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A problem encountered in the econometric estimation of dynamic models 
of livestock systems is dynamic instability during simulation of models.  
In the case of systems where economic decisions are involved in the 
breeding and the slaughter of animals it is possible for parameters to be 
obtained which generate dynamic instability.  In the paper, a simple 
representation of the dynamics of a livestock system is examined using 
techniques of dynamic analysis.  The dynamic stability of such models 
depends fundamentally on the parameters determining the births and 
deaths and thus the relative flows in and out of the stock of animals.  In 
some situations very narrow stability ranges for the values of the 
parameters are observed. 
  

  
  
  
  
The motivation for this paper derives from four observations:  first, a number of 
researchers have discovered that during the construction of econometric models for 
                                                 
* Helpful comments on an earlier draft by Jock Anderson, David Harvey, Geoff Kaine and Alan 
Woodland are gratefully acknowledged.   
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various beef industries their models have been dynamically unstable, for example, 
Foote (1954),  Crom (1970) and Yver (1971).  It is suspected that many others have 
had such problems but they have not been reported in the literature.  Second, only in a 
limited number of cases have the dynamic properties of beef models been examined 
(for example, Foote (1954) for the feed-livestock economy, Reeves, Longmire and 
Reynolds (1980 ) and Freebairn and Rausser (1975)).  Third, in major model building 
projects the costs incurred in searching for a model structure and coefficient estimates 
which give dynamically stable simulation results can be very considerable.  Work 
carried out at Agriculture Canada was a case in point (Agriculture Canada 1980).  
Finally, the relationships between the structure and parameters of a beef model and its 
characteristic roots do not appear to have been examined. 
  
Given these observations and the fact that large complex models do not provide a 
suitable means for examining the relationships between the characteristic roots (that 
is, dynamic properties of a model) and the coefficients of a system, it was apparent 
that some form of abstraction was necessary.  Thus, the objective for this paper is to 
report on the stability properties of a small model designed to capture some of the key 
elements of beef industry models and to consider some of the factors that influence the 
dynamic stability of such a model.  From such results it is always difficult to draw 
generalisations for larger more complex models but some general principles are likely 
to become apparent.  First, however, the question of dynamic stability must be 
addressed. 
  
Partial Models and Instability 
  
In constructing dynamic econometric models, analysts, on occasion, are faced with the 
issue of whether or not a partial equilibrium system should be accepted as satisfactory 
if it is dynamically unstable.  Although observations on the real world would seem to 
indicate that dramatic changes can occur from time to time these changes can often be 
attributed to a single cause (for example, effects of the oil price rises during the energy 
crisis, rapid shifts in exchange rates, disease outbreaks, etc.) or a set of causes.  These 
changes can be labelled as 'shocks' and for a partial equilibrium system can be 
generally considered as exogenous.  (In the context of this paper partial equilibrium is 
taken to mean that some of the major influences on a system are treated as 
exogenous.)  Thus, in partial models some fluctuations will have exogenous sources.  
This in no way resolves the question of whether or not a partial system should be 
accepted if it is internally unstable.  Foote (1954, p. 59) in considering the dynamics 
of the United States feed-livestock economy appeared to imply that dynamically 
unstable models may be acceptable but warned that the system would '... become 
inapplicable to the facts well before any such explosive tendencies became apparent to 
the observer'.  Pindyck and Rubinfeld (1976, p. 345) have also suggested that if the 
dynamic instability of a model is not severe the model may be adequate for the 
purposes of policy analysis. 
 
Observation on the real world would also seem to indicate that the effects of shocks on 
our economic system tend to dissipate as time passes, rather than intensify.  This 
seems reasonable on the grounds that usually decisions can be made and then actions 
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taken which will alleviate some of the undesirable effects.  Thus, much of our 
economic system as a whole will be dynamically stable even though it may be stable 
around economically, politically or socially undesirable states from time to time. 
 
In a partial model of an economic system, some of the linkages to other sectors of the 
economy are usually specified as exogenous or assumed to be of no importance.  
Thus, a one-way causality is implied from the general economic system to the 
particular sector of the economy being modelled.  Since part of the feedback is not 
specified in such models it would seem possible that a partial model of an economic 
system might be dynamically unstable when treated on its own but when fully 
integrated into an economic system the whole is dynamically stable (in general 
equilibrium systems the condition of gross substitution is required for perfect stability 
(Hicks, 1939 and Metzler, 1945)).  If such was the case then it would seem 
reasonable to conclude that the bounds of the model were improperly specified.  The 
corollary, of course, is that observed stability of a complete system (such as the food 
sector) may not imply stability of all the components of the system (such as a beef 
industry).  The consequence of this is that it is vital to examine a model which is to be 
used for policy purposes for dynamic stability and also to have some a priori notions 
about the dynamic stability of an industry. 
  
Various forms of misspecification may also affect the dynamic stability of models.  
Use of linear functions when non-linear would be theoretically correct and the effects 
of missing data or missing inter-sectoral links may all be important.  Specification of 
expectation mechanisms without observed data and the making of assumptions about 
lagged decision responses may all have a bearing on the dynamic stability of a model.  
Thus, it must be concluded that specification of models will be an integral part of 
determining whether or not economic models are dynamically stable. 
 
Approaches to Modelling the Beef Sector 
 
The beef sector has been one of the most frequently modelled agricultural sectors.  A 
wide variety of different approaches has been used for the specification of models of 
the sector but on the supply side there appear to have been only two broad approaches.  
The first is one in which a slaughter function is estimated containing an inventory 
variable and then a separate inventory demand function is estimated (for example, 
Freebairn and Rausser 1975, the Wharton Agricultural Model reported in Chen 1976, 
and Haack, Martin and MacAulay 1978).  The second is one in which the interaction 
between slaughter and inventory is taken into account more explicitly so that the 
inventory is the outcome of marketing and replacement decisions plus, of course, 
births and deaths (Crom 1970; Yver 1971; Nores 1972; Jarvis 1974; Bain 1977; 
Reeves, Longmire and Reynolds 1980; Ospina and Shumway).  It is worth noting that 
mathematically these two approaches can be shown to be equivalent but that 
econometrically the two approaches may provide quite different results. 
  
Although over time there has been a considerable improvement in the understanding 
of how to model the decision processes in the beef sector, more would seem to be 
required if models are to become sufficiently reliable for consistent and continuous 



 

 
 
 

5

use by policy advisers.  Closer attention might be given to the physical and biological 
links within the beef system.  This is likely to be particularly true for quarterly 
models where the natural link between cohorts and age-groups is lost compared with 
annual models.  In quarterly models it would seem to be necessary to specify the way 
in which cattle flow from one age group to the next.  Behavioural equations can be 
developed for such a specification.  The advantages of doing so are that such models 
are more credible to industry participants and therefore more useful for policy 
purposes, that the demographic relationships will tend to constrain the model so that 
some of the potential sources of instability are eliminated and that effects of 
technological change on fertility rates, death rates and rates of growth etc. can be 
taken into account. 
  
From reviewing the various approaches to modelling the beef sector it is possible to 
distil out a relatively simple model which captures some of the key features and which 
carries sufficient theoretical richness to be useful.  Emphasis in this paper will be on 
the second type of model discussed above. 
  
A Simplified Beef Model 
  
The basic relationships in the simplified model developed here for didactic purposes 
consist of a demand function representing a retail level demand (either the price or 
quantity dependent form could be used without affecting the results), a slaughter 
function based on a farm level price, a price transmission equation linking the two 
levels together, an inventory-slaughter balancing identity and a calves-born equation.  
The model can be viewed as either an annual or quarterly model.  The various 
equations may be written as follows (Greek symbols are used for model parameters 
and only lags are indicated in brackets with all other variables referring to the current 
period): 
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a)  Retail demand 
  
(1) Q =  -  PR 
  
b)  Slaughter function 
  
(2) Q = +  PF(-1) +  I(-1) 
  
c)  Price transmission 
  
(3) PF =  +  PR(-1) 
  
d)  Inventory-slaughter balance 
  
(4) I + Q = I(-1) + B 
  
e)  Calves born 
  
(5) B =  I(-1) 
 
where: 
  
Q is the quantity demanded and slaughtered ( in animal equivalents); 
  
PR is the retail price of beef; 
  
PF is the farm price of cattle; 
  
I is the inventory of animals on hand at the beginning of a period; 
  
B is the number of calves born. 
  
This model captures the essential demand, slaughter and inventory relationships 
assuming that cattle are not subdivided into various categories but treated as 
homogeneous.  The model thus ignores: (a) animal classes; (b) deaths and other 
losses; (c) carcass weight effects; (d) inter-regional trade; (e) numerous shifter 
variables including any price response on the calves born equation (to be considered 
later). The price transmission equation implies a mixed, fixed and/or proportional 
margin between the farm and retail levels and a delay in the transmission of price from 
farm to retail levels.  A diagrammatic representation of the model is given in Figure 
1. 
  
The size of the parameters in the model are hypothesised to satisfy the following 
relationships indicated in Table 1. 
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Figure 1  Diagrammatic representation of a simplified beef model 
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Table 1 
Parameter Ranges for the Specified Model 

Coefficient and range Comment 
 > 0 Demand slope coefficient assumed to be downward 

sloping 
 

 Short-run price effect on slaughter, likely to be 
negative 
 

0 <  < 1 Slaughter rate from inventory the size of which will 
depend on the definition of the inventory but for all 
cattle might be of the order of 0.3 to close to 1.0 for a 
category such as steers 
 

  Coefficient of price transmission likely to be 
approximately 1.0 
 

0 <  < 1 Calving rate will depend on the definition of the 
inventory category.  If it is for female cattle it would 
be about 0.85 otherwise less than this value 

 
  
By substituting equation (5) into (4) the system may be reduced in size by one variable 
and written in matrix form as: 
  
 

(6)   







 -1 -  0  0

 -1  0  0  0
 -1  0  0 -1
  0   -1  0

 









 Q

 PR

 PF

 I

  + 







  0   0  0   0

 0   0     
  0   0  0  1+
  0    0   0

 









 Q(-1)

 PR(-1)

 PF(-1)

 I(-1)

   =  







 -
 -
  0
 -

  

 
This system of equations may be written more compactly as: 
  
(7) Ju + Kv = d 
  
where J and K are the respective matrices of coefficients in equation (6) and u, v and d 
the respective vectors of the variables in the system. 
  
Having represented the beef sector model in a compact form it is now possible to 
analyse its dynamic properties.  Following Chiang (1984, pp. 554-6; pp. 608-12) it is 
possible to find the equilibrium solution to this system using the particular integrals 
and a set of starting values.  The time path is the sum of the particular integral and the 
complementary function.  It is also possible to examine the dynamic properties of the 
system using the characteristic equation (details given in the Appendix). 
  
    In the case of the model given in equation (6) the characteristic equation is: 
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(8) b4  +  (  -  - 1) b3  +  

  b2  -  


  (1 + ) b  =  0.  

  
A common factor of b may be taken out of equation (8) so that it is necessary to find 
the roots of a third degree equation rather than a fourth degree equation.  Even with 
one of the solutions of b = 0 the equation proved too complex to solve algebraically so 
as to obtain information on how the parameter values affect the value of the roots of 
the system. 
  
Some Observations on the Characteristic Equation 
  
a)  The discriminant 
  
If all the parameters of the model are positive then the discriminant of the 
characteristic equation will also be positive.  This implies that the characteristic 
equation will have one real root and two complex conjugate roots.  It also happens 
that, if the parameters are positive, all the roots will be greater than unity. 
  
b)  Zero values for  or  
  
Equation (8) may be redefined as: 
 
(9) b4 + a1 b3 + a2 b2 + a3 b = 0 , 
  
where: 
  
 a1 =  -  - 1 , 
  

 a2 =  

  ,  

  

 a3 = - 

  (1 + ) .  

  
It is clear that if  or  equal zero then equation (9) becomes: 
  
(10) b3(b + a1) = 0 . 
  
The roots of this equation are b = 0 or b = -a1. 
  
The implication is that if there is no price effect in the slaughter equation, and/or a 
constant margin between the retail level and the farm level, then the roots of the 
system are simply a function of the difference between the herd slaughter rate and the 
calving rate.  Since -a1 is the calving rate less the slaughter rate plus one then the root 
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can only have a value of less than one if the slaughter rate is greater than the calving 
rate.  At first sight this is a strange result.  However, it is more reasonable if one 
considers what would be required for a cycle of constant amplitude.  For this to occur 
the root would have to have a value of exactly 1.0 and for such a value the calving rate 
would have to exactly equal the slaughter rate.  From a strictly biological point of 
view this makes sense.  If the calving rate was greater than the slaughter rate 
(analogous to the death rate in some biological systems) then numbers should expand 
in the longer term.  If the calving rate is less than the slaughter rate then numbers will 
fall in the longer term. 
 c)  Small values for  or  or large  
  
In a similar way, as  or  become small, or  large, then the coefficients a2 and a3 
tend to zero.  As this happens the absolute value of the dominant root of the system 
tends towards the value of a1 (that is,  -  - 1). 
  
d)  Negative values for  
  
In most beef models the short-term price effect for slaughter is found to be negative 
(Jarvis 1974).  If this is the case then the signs of the terms a2 and a3 are reversed and 
therefore their effects on the roots of the equation are also reversed.  With signs 
reversed and the value of (1 + ) in a3 greater than 1.0, since the calving rate must be 
positive, then as the value of  increases to a large value, a3 will have a larger positive 
effect than the negative effect of a2.  Because of the difficulty of deciding what the 
overall effects on the roots would be, it was decided to carry out a set of simulation 
experiments. 
  
Some Simulation Experiments 
  
In an effort to obtain more information about the nature of the roots, a computer 
program was developed to calculate the roots of equation (8) for a range of values of 
the parameters.  The results can be summarised in the following diagrams for 
reasonable ranges of the parameters. 
  
a)  Zero values for  or  
  
If  or  are zero then the parameters  and  will determine the roots as in Figure 2. 
 
From Figure 2 it can be seen that if there were a constant margin, or no slaughter price 
response, then for the model to be stable the slaughter rate coefficient, , in the 
slaughter equation has to exceed the calving rate coefficient, .  In econometrically 
estimated beef models this is not likely to be the case, nor is it likely to be the case in 
reality. 
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Figure 2  Combinations of (the slaughter rate) and  (the calving rate) for values of 

the dominant root of 0.9, 1.0 and 1.1 given either  or  are zero (or  very large) 
 
b)  Price effects included 
  
By choosing values for ,  and  the combinations of  (slaughter price coefficient) 
and  (demand coefficient) were varied in a grid pattern (for example, see Table 2).  
Using the grid search it was possible to construct Figure 3 approximately (d* refers to 
the absolute value of the dominant root which is the modulus in the complex case).  
The most significant conclusion to be drawn from Figure 3 is that for such a beef 
model to be dynamically stable the coefficient on the price variable, PF, in the 
slaughter equation must be negative. 
  

Table 2 
Absolute Values of the Dominant Root for a Given Set of Parameter Valuesa 

 
  
value 

 value 

 -10 -8 -6 -4 -2 0 2 4 6 8 10 
1.0 3.22 2.93 2.6 2.2 1.64 1.00 2.92 2.5 2.86 3.16 3.43 
2.0 2.41 2.20 1.95 1.65 1.22 1.00 1.68 2.02 2.28 2.50 2.69 
3.0 2.04 1.86 1.21 1.38 1.02 1.00 1.53 1.81 2.02 2.20 2.36 
4.0 1.81 1.64 1.46 1.22 0.89 1.00 1.43 1.68 1.87 2.02 2.16 
5.0 1.64 1.50 1.32 1.11 0.80 1.00 1.37 1.59 1.76 1.90 2.02 
10.0 1.22 1.11 0.97 0.80 0.54 1.00 1.22 1.37 1.49 1.59 1.68 

0.8 0.9 1.0

1.0

0.9

0.8




b=+0.9 b=+1.0

b=+1.1
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aValues of the coefficients other than  (demand slope) and  (price coefficient in slaughter function) 
were set as follows:   = 0.9,  = 0.8,  = 0.90.  Values in the table are the modulus of the complex 
conjugate roots where complex roots occur otherwise they are the absolute value of the dominant root. 
 
 
 
 

 

Figure 3  Combinations of  and  for which the dominant root has a modulus of 1.0 
with  = 0.9,  =0.8 and  =0.9 
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Figure 4  Combinations of  and  for which the dominant root has a modulus of 1.0 

with  = 0.9,  =0.8 and  =0.95 
 

Changing the scenario to  = 0.9,  = 0.8 and  = 0.95 (that is, the calving rate is 
greater than the off-take rate) changes the diagram so that the dominant root at  = 0 
has an absolute value of 1.05 (that is  -  - 1 = 0.9 - 0.95 - 1 = -1.05). 
 
In the situation illustrated in Figure 4 the area of damped cycles has been tipped 
slightly downwards.  Thus as the off-take rate is smaller than the calving rate, more 
negative coefficients are needed on the price variable in the slaughter equation to 
maintain dynamic stability. 
  
If the scenario is again changed so that the off-take rate is greater than the calving rate 
then the zone of damped cycles is tipped upwards with small positive coefficients on 
the price variable in the slaughter equation being possible. 
  
It is also possible to change the width of the band for which the model is dynamically 
stable by changing the value of , the price transmission coefficient.  As the value of 
this coefficient is decreased the stability band widens given fixed values for the other 
coefficients.  Very large values make the band narrower. 
  
By inserting the values of the various coefficients in a set of equations similar to 
equations (1) to (5), the model was simulated through time.  A limited number of the 
parameter combinations were tested and found to confirm the above results. 
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An Alternative Specification 
  
To observe the effect of a slight change in specification on the dynamic stability of the 
model equation (5) was modified to include a price response.  The basis for this was 
that the breeding decision is likely to be affected by expected prices represented in a 
simple way as a lagged price.  Thus: 
  
(11) B =   I(-1) +  PF(-1) ,    > 0 . 
  
The addition of the price variable leads to the following  characteristic equation: 
  
(12) b4 + a1 b3 + a2 b2 + a3 b  =  0 
  
where; 
  
 a1 =   -   - 1 , 
  

 a2 =  

 ,  

  

 a3 =  

(  -   (1 + ))  .  

  
In this case the coefficients are the same as in the earlier version of the model except 
for a3.  This coefficient now contains the product of the coefficient on the price 
variable in the births equation, , and the coefficient on the inventory variable in the 
slaughter equation, . 
  
The effects of changing the model as indicated are illustrated in Figure 5 for different 
values of the price coefficient in equation (11). The change in the structure of the 
model has made it possible to have positive values on the short-run price effect in the 
slaughter equation (2).  The stability region has been shifted upwards particularly on 
the left-hand side of the diagram.  The movement upwards is greater the larger the 
value for .  The significance of this change in the model is that a positive coefficient 
on lagged price in the births equation can compensate to some extent for a positive 
short-run effect of price on slaughter. Thus, one means of raising the chances of a 
stable model of the type illustrated is to make sure that price effects are included on 
the inflow (births) side of the model as well as on the outflow or slaughter side. This 
would be particularly so if the short-term price effect was found to be positive. 
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Figure 5 Combinations of  and  for which the dominant root has a modulus of 1.0 

with  = 0.9,  =0.8 and  =0.95 and  =0.5 and 1.5 
 
 
Concluding Comments 
  
From these results it is not surprising that models of the beef sector are often unstable.  
The possible combinations of parameters for which the roots lie within the unit circle 
would appear to be somewhat limited.  With data errors, estimation errors, 
inappropriate methods of estimation, and difficulties in defining econometric 
structures, the chance of all the coefficients being within the appropriate set of ranges 
is not likely to be high when the ranges are narrow. 
  
Increasing the demand coefficient, ensuring the slaughter function has a negative price 
coefficient, and ensuring that the off-take rate is greater than or close to the calving 
rate, are changes in a model which may lead to improved chances of dynamic stability.  
As well, ensuring price effects on the inflow side of the model are captured as well as 
on the outflow side may ensure a greater chance of stability. 
  
A particular structure was chosen for the beef model used as an illustration and 
changes to the model are likely to change the nature of the characteristic equations.  
However, some general principles have been indicated and by using the methods 
illustrated here it is possible to carry out tests on representative structures for any type 
of model which is being considered for construction and testing. 
 
It is possible that using stochastic analysis further insight in the nature of the stability 
of such models could be obtained.  However, it is most likely that by taking into 
account stochastic variation the parameter bands would be reduced slightly.  
Significant changes would not be expected. 
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APPENDIX 
  
  
Particular Integrals and the Characteristic Equation 
  
 To find the particular integrals of an equation, such as equation (6), 
let all lags collapse to zero so that: 
  

 Qt+1 =  Qt =  
–
Q  

  

 PRt+1 = PRt = 
—
PR  , 

  

 PFt+1 = PFt = 
—
PF  , 

  

 It+1 =  It =  
–
I . 

  
In effect: 
  

(A.1)  u  =  v  =  









 

–
Q

 
—
PR

 
—
PF

 
–
I

   

  
Equation (6) thus reduces to: 
  

(A.2) [J + K]  









 

–
Q

 
—
PR

 
—
PF

 
–
I

   = d 

 
If an inverse exists for [J + K] then the particular integrals can be expressed as: 
  
  

(A.3) 









 

–
Q

 
—
PR

 
—
PF

 
–
I

   = [J + K]-1 d 
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The  particular integrals are of little interest in determining the dynamic 
characteristics of the system.  The complementary functions are central to the 
determination of the dynamic properties of the system.  By trial solutions for u and v, 
then: 
  

(A.4) u = 









 mbt+1

 nbt+1

 obt+1

 pbt+1

  = 









 m

 n

 o

 p

  bt+1      and v = 









 mbt+1

 nbt+1

 obt+1

 pbt+1

  = 









 m

 n

 o

 p

  bt+1 

 
 When substituted into the equation, 
  
(A.5) Ju + Kv = 0 , 
  
the result is: 
  

(A.6) J  









 m

 n

 o

 p

  bt+1   +  K 









 m

 n

 o

 p

  bt 

 
After multiplying through by bt (a scalar) and factoring, then: 
  

(A.7) [bJ + K] 









 m

 n

 o

 p

   =  0 

 
From equation (A.7) the values of b, m, n, o and p can be found using trial solutions so 
as to make the latter determinate. 
  
So as to avoid trivial solutions it is necessary that: 
  
(A.8) [bJ + K] = 0 
  
This is the characteristic equation of the system, written in determinantal form, the 
characteristic roots of which should lie within the unit circle for dynamic stability. 
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