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Abstract 
 
It is argued in this paper that static approaches to weed management, where the 
benefits and costs are only considered within a single season, are inappropriate for 
assessing the economic benefits of weed control technologies. There are carryover 
effects from weed management as weeds that escape control in one season may 
reproduce and replenish weed populations in following seasons. Consequently, it is 
appropriate to view weed control in the context of a resource management problem 
where the goal is to determine the optimal inter-temporal level of weed control that 
maximises economic benefits over some pre-determined period of time. 
 
A dynamic optimisation model for weed control is presented. Using the tools of 
comparative static analysis and Pontryagin's maximum principle, the conditions for 
optimal input use (ie weed control) are compared for static and dynamic situations. It 
is shown that a higher level of input use for a given weed population is optimal using 
a dynamic framework than would be derived under a static framework. The analysis is 
further extended by the incorporation of uncertainty and shows that the optimal level 
of weed control is also affected by uncertainty in herbicide efficacy and the survival 
of weed seeds produced. A case study of the optimal long-term management under 
deterministic and stochastic conditions of an annual cropping weed, Avena fatua,  is 
presented. 
 
Introduction 
 
Weed management has historically aimed to control weeds through herbicide 
treatments and/or tillage operations, primarily to reduce yield losses through 
competition. Consequently, a range of weed control decision making frameworks, 
such as the economic threshold (Auld, Menz and Tisdell 1987), have been developed 
to maximise economic returns in the current season or year. 
 
It is possible that taking a short-term, or static, decision making horizon results in less 
than optimal weed control decisions and economic returns. It is hypothesised in this 
paper that incorporating the carryover effects of weed management through a dynamic 

economic framework leads to a greater level of weed control for a given weed 
population and higher economic returns in the long term. 
 
Defining the Economic Problem 
 
An important concept in determining the response of agricultural systems to both 
fixed and variable factors of production is the production function. For instance, crop 
yield is determined by factors such as varietal type, soil, rainfall, temperature, pests, 
diseases etc. The production function is generally written as 
 
(1) Y = f(X1, X2, X3, .. , Xn)  
 
The quantity of the product produced per time period is dependant upon the quantities 
of inputs X1,..,Xn. If all factors of production but one are held constant, it is possible to 
trace the response in yield from variations in the parameter values of this factor 
through the production function. For instance, yield is expected to decline with an 
increase in weed density, all other factors held constant. 
 
Weeds invading agricultural crops and pastures directly reduce farm income for the 
following reasons. First, weeds compete with crops and pastures for nutrients, water 
and light thereby reducing yield. In the case of pastures the reduced yield leads to 
lower livestock carrying capacities and consequently lower income. Second, weeds 
can contaminate agricultural produce (eg. grain contamination, vegetative fault in 
wool, milk tainting in dairy cows), thereby incurring a penalty and reducing the on-
farm price. Third, weeds result in increased production costs as a result of control 
measures being undertaken (eg. herbicides, tillage). Finally, weeds can impact upon 
the management of farm resources. A weed population may increase to a level 
whereby it is no longer profitable to produce a preferred enterprise and a farmer is 
forced to switch to a less profitable alternative, eg rotating from wheat to a pasture or 
fallow phase due to a chronic weed infestation. 
 
For simplicity of exposition assume that the only form of weed control is from the 
application of a herbicide. If the initial weed population is denoted as x, the herbicide 
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dose rate is denoted as u, and all other factors of production are fixed and denoted by 
z, the production function can be re-written as 
 
(2) Y = f(x,u,z) 
 
The effect of x through the production function is to directly reduce yield while the 
effect of u is to ameliorate the yield loss effect of the variable x. Therefore, equation 
(2) can be dissagregated into separate equations for estimating the weed free yield (Y0) 
and the yield loss (YL) associated with weed density and weed control. 
 
(3) Y0 = f(z) 
 
(4) YL = f(x,u) 
 
(5) Y = Y0(1-YL) 
 
Where YL is measured as percentage yield lost because of weed competition. Cousens 
(1985) has argued that the appropriate damage function that best describes yield loss 
as a function of weed density is a rectangular hyperbola. The biological grounds for 
this argument are that at a low weed density weeds are most competitive to crops and 
cause a maximum marginal reduction in yield, hence the effect of an increase in weed 
numbers at low densities is additive. However, when the density is high increased 
intra-specific weed competition tends to reduce the marginal yield loss. The 
rectangular hyperbola function derived is 
 

(6) 

A
ID

ID
YL





1
 

 
Where D is the weed density influencing yield1, I is the percentage yield loss per unit 
weed density as weed density approaches zero, and A is an estimate of the maximum 
yield loss of a weedy crop relative to the yield of a weed-free crop. 
 
Weed density that affects crop yield (D) is a function of initial weed density and the 
proportion of weeds killed by herbicide application (). 
 
(7) D = x(1-) 

                                                 
1  Note that D differs from the initial weed population, x, as it represents the residual weed population after 
weed control. 

 
The kill function for herbicide dose response must be bounded by 0 and 1. Various 
functional forms for  have been proposed, with the logit and probit functions (Finney 
1971) the preferred for herbicide dose response. The variable  may also be a 
parameter determined from an integrated weed management (IWM) strategy. An 
IWM strategy may include various mixtures of cultural management tactics (eg. 
fertiliser, stocking rates, crop and pasture rotations, spray grazing, hay or silage, 
cultivation, fallow, delayed sowing, seed collection), chemical management tactics 
(eg. pre- and post-emergent herbicides, spray-topping, crop-topping, chemical fallow) 
and biological control tactics. In some systems (eg. grazing systems) herbicides may 
not even feature in an economically optimal IWM strategy. 
 
The profit function for an optimal herbicide dose problem is defined as 
 
(8)  = PyY(x,u) – Puu – C1 – C2 
 
Where  is profit, Py is the output price per unit of the commodity, Pu is the per unit 
cost of weed control, C1 is the constant application costs for the weed control input 
(machinery and labour), and C2 is the constant cost of production of the remaining 
factors of production, z.  The first term of the equation (PyY) is the total revenue and is 
determined not only by the level of the control variable but also by the initial weed 
density x.  Thus, the total revenue for any variation in u will be specific to the initial 
value of x. 
 
A Specific Weed Problem 
 
Wild oats (Avena spp.) is an important weed of winter grain crops in southern 
Australia as it competes vigorously with crops, resulting in yield loss, and can 
produce large numbers of seed. The population dynamics of this weed are given in the 
following equations. 
 

(9) 



3

1i
tiit SBpS   

(10)   



3

1
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i
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(11)   
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(12)   


3

1i
itt RN  

(13)     ttt SBNSB   111  
 
Three population cohorts are included in the model, represented by the parameter i. 
SBt is the weed seed bank at the beginning of year t, Sit is seedlings of the ith cohort in 
year t, Dit is the density of mature plants, Rit is seed resulting from the reproduction of 
wild oats, Nt is new seed added to the seed bank,  is the annual germination of wild 
oats seed, pi is the proportion of germination corresponding to the ith cohort, i is 
mortality resulting from tillage or use of a knockdown herbicide to control weed 
seedlings prior to sowing, i is the herbicide induced mortality of seedlings, i,  i and 
i are regression coefficients (Medd et al 1995) in the fecundity equation (12),  is the 
survival rate of new seed,  is seed export such as the removal of seeds at harvest,  is 
the import of seeds (e.g. through sowing), and  is the death rate of dormant seed. 
The parameter values for p, , , , , , , ,  and  applicable to wild oats (Jones 
and Medd 2000) and used in this study are given in Table 1. The calculation of Rit was 
constrained to zero when Dit < 0.5 plants m-2 because, due to the nature of the 
functional form used, the result of equation (11) degenerates to infinity as Dit 
approaches zero. 
 
Pandey (unpublished) estimated a dose response function for diclofop-methyl to 
control wild oats. The effect of climate upon herbicide efficacy was accounted for by 
including a soil moisture index variable, with soil moisture condition being rated as 1, 
2 or 3 for dry, average and good conditions. The dose response relationship was 
estimated using a logit model and the following function was determined. 
 

(14)     ASMu 895.0945.0log496.1323.1
1

log 
 











 

 
Where  is the proportion of weeds killed, u is the quantity of herbicide applied (litres 
ha-1), SM is an index of soil moisture conditions up to the date of spray, and A is a 
dummy variable (A = 1 if adjuvant is added, A = 0 otherwise). Reformulating this 
function and setting A = 1, the following equation for the proportion of weeds killed is 
obtained. 
  

(15) 
  
  SMu

SMu

945.0log496.1428.0exp1

945.0log496.1428.0exp




  

 
A weed free yield (Y0) of 3.9 tonnes ha-1 was estimated from a production function for 
wheat in southern New South Wales (G.M. Murray, personal communication). The 
function used was 
 
(16) SDRFY 028.00095.021.40   
 
Where RF is rainfall over the period April to October and SD is the number of days up 
to the optimum sowing date of 26 April (ie. 116 days). As the sowing date variable is 
a constant in this analysis the function becomes Y0 = 0.962 + 0.0095RF. Solving this 
function for an average winter rainfall of 310 mm results in a weed free crop yield of 
3.9 tonnes ha-1. 
 
Yield loss from the phytotoxic effects of herbicide use (Yp) was estimated from 
Pandey (unpublished) at Yp=0.01333u. The yield loss equation parameters (equation 
6) were derived from a study by Martin et al (1987) and calculated at I = 1.044 and A 
= 81.96. Actual yield was thus estimated from the following equation. 
 
(17)   






  pL YYYY 110  

 
An Overview of Alternative Model Frameworks for Determining Optimal 
Herbicide Use 
 
A number of alternative economic frameworks for determining the optimal rate of 
herbicide for a given initial weed density are assessed. Economic models can be 
defined as being static, dynamic, deterministic or stochastic. In a generalised order of 
increasing complexity an individual model may be static and deterministic, static and 
stochastic, dynamic and deterministic, or dynamic and stochastic. Given the diverse 
range of model types and weed problems it is pertinent to ask what is an appropriate 
modelling framework for weed management. This will depend upon the particular 
management problem and the questions being asked. Outlined below are the main 
distinguishing features of static and dynamic models. 
 
Static model 
 
Assuming a farmer’s objective is to maximise profit, the goal is to determine the rate 
of herbicide that maximises  for a given initial weed seedling density, S (equation 9). 
Increasing the rate of herbicide dosage will increase total revenue (PyY) as well as the 
total cost from control (Puu + C1) in the profit function. The rate of herbicide that 
maximises profit will occur when the marginal benefit (MB) of u is equal to the 
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marginal cost (MC). If MB exceeds MC then an increase in u will contribute more to 
total revenue than total cost, justifying an increase in the input level. Likewise, if MC 
exceeds MB then an increase in u will contribute more to total costs than total revenue 
and it would pay to reduce the level of herbicide. 
 
Varying the level of u has a direct effect upon  through equations (15), (7) and (17). 
Determination of the optimal rate of herbicide can be obtained from the application of 
comparative-static analysis. The first-order conditions for profit maximising input use 
require that u be used until its cost equals the value of marginal product. Taking the 
derivative of the profit function with respect to herbicide dose rate we obtain 
 
(18) /u = Py(Y/u) – Pu = 0 
 
(19) Py(Y/u) = Pu 
 
This equation states that at the optimum herbicide dose, u*, the cost of the last 
increment of herbicide input equals the value of the extra output obtained. In other 
words, the revenue from a marginal change in weed reduction equals the marginal 
cost of herbicide. Assuming that the function is concave and that diminishing returns 
apply the second-order condition for a maximum (2/u2 < 0) is automatic (Dillon, 
1968). Further transforming equation (19) we obtain 
 
(20) Y/u = Pu/Py 
 
This equation states that for an initial seedling density, S, the optimal level of the 
herbicide input u occurs when the marginal product of the herbicide input equals the 
inverse price ratio Pu/Py (Dillon 1968). Since Py and Pu must be non-negative this 
equation implies Y/u can never be negative at the level of herbicide rate that 
maximises profit. A number of important features of the optimal herbicide rate can be 
determined from equation (20). An increase in Pu will decrease the optimal level of u, 
while increases in Y or Py will increase the optimal level of u. 
 
A dynamic model 
 
A static approach to weed management, where the benefits and costs are only 
considered within a single season, may be an inappropriate framework given that 
there are often carryover effects associated with weed control. Weeds that escape 
control in one season may reproduce and replenish the weed population in following 
seasons. Consequently, it may be more appropriate to consider weed control in the 
context of a resource management problem where the goal is to determine the optimal 
inter-temporal level of weed control. 

  
The processes of growth and decay of a resource are often summarised by an equation 
of motion which explicitly states how the resource stock changes over time. For 
renewable resources the equation of motion is equal to the growth rate per period less 
the amount removed by harvest, destruction and natural depletion. Dynamic problems 
also involve issues of resource stocks, where stocks represent the level, amount or 
quality of the resource. The level of stocks can influence optimal resource use over 
time, eg because of the stocks’ influence upon growth rates. 
 
Viewing weeds a resource stock involves a modification to the economic framework 
for valuing the benefits from weed control. At issue is how much of the weed stock to 
consume or deplete in the current period and how much should be left in situ for the 
future (McInerney 1976). From an economic perspective a weed can be viewed as a 
renewable resource (Conrad and Clark 1987; Clark 1990) with the seed bank 
representing the stock of this resource. The size of the seed resource stock changes 
through time due to depletion by weed management and new seed stocks being 
created via the process of self renewal through seed production. The change in the 
seed bank from one period to the next is described by the function: 
 
(21) ttttt NMSxx 1  
 
Where xt represents the state variable of initial density of seeds in the soil (ie. seed 
bank) in year t, St is seedling recruitment, Mt is the seed loss due to predation and 
natural mortality and Nt is new seed added to the seed bank either from reproduction 
or importation through natural spread or operations such as harvesting and sowing. 
Equation (21) represents a summary of the more detailed population dynamics 
equations given in equations (9) to (13). 
 
The seed bank can be indirectly regulated by changing weed control inputs that target 
the mortality or vigour of plants (eg. cultivation, herbicides) or directly through 
targeting reproduction and seed rain processes (eg. selectice spray-topping, crop-
topping, seed catching, windrowing) or through losses via seed mortality (eg. 
cultivation, stubble burning, seed predation). 
 
In a dynamic setting the objective of the farmer is to determine the level of depletion 
of the stock of the seed resource (x) from herbicide application (u) in each season or 
year that maximises profit over a period of T years. The objective function can be 
formally stated as 
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(22)  


T

t
tt

t uxJ
0

,max   

 
subject to 
 
(23)  tttt uxgxx ,1   
 
Where J is the net present value (NPV) of cumulative profits over the planning 
horizon T, x denotes the weed seed bank state variable, u is the control variable (ie 
herbicide dose rate),  is a measure of annual farm profit which is a function of the 
state and control variables,  is the discount factor, and g is the rate of change in the 
seed bank from application of a herbicide at rate u. The equation of motion (23) 
represents the change in the state variable from one period to the next. Equation (21) 
represents an example of an equation of motion. 
 
Optimal control theory can be used to determine the annual rates of herbicide that 
maximise the objective function. An important component of the dynamic problem is 
the costate variable, denoted by , which is akin to a Lagrange multiplier. The means 
through which the costate variable enters the optimal control problem is the 
Hamiltonian function. Note that  in equation (22) is identical to the profit function 
(8), hence the current-value Hamiltonian for the herbicide dose rate problem is 
 
(24)    ttttuttyt uxgCCuPuxYPH ,, 121    
 
The Hamiltonian function is the net profit obtained from an existing level of the state 
and control variables plus the value of any change in the stock of the state variable 
valued at the costate variable, t+1. The costate variable thus represents the shadow 
price of a unit of the stock of the seed bank and is also referred to as the user cost (or 
benefit) from stock depletion. In the last term on the right hand side of (24), the 
g(xt,ut) function indicates the rate of change of the seed bank corresponding to 
herbicide dose u. When the function is multiplied by the costate variable, t+1, it is 
converted to a monetary value and represents the rate of change of the economic value 
of the seed bank corresponding to herbicide dose u. In effect this term can be viewed 
as the future profit effect of weed population changes. The dynamic maximisation 
problem presented in equation (24) thus differs to the static maximisation in equation 
(8) in that the future income effects from current period decisions are explicitly 
included in the current period return. 
 

The first order conditions for this problem, as developed by Pontryagin et al (1962),  
are 
  

(25) 01 



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
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Equation (25) is the maximum principle, the standard condition for maximisation with 
respect to ut; equation (26) is the adjoint equation and denotes the rate of change of 
the shadow price over time; and (27) is a re-statement of the equation of motion. This 
set of equations allows the solution of the three unknown optimal trajectories 

*** and, ttt ux  . These trajectories depend critically on the initial state of the system 
and, although x0 is generally given, 0 is unknown and an additional condition, known 
as the transversality condition, is required to obtain a unique solution. In this 
particular problem, where terminal time, T, is given and the terminal state, xT, is free, 
the transversality condition is T = 0.  
 
The fact that the initial costate value is unknown complicates the numerical solution 
of the problem. Solution, for a given x0, starts with an arbitrary value of 0 and the 
numerical integration of the system (25)-(27). Depending on the resulting value of T 
the value of 0 is adjusted, this process continues until the transversality condition is 
satisfied. This was the procedure used to solve the wild oat problem, with (27) 
represented by the weed population dynamics (equations 9 to 13) rather than a single 
equation of motion. 
 
To gain further insight into the difference between static and dynamic solutions 
rearrange (25) to obtain 
 

(28) 
y

t
tu

t P
u
g

P

u
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As in the static case, this condition states that optimal weed management occurs when 
the marginal product of herbicide application equals the ratio of input price to output 
price, but now input price is decreased by the value of its beneficial future effect (the 
second term in the numerator). This will result in a higher herbicide application rate 
than in the static case. To understand why, note that t  0 (ie. weeds have a negative 
effect on profit), and g/u  0 (ie. herbicide application decreases weed population 
growth and reproduction), since  > 0 the second term in the numerator is either 
negative or zero. When the strict inequalities apply, the right hand side (RHS) of (28) 
is smaller than the RHS of the static (equation 20) solution. Given that Y/u > 0 and 
2Y/u2 < 0, the value of u would have to be increased to obtain a lower marginal 
product (left-hand side) and thus satisfy condition (28). 
 
Note that the transversality condition T = 0 means that at time T-1 the dynamic 
solution is the same as the static solution, as the second term in the numerator of (28) 
vanishes. This result occurs because the optimal control model (22) does not contain a 
terminal value, ie. it is assumed that the final weed seed population does not affect the 
value of the land. If this assumption is relaxed and a final value F(xT) is included in 
(22), the transversality condition will become T = F'(xT) and the dynamic solution 
will not converge to the static solution so long as the final weed population has a 
negative effect on land value. 
 
In summary, an increase in the number of seeds (and weeds) reduces profits, up to the 
maximum weed population possible, hence t  0. Due to the beneficial effect of the 
current level of control on future profits, a higher level of optimal weed control occurs 
than when only current profits are maximised. Therefore, including the inter-temporal 
effects of weed control into our decision-making framework will, for a given size of 
the seed bank, result in a greater level of weed control and a higher economic return 
than if control decisions are based solely on the current period effects. Consequently, 
a dynamic economic framework is theoretically preferred to static frameworks for 
either undertaking economic analysis of weed control technologies or providing a 
framework for decision support systems. 
 
Another important issue is the existence of a steady-state equilibrium and whether it 
can be reached from the initial state. The study of this issue requires the solution of 
the infinite-time problem and is out of the scope of this paper. 
 
The Effects of Uncertainty 
 
Various studies have found that pesticides are risk reducing (Carlson 1984; Feder 
1979; Olson and Eidman 1992), which means that pesticides lead to a lower income 
variance and, consequently, farmers will increase pesticide applications. Pannell 

(1995) has argued that these studies only consider uncertainty about pest density and 
pesticide effectiveness and that if other sources of uncertainty were considered the 
pesticides can be risk increasing. 
 
Pannell (1990b) estimated the effect of variability on the herbicide rate that 
maximises profit under the assumption of risk-neutrality. As the variance of initial 
weed density increases, the herbicide rate that maximises expected profit decreases. 
An important factor in this result is the shape of the yield-loss function. Auld and 
Tisdell (1987) showed that uncertainty about weed density reduced expected yield 
loss because of the convexity of the relationship between weed density and crop yield, 
thereby reducing the marginal productivity of herbicide. Pannell (1990b) found 
increasing the variability of weed competitiveness reduced the optimal herbicide rate 
while variability about the efficacy of weed kill from herbicide was ambiguous in 
terms of its effect upon the optimal dose rate. An increase in the variability of weed 
kill increased expected weed survival which increased optimal herbicide rate, and 
uncertainty about weed density decreased optimal herbicide rate. 
 
Pannell (1995) found that for variability in weed density, increasing herbicide 
application was more attractive for risk-averse farmers. For variability in weed 
mortality Pannell (1995) found that the effect of risk-aversion to be ambiguous, 
however, concluded that increased herbicide use would reduce weed variance and 
lead to an increase in optimal herbicide rate under risk aversion. Deen et al (1993) 
supported the findings of Pannell (1990b) for the effects of variability for risk-neutral 
farmers. Under the assumption of expected utility maximisation and uncertainty in 
weed density, Deen et al (1993) found that optimal herbicide dose increased with 
uncertainty for extreme risk aversion. 
 
Application of Model Approaches 
 
Population model 
 
A simulation model of the population dynamics of wild oats was developed to 
determine the effects of varying the control variable, herbicide dose rate. This model 
explicitly traced the changes in the seed bank through equations (9) to (13) and the 
dose response function (equation 15) using the parameter values reported in Table 1. 
 
The model was simulated for seed banks ranging from 0 to 2,000 seeds m-2 and for 
herbicide dosage varying from 0 to 4 litres ha-1 of diclofop-methyl. The model derived 
changes in the seed bank for each state and control variable combination. When no 
herbicide is applied, regardless of the initial seed population there is a dramatic 
increase in the size of the seed bank in the following period (Figure 1). As anticipated, 
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as herbicide is applied the magnitude in the seed population increase is diminished. 
Further increases in dosage will lead to a herbicide rate from where reductions in the 
seed bank population in period t+1 can be achieved, ie the population curve lies below 
the line xt = xt+1. From Figure 1 this would appear to occur at rates of 1.5 litres ha-1 
and above. 
 
A stochastic version of the population dynamics model was developed by 
incorporating probability distributions for both rainfall and seed survival into the 
model. The proportion of weeds killed from herbicide (equation 15) and new seed 
added to the seed bank (equation 12) were represented as random variables in the 
model. A normal probability distribution for  (mean 50% and standard deviation 5%) 
was derived from Medd and Jones (1996). Historical rainfall records for Wagga 
Wagga for the period 1898 to 1996 were used to determine the probability distribution 
for season type so as to estimate herbicide mortality from the dose response function. 
Rainfall for the period April to October was the determinant of season type, with a dry 
season being rainfall in the lower 25th percentile (RF < 255mm) and a wet season 
being rainfall in the top 25th percentile (400mm < RF). Therefore an average season 
was rainfall between 255mm and 400mm. Rainfall for the period April to October has 
a normal distribution with mean 335mm and standard deviation 105mm. It is expected 
that there would be a high correlation between these two variables and this was 
incorporated into the Monte Carlo sampling process. 
 
The model was solved for each state and control variable combination using a monte 
carlo sampling procedure. The sampling process involved 5,000 iterations of the 
population model, resulting in a set of state values for the following period from 
which the state transition probabilities were derived. A transition probability (Pk

i,j) 
reflects the probability of moving from the ith to the jth state for the kth decision. The 
seed bank was divided into 20 state intervals and examples of the transition 
probabilities derived for two control variable values (u = 1.5 and u = 3.0) are given in 
Table 2. 
 
Static optimum model 
 
The level of u which maximised  for a given seed bank was estimated from the 
following function 
 
(29) max  = PyY(x,u) – Puu – C1 – C2 
   
subject to 
 
(30) x = a 

 
Where 0  a  2000. Solution of the static optimum (SO) problem is best determined 
numerically, consequently, a non-linear mathematical programming model was 
developed to determine the optimal herbicide dose. The objective function was the 
maximisation of current period profit for a single control variable, herbicide dose. The 
model explicitly included the dose response function (equation 15) and the yield loss 
function (equation 6). 
 
Numerical optimal control model 
 
A numerical optimal control (NOC) model of the weed management problem was 
developed based upon equations (24) to (27). The solution procedure used was based 
upon that given by Cacho (1998). The equation of motion used a population dynamics 
model represented by equations (9) to (13). The model was solved for values of x0 
ranging from 0 to 2000 seeds m-2. 
 
Dynamic programming model 
 
The application of a NOC model requires that the Hamiltonian, which includes the 
equation of motion, to be continuously differentiable. In many agricultural and natural 
resource problems, including weed management, there are discontinuities in the 
equation of motion and the calculation of current period profit. In such situations it is 
difficult to apply a NOC model and an alternative approach is required. Dynamic 
programming (DP) is an alternative dynamic optimisation technique that has had 
widespread application in agriculture and natural resources research (Kennedy 1986; 
1988). When using DP for the weed management problem the Hamiltonian in 
equation (24) is replaced by the following recursive equation. 
 
(31)     11,)(  ttttt

tutt xVuxMaxxV   

 
Where Vt is the optimal current period return in period t,  is the discount factor,  is 
the current period stage return, and x and u are the state and control variables as 
previously defined. The problem is solved by backward recursion, subject to the 
equation of motion defined by equations (9) to (13), and gives the optimal decision 
policy for any given state and stage combination. 
 
One disadvantage of the DP approach is that it is unable to directly provide an 
equivalent to the costate variable, t+1, in the standard solution. Therefore, it misses in 
providing an important set of economic information, ie the shadow price on the rate of 
change of the state variable from one period to the next. Kennedy (1988), however, 
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has demonstrated an approach for deriving the equivalent to the costate variable from 
the DP solution. Another disadvantage of this approach is the ‘curse of 
dimensionality’ problem (Bellman 1957), where there is an explosion in the size of 
the model (and computer time and memory requirements) as the total number of states 
increases. 
 
The optimal dose rates were calculated from a DP model with the objective function 
being the maximisation of profit over a 10 year period. Given that dynamic 
programming does not have to rely upon continuously differentiable functions for the 
equation of motion and stage return, the population model was solved for each state 
and control variable combination to provide the actual state transformation and stage 
return values for the DP solution. 
 
Stochastic dynamic programming 
 
One major advantage of DP over NOC is that stochastic effects can be readily 
incorporated into the framework. The equation of motion is replaced by the concept of 
transition probabilities of moving from the ith to the jth state for the kth decision (Pk

i,j) 
and the problem becomes one of maximising expected returns. The recursive equation 
becomes 
 
(32)     11,)(  tttttutt xEVuxMaxxV

t

  

 
Where E is an expectations operator. A stochastic dynamic programming (SDP) 
model was developed which used the transition probabilities derived from the 
stochastic population dynamics model.  
 
Results 
 
The optimal herbicide rates, u*, for each state variable value derived by the alternative 
models are given in Figure 2. For any given state variable, application of either the 
NOC or DP models resulted in a significantly higher u* than the SO model. This 
analysis indicated that there was very little difference in u* derived by the two 
dynamic models. A stochastic model for the static optimum scenario was not 
developed in this paper as there is sufficient evidence from earlier studies (Pannell 
1990b, 1995; Deen et al 1993) of the effect of uncertainty upon u*. For a risk-neutral 
scenario the u* from the SO model is expected to be decreased from that given in 
Figure 2. Inclusion of uncertainty in the rate of seed kill and herbicide efficacy in the 
dynamic model had a similar result as obtained by Pannell (1990b) and Deen et al 
(1993) for static cases. The u* determined by the SDP model was lower than that 

obtained by the deterministic DP model. Despite the u* obtained by the SO and SDP 
models being similar, no direct comparisons of these two approaches can be made as a 
stochastic static scenario was not calculated to compare with the SDP model. This 
may be an area for further research. The results obtained from the SDP model were 
for a risk-neutral scenario and it is anticipated that solution of a risk-averse scenario 
would derive higher u* values than given by the SDP model in Figure 2. 
 
The costate variable values determined by the NOC model for each level of the state 
variable are given in Figure 3. As previously described, the costate variable is 
negative implying that the seed bank has a detrimental effect upon future income. The 
results reported in Figure 3 show that there is a significantly greater effect of increases 
in the state variable at low seed banks than at the upper range reported. For instance, 
at seed banks between 0 and 50 seeds m-2 an increase in the seed bank by 1 seed m–2 
will decrease future income by between $2 to $3 seed-1. Alternatively, at a seed bank 
of 2000 seeds m–2 the reduction in income is less than $0.25 seed-1. This reinforces the 
results given in Figure 1 showing there is a diminishing marginal change in the seed 
population increase as the seed bank increases. 
 
The u* and x* obtained from the SO, NOC and DP models were simulated over a 10 
year period for an initial seed bank of 500 seeds m-2. There were negligible 
differences each year in u* for the NOC and DP models (Figure 4). The annual u* 
derived from the SO model were lower than determined by the dynamic models for 
the first three years of the simulation, but thereafter the dynamic models resulted in 
significantly lower u*. The change in x* (Figure 5) over the simulation period was 
identical for the NOC and DP models. The dynamic models resulted in a significantly 
greater decline in the seed bank compared to that obtained by the SO model. The seed 
bank was depleted to 0 seeds m-2 by year 7 under the dynamic models whereas under 
the SO model the seed bank was still greater than 100 seeds m–2 in year 10. 
 
The optimal Hamiltonian values for two costate variable values, t = 0.0 and t = -1.0, 
for x0 = 500 seeds m-2 are given in Figure 6. The first scenario corresponds to the SO 
solution, and shows that the dose rate that maximises the Hamiltonian is around 2 
litres ha-1. This is identical to the result given in Figure 2. The second scenario 
indicates that the Hamiltonian is maximised at a much higher dosage when the costate 
variable is considered. This reinforces the result presented in Figure 2 indicating that 
the NOC model gives a higher u* for a given x than the SO model. 
 
The NPVs obtained from the three models are given in Figure 7, which indicates that 
the two dynamic models are economically superior to the SO model. This economic 
dominance would be greater if a longer simulation period had been considered. 
 



Paper presented to 44th Annual Conference of the Australian Agricultural and Resource Economics Society, Sydney, January 23-25, 2000. 

 9

Discussion 
 
Varying the herbicide dose rate is not always possible as in some Australian states 
legislation enforces the use of recommended label dose rates for herbicide usage 
(Pannell 1990a). This fact, however, does not invalidate the findings of this analysis ie 
that the optimal level of weed control that maximises economic returns is significantly 
higher when a dynamic as opposed to a static framework is used for assessing the 
benefits from weed control. From a weed management perspective the challenge then 
is to determine a mix of weed control options, including herbicides at the 
recommended label dose rates, which achieve this level of control. This is the goal of 
integrated weed management. 
 
Consequently, the temporal aspects of managing weeds are determined to be 
important in any model to evaluate the benefits from weed management. However, 
incorporation of the stochastic effects of input use also has a major influence upon the 
optimal level of weed control. In this study incorporating uncertainty in herbicide 
dose response and seed survival resulted in a lower optimal herbicide dose rate than 
for the deterministic DP or NOC solutions. Given the importance of climate and 
seasonal effects upon weed population dynamics it would appear prudent to 
incorporate seasonal variability and dynamic responses into any modelling framework 
of weed management systems. 
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Figure 1. Change in seed bank for various herbicide rates (seeds m-2) 

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x t

x
t+

1

x t  = x t +1

0 L

1 L

1.5 L

4 L

 
 
Figure 2. Optimal herbicide dose rates (litres ha-1) 
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Figure 3. Costate variable (t+1) values from NOC model 
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Figure 4. Optimal herbicide rate for 10 year simulation (litres ha-1) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1 2 3 4 5 6 7 8 9 10

Year

u
*

x 0 = 500 seeds m-2

SO

DP

NOC

 



Paper presented to 44th Annual Conference of the Australian Agricultural and Resource Economics Society, Sydney, January 23-25, 2000. 

 11

Figure 5. Optimal seed bank from 10 year simulation (seeds m-2) 
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Figure 6. Hamiltonian values for t = 0.0 and t = -1.0 
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Figure 7. Net present values 
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Table 1. Parameter values 
Population dynamic parameters 
 (%)  50  
 (%)  50  
 (seeds m-2)  0  
 (seeds m-2)  0  
 (%)  50  
 Cohort 1 Cohort 2 Cohort 3 
pi (%) 30 60 10 
i (%) 100 0 0 
i 8.60 7.60 6.80 
i 0.74 1.20 2.00 
i 0.88 0.80 0.67 
Economic parameters    
Py ($ tonne-1)  165.00  
Pu ($ litre-1)  22.50  
Y0 (tonnes ha-1)  3.90  
C1 ($ ha-1)  2.22  
C2 ($ ha-1)  166.24  
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Table 2. Probability transition matrix (Pk

i,j) 
 i 

j 0-10 11-20 21-30 31-40 41-50 51-60 61-80 81-100 101-150 151-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000 1001-
1500

1500- 

u = 1.5 litres ha-1 
0-10 1.000 1.000 1.000 0.789   

11-20    0.211 1.000 0.792   
21-30     0.208 0.776   
31-40     0.224 0.765   
41-50     0.026 0.538   
51-60     0.209 0.222   
61-80     0.019 0.524   
81-100     0.221 0.274   
101-150     0.202 0.771 0.048  
151-200     0.067 0.621 0.067  
201-300     0.162 0.331 0.72 0.532 0.072  
301-400      0.213 0.276 0.708 0.549 0.113  
401-500      0.192 0.022 0.227 0.495 0.522  
501-600      0.198 0.071 0.176 0.246 0.298  
601-700      0.153 0.159 0.013 0.232  
701-800      0.057 0.219 0.244  
801-900      0.003  

901-1000      0.135 0.511 
1001-1500      0.088 0.361 

1501-      0.128 
u = 3.0 litres ha-1 

0-10 1.000 1.000 1.000 1.000   
11-20     1.000 1.000   
21-30     1.000   
31-40     0.771   
41-50     0.229 0.774   
51-60       
61-80     0.226 0.776   
81-100     0.013   
101-150     0.224 0.776 0.384  
151-200     0.211 0.398 0.413  
201-300     0.218 0.326 0.538 0.451  
301-400      0.261 0.269 0.340 0.532 0.439  
401-500      0.193 0.209 0.254 0.322 0.530  
501-600      0.214 0.044 0.236 0.516  
601-700      0.195 0.123 0.292  
701-800      0.111 0.001  
801-900      0.076 0.285 

901-1000      0.115 0.204 
1001-1500      0.511 

1501-       
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