 where I plot the observed and predicted budget shares.  The results depicted in these figures (and the 

results reported in Tables 5 and 6) are consistent with the conclusion drawn in Section 3, namely that 

observation-invariance of the parameters and the imposition of sufficient (but not necessary) conditions 

for homogeneity is overly restrictive.   

 

The SVD and RLS parameter estimates have been used to obtain estimates of the first derivatives of the 

commodity demand functions with respect to prices and income.  A representative selection of these 

estimated first-derivatives is presented in Figures 13 to 16: Figure 13 presents estimates of q1t /p1t at 

every point in the sample, Figure 14 presents estimates of q2t /p3t = q3t /p2t, Figure 15 presents 

estimates of q3t /p3t, and Figure 16 presents estimates of q1t /Yt.  It is apparent from these figures that 

i) there are marked differences between the SVD and RLS estimates of some of the first-derivatives in 

some time periods (see, for example, the estimates of q2t /p3t in periods t = 25, ..., 47, presented in 

Figure 14), ii) there is considerably more point-to-point variation in the SVD estimates than the RLS 

estimates (see, for example, Figures 15 and 16), and iii) several SVD estimates have signs which are 

theoretically implausible.  Interestingly, I made exactly the same observations concerning the estimated 

first- and second-order derivatives of the generalised linear production function in Section 3, and still 

went on to conclude that the SVD estimates were superior to the RLS estimates.  By implication, the 

point-to-point variations and sign patterns exhibited by the SVD estimates in Figures 13 to 16 do not 

imply the SVD estimates are generally further from the truth than the RLS estimates.  Rather, these 

estimates provide reasons for, once again, obtaining SVD estimates within a framework which ensures 

the first- and second-derivatives are correctly signed (eg. a Bayesian framework).  They also provide 

reasons for considering the use of alternative functional forms.   
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5.  Summary and Conclusion 

 

Much of econometrics is concerned with estimating functions which are homogeneous of degree k (HDk) 

in at least some their arguments.  The profit function of the firm, for example, is HD1 in output and input 

prices, constant returns to scale production functions are HD1 in input quantities, and the consumer's 

income compensated demand functions are HD0 in product prices.  The exact mathematical form of these 

functions is typically unknown, and in empirical work it is common practice to employ second-order 

flexible forms.  These flexible forms are popular because, at a point of approximation, their first- and 

second-order derivatives can be set equal to those of the unknown function.  Regrettably, they are usually 

estimated under the assumption that the parameters are observation-invariant, with the implication that 

they can only approximate the unknown function at a single point.   

 

The assumption that the parameters are observation-invariant has important implications for the way in 

which homogeneity constraints are imposed.  Specifically, it leads econometricians to impose parametric 

adding-up constraints which are sufficient, but not necessary, for homogeneity to hold.  By implication, 

this places unnecessary restrictions on the structure of underlying preferences and technologies, and limits 

the ability of the model to capture relevant characteristics of underlying economic behaviour.  It is not 

surprising, therefore, that these homogeneity constraints are often rejected in empirical work (for a 

discussion of this 'homogeneity puzzle', see, for example, Buse, 1998). 

 

In this paper I have shown how these problems can be overcome by allowing the parameters of flexible 

form models to vary deterministically from one point of approximation (or observation) to another.  By 

allowing the parameters to vary across observations, it is possible to impose homogeneity constraints in 

the exact form prescribed by Euler's Theorem.  Euler's Theorem typically gives rise to equality constraints 

which involve both the data and the unknown observation-varying parameters.  When the model and the 

constraints are both linear in the unknown parameters, it is possible to obtain constrained estimates of the 

parameters using the Singular Value Decomposition (SVD) estimator of Doran, O'Donnell and Rambaldi.  

Unlike other estimators which can be used to estimate observation-varying parameters, the SVD estimator 

yields observation-invariant estimates of any parameters which are not subject to observation-varying 

constraints, and yields parameter estimates which are invariant to a reordering of the regressors. 
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I illustrated the approach using two examples.  First, I used artificially-generated data to estimate the 

characteristics of a constant returns to scale generalised linear production function.  The results confirmed 

that the conventional restricted least squares (RLS) estimator is generally less 'flexible' than the SVD 

estimator.  Interestingly, the RLS and SVD estimators yielded identical predictions only when the 

approximating functional form was also generalised linear.  This property of the estimators may provide a 

basis for testing for functional form.  Second, I used the Canadian expenditure data of Ryan and Wales to 

estimate the characteristics of an unknown expenditure function.  Again, the SVD estimator appeared to 

outperform the RLS estimator in terms of predictive performance.  Both examples reinforced the 

commonly-held view that the parameters of economic models should be estimated in a (Bayesian) 

framework which allows inequality (ie. curvature) constraints to be imposed.  

 

Finally, despite (or perhaps because of) the plausibilty of the empirical results, there appear to be several 

opportunities for further research.  Aside fom the imposition of curvature constraints, the most interesting 

and potentially useful avenues of further investigation appear to be i) relaxing the observation-invariance 

assumption on t, ii) specifying a more general covariance structure for the random error vector et, and iii) 

using discrepancies between RLS and SVD estimates as a basis for testing for functional form.  With or 

without these developments, the estimation approach outlined in this paper appears to provide numerous 

and wide-rangeing opportunities for empirical research.  
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Appendix A 

Estimating Derivatives as Rates of Change 

 
 

 (A.1) 
yt

x1t
   

ŷS(x1t+ 0.5x1t, x2t) - ŷ
S(x1t- 0.5x1t, x2t)

x1t
 

 

(A.2) 
yt

x2t
   

ŷS(x1t, x2t + 0.5x2t) - ŷ
S(x1t, x2t - 0.5x2t)

x2t
 

 

(A.3) 
2yt

x1t
2    

ŷS(x1t + 0.5x1t, x2t)  +  2 ŷS(x1t, x2t)  +  ŷS(x1t- 0.5x1t, x2t)

(0.5x1t)2  

 

(A.4) 
2yt

x2t
2    

ŷS(x1t, x2t + 0.5x2t)  +  2 ŷS(x1t, x2t)  +  ŷS(x1t, x2t - 0.5x2t)

(0.5x2t)2  

 

(A.5) 
2yt

x1t x2t
   (1/x1tx2t)  [ ŷS(x1t + 0.5x1t, x2t + 0.5x2t) - ŷ

S(x1t - 0.5x1t, x2t + 0.5x2t) 

- ŷS(x1t + 0.5x1t, x2t - 0.5x2t) + ŷS(x1t - 0.5x1t, x2t - 0.5x2t)] 
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Table 1 
Quadratic Approximation(s) to a Generalised Linear Production 

Function: Parameter Estimates a 
  

  SVD 
   

 Parameter Estimate Parameter RLS t = 1 t = 50 t = 100 t = 150 
  (A)  (B) (C) (D) (E) (F) 
  

 
 1 -48.367 0t - -61.310 -28.499 -40.251 -73.664 
  (-0.95)   (-1.83) (-0.82) (-1.10) (-2.11) 
 

 2 12.476 1t 12.607 12.476 12.476 12.476 12.476 
  (136.70)  (229.148) (136.70) (136.70) (136.70) (136.70) 
    
 3 9.990 2t 9.531 9.990 9.990 9.990 9.990 
  (31.02)  (225.689) (31.02) (31.02) (31.02) (31.02) 
    
 4 -4.582E+7 11t - -4.569E+7 -4.627E+7 -4.615E+7 -4.424E+7 
  (-9.93)   (-10.22) (-10.76) (-11.27) (-12.18) 
 

 5 3.670E+7 12t - 3.722E+7 3.550E+7 3.601E+7 3.907E+7 
  (26.85)   (20.79) (17.37) (15.75) (14.64) 
 

 6 -2.640E+7 22t - -2.588E+7 -2.721E+7 -2.676E+7 -2.552E+7 
  (-20.78)   (-35.21) (-36.64) (-36.40) (-33.90) 
  
a Numbers in parentheses are t-ratios. 
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Table 2 
Quadratic Approximation(s) to a Generalised Linear Production 

Function: Goodness-of-Fit Statistics  
  

  Within-sample Out-of-Sample All observations 
  (t = 1, ..., T) (t = T + 1, ..., T + S) (t = 1, ..., T + S) 
       

  RLS SVD RLS SVD RLS SVD 
  

 
Squared Correlation Between 
Actual and Predicted 
 

yt  0.9982  0.9999  0.9788 0.9928 0.9943  0.9978 

yt /x1t  0.0000  0.9421  0.0000 0.3281 0.0000  0.6901 

yt /x2t  0.0000  0.9792  0.0000 0.7273 0.0000  0.9416 

2yt /x1t
2   0.0000  0.9828  0.0000 0.6652 0.0000  0.9501 

2yt /x1t x2t  0.0000  0.1008  0.0000 0.7319 0.0000  0.6880 

2yt /x2t
2   0.0000  0.9122  0.0000 0.2088 0.0000  0.6420 

 
 
Root Mean Square Percentage Error (RMSPE)  
Between Actual and Predicteda  
 

yt  0.44 0.08 3.31 1.81 2.36 1.28 

yt /x1t  9.12 2.54 27.81 19.74 20.70 14.07 

yt /x2t  8.98 1.84 22.03 8.40 16.82 6.08 

2yt /x1t
2   100.00 55.93 100.00 122.90 100.00 95.48 

2yt /x1t x2t  100.00 27.03 100.00 75.10 100.00 56.44 

2yt /x2t
2   100.00 77.51 100.00 16.27 100.00 56.00 

 
  

a In the case of ŷt (the within-sample prediction of yt), for example, RMSPE is calculated as the square root of 

(1/T)
t=1

T

 [100  (yt - ŷt)/yt]2. 
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Table 3 
Translog Approximation(s) to a Generalised Linear Production 

Function: Parameter Estimates a 
  

  SVD 
   

 Parameter Estimate Parameter RLS t = 1 t = 50 t = 100 t = 150 
  (A)  (B) (C) (D) (E) (F) 
  

 
 1 3.278 0t 3.091 3.278 3.278 3.278  3.278 
  (6.902)  (7.337E+6) (6.902) (6.902) (6.902)  (6.902) 
 

 2 0.503 1t 0.500 0.464 0.466 0.467 0.467 
  (68.961)  (1.652E+5) (5.120) (5.345) (5.539) (5.604) 
    
 3 0.499 2t 0.500 0.460 0.462 0.463 0.463 
  (143.843)  (1.652E+5) (4.576) (4.758) (4.913) (4.966) 
    
 4 0.312 11t 0.023 0.134 0.126 0.121 0.115 
  (0.426)  (2557.617) (0.476) (0.483) (0.487) (0.493) 
 

 5 0.269 12t -0.023 -0.113 -0.114 -0.114 -0.114 
  (0.363)  (-2557.617) (-0.495) (-0.494) (-0.493) (-0.493) 
 

 6 0.314 22t 0.023 0.109 0.117 0.121 0.127 
  (0.426)  (2557.617) (0.499) (0.491) (0.487) (0.481) 
  
a Numbers in parentheses are t-ratios. 
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Table 4 
Translog Approximation(s) to a Generalised Linear Production 

Function: Goodness-of-Fit Statistics  
  

  Within-sample Out-of-Sample All observations 
  (t = 1, ..., T) (t = T + 1, ..., T + S) (t = 1, ..., T + S) 
       

  RLS SVD RLS SVD RLS SVD 
  

 
Squared Correlation Between 
Actual and Predicted 
 

yt   1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 

yt /x1t   1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 

yt /x2t   1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2yt /x1t
2    1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2yt /x1t x2t   0.9998 1.0000 0.9998 1.0000 0.9998 1.0000 

2yt /x2t
2    0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 

 
 
Root Mean Square Percentage Error (RMSPE)  
Between Actual and Predicteda 
 

yt   0.2150  0.0027 0.1025 0.0019  0.1684  0.0023  

yt /x1t   0.2178  0.0030 0.1176 0.0062  0.1750  0.0049  

yt /x2t   0.2124  0.0085 0.0877 0.0114  0.1625  0.0100  

2yt /x1t
2    0.3171  0.0614 0.1215 0.1369  0.2401  0.1061  

2yt /x1t x2t   0.3171  0.1138 0.1215 0.0517  0.2401  0.0884  

2yt /x2t
2    0.3171  0.2401 0.1215 0.2937  0.2401 0.2683  

 
  

a See footnote to Table 2. 
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Table 5 
LAID System Approximation(s) to an Unknown Demand System: Parameter Estimates a 

  

  SVD 
   

 Parameter RLS t = 1 t = 10 t = 20 t = 30 t = 40 t = 47 
  (A) (B) (C) (D) (E) (F) (G) 
  

 
 1t 0.502 2.100 2.087 2.087 2.076 2.023 1.989 
  (52.799) (2.791) (2.784) (2.768) (2.718) (2.761) (2.808) 
 

 11t 0.081 -0.341 -0.357 -0.350 -0.344 -0.313 -0.289 
  (3.935) (-1.346) (-1.381) (-1.386) (-1.384) (-1.185) (-1.126) 
  
 12t =21t -0.094 -0.576 -0.589 -0.583 -0.577 -0.551 -0.522 
  (-3.817) (-2.625) (-2.624) (-2.652) (-2.651) (-2.433) (-2.412) 
  
 13t =31t 0.014 -0.536 -0.553 -0.545 -0.538 -0.506 -0.469 
  (0.871) (-2.181) (-2.203) (-2.229) (-2.247) (-2.001) (-1.940) 
 

 1t -0.023 -1.069 -1.066 -1.076 -1.102 -1.203 -1.272 
  (-3.478) (-1.931) (-1.935) (-1.950) (-2.030) (-2.119) (-2.095) 
 
 
 2t 0.183 1.808 1.795 1.796 1.784 1.731 1.698 
  (11.141) (2.504) (2.495) (2.481) (2.438) (2.475) (2.513) 
 

 22t 0.069 -0.279 -0.288 -0.283 -0.278 -0.257 -0.223 
  (1.665) (-1.308) (-1.330) (-1.332) (-1.324) (-1.166) (-1.058) 
  
 23t =32t 0.025 -0.586 -0.600 -0.593 -0.587 -0.560 -0.517 
  (1.031) (-2.294) (-2.303) (-2.321) (-2.319) (-2.127) (-2.078) 
 

 2t 0.009 -1.054 -1.051 -1.061 -1.087 -1.187 -1.257 
  (0.790) (-2.011) (-2.017) (-2.032) (-2.117) (-2.194) (-2.164) 
 
 
 3t 0.315 2.177 2.164 2.165 2.153 2.100 2.067 
  (31.617) (2.840) (2.833) (2.817) (2.769) (2.809) (2.856) 
 

 33t -0.039 -0.612 -0.631 -0.621 -0.614 -0.581 -0.531 
  (-1.930) (-2.556) (-2.573) (-2.608) (-2.627) (-2.351) (-2.290) 
 

 3t 0.014 -1.237 -1.234 -1.244 -1.270 -1.371 -1.440 
  (1.959) (-2.188) (-2.194) (-2.206) (-2.286) (-2.364) (-2.326) 
 
  
a  Numbers in parentheses are t-ratios.  Subscripts refer to commodity groups (1 = food, 2 = clothing and 3 = 

miscellaneous). 
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Table 6 
LAID System Approximation(s) to an Unknown Demand System: Goodness-of-Fit Statistics  

  

  RLS SVD  
  

 
Squared Correlation Between Actual 
and Predicted 
 

w1t (food)   0.95 0.96  

w2t (clothing)  0.92 0.92  

w3t (miscellaneous)  0.79 0.87  
 
 
RMSPE Between Actual and Predicted a 
 

w1t (food)   1.62 1.43  

w2t (clothing)  3.30 3.66  

w3t (miscellaneous)  3.51 2.73  
 
  

a See footnote to Table 2. 
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Figure 1.  Within-Sample Estimates of Points on the Unit Isoquant 
 

 

Figure 2.  Out-of-Sample Estimates of Points on the Unit Isoquant  
 
 

Figure 3.  Estimates of yt /x1t 
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Figure 4.  Estimates of yt /x2t 

 
 

Figure 5.  Estimates of 2yt /x1t
2  

 
 

Figure 6.  Estimates of 2yt /x1t x2t 
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Figure 7.  Estimates of 2yt /x2t
2  

 
 

Figure 8.  Within-Sample Estimates of Points on the Unit Isoquant 
 
 

Figure 9.  Out-of-Sample Estimates of Points on the Unit Isoquant 
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Figure 10.  Estimates of the Food Budget Share (w1t) 
 
 

Figure 11.  Estimates of the Clothing Budget Share (w2t) 
 
 

Figure 12.  Estimates of the Miscellaneous Budget Share (w3t) 



31 

 

Figure 13.  Estimates of q1t /p1t 

 
 

Figure 14.  Estimates of q2t /p3t 

 
 

Figure 15.  Estimates of q3t /p3t 
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Figure 16.  Estimates of q1t /Yt 
 
 
 
 


