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The Precautionary Principle in Practice: 
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Over the years, there have been three major approaches to making decisions under risk.  The 
first, static expected utility theory, is perhaps the most popular, used by many applied 
economists.  The second is dynamic investment theory, used by financial economists.  The 
third I have no name for.  It is the approach we as natural resource and environmental 
economists use.  It seems to be a mixture of philosophy, common sense and confusion.  We 
still haven’t sorted out what we mean by the term “option value.”  To avoid confusion in this 
paper, I will try to be precise in defining how risk affects decisions.  This will, hopefully, lead 
to more precise results about how to value our options for preserving the environment. 
 
We often talk about the “risk preferences” of decision makers.  This leads to confusion and 
misinterpretation because, strictly speaking, preferences about risk aren’t in our models.  We 
include preferences about consumption, wealth and time, but not about risk.  Risk affects 
decisions whenever the world is non linear.  One source of non linearity is the preference or 
utility functions in our models.  There are many other sources, however.  Behaviour under 
risk can be explained by the non linearity which caused it.  For the purposes of this 
discussion, non linearities will fall into the following categories: 

1) Functions 
a. Consumption preferences 
b. Wealth preferences 
c. Time preferences 
d. Production and cost functions 
e. Endogenous prices 

2) Probability distributions 
a. Non normal distributions 
b. Co variances 

3) Asymmetries 
a. Infeasibilities 
b. Options 
c. Irreversibilities 

 
Usually, preferences are singled out as the source “risk aversion”.  However, any non linear 
function will alter behaviour under risk.  Production functions are almost always non linear 
and stochastic.  Endogenous prices are multiplied by quantities and introduce non linearity. 
 
Only normal probability distributions are defined by linear differential equations.  Any other 
distribution is non linear.  In finance, distributions are usually assumed to be log normal.  As 
a consequence, risk exposure increases with the size of an investment.  Co variances are a 
source of non linearity because they alter means and variances in a way similar to endogenous 
prices. 
                                                 
1 I would like to thank the Australian Bureau of Agricultural and Resource Economics for support during this 
study and Stephan Beare and Roslynn Bell for the discussions that started it. 
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Asymmetries are non linearities which alter the probabilities of events.  Sometimes events 
simply can’t happen and we use inequality constraints in our models as an impermeable 
barrier.  All decisions must be on the feasible side of the barrier.  In many cases, other 
approaches may be more realistic.  Options are more like drawing a line in the sand.  Events 
can push us to either side of the line and we invest in an option to compensate us if we end up 
on the on the wrong side.  Perhaps most of the big environmental questions involve 
irreversibilities.  An irreversibility is like a turnstile at the train station.  Being on either side 
is feasible, but if you are not careful, events in an unpredictable crowd will push you through 
and you can’t get back.  If going through is undesirable, you must alter your decisions well 
before an unpredictable event pushes you through. 
 
This study examines options and irreversibilities in environmental decision making.  The aim 
is to develop option pricing formulas and determine how much society will invest to avoid 
undesirable outcomes.  As examples, I will use stocks of exhaustible resources and water 
rights.  With a bit of imagination, the same results might apply to your favourite resource and 
environmental problem. 
 
The approach will be to adapt dynamic investment theory from finance.  There are many 
assumptions made in finance which do not apply to natural resources and the environment, 
including: 

1) complete markets of many investors; 
2) continuous trading; 
3) no profitable arbitrage. 

For natural resources and the environment, there often are no markets.  Many decisions are 
taken only once by a single agent, let alone continuously by many investors.  Environmental 
variables probably don’t have prices and profit is rarely the objective of environmental 
management. 
 
So studying option pricing for the environment is more like a career than a conference paper.  
Never-the-less, this paper will show that the assumptions of finance aren’t needed to define 
options.  However, the formulas for pricing options are different and give much different 
answers.  The examples in the paper are small ones and there are bigger problems yet to 
study.  The paper concludes with suggestions about how this might be done. 
 
Stochastic Dynamic Programming 
 
Before presenting the results, there are a few mathematical details to attend.  Option pricing is 
an application of Ito stochastic calculus.  Stochastic calculus is a quick way to calculate 
expected values and variances (Hertzler, Harman and Lindner).  Extending the theory of 
option pricing to environmental decisions requires stochastic dynamic programming (Dixit 
and Pindyck, Hertzler). 
 
In a general formulation of a stochastic dynamic program, decision-makers in society are 
assumed to behave as if they maximise their expected utility subject to a budget constraint for 
the change in wealth. 
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A society’s satisfaction is summarized by an expected social welfare function, J.  Satisfaction 
is derived from the utility of consumption, U(Q), integrated over all years, t, and discounted at 
the rate of time preference, .  Satisfaction also includes expected utility of wealth at the end 
of the planning horizon, T.  Starting from time zero, initial wealth, W0, increases with changes 
in wealth, dW.  A change in wealth has an expected change dt, where  is the instantaneous 
mean, and an error term dZ, where  is a vector of instantaneous standard deviations and dZ 
is a vector of Weiner increments.  The mean and standard deviations are functions of wealth, 
W, consumption, Q, and decision variables, D, chosen at time t to apply over a decision 
interval of length dt. 
 
This model assumes that wealth is a continuous-time Markov process with rapid uncertainty.  
The Markov property says that, conditional upon current wealth, future wealth doesn’t depend 
upon the past.  It allows the stochastic change in wealth to be decomposed into its expected 
change and its error (Grimmett and Stirzaker, p. 447).  Rapid uncertainty has many random 
events occurring within each decision interval.  These random events may be drawn from 
different probability distributions but they must have the same mean and variance.  According 
to the central limit theorem, their sum converges to a normally distributed process.  In 
continuous time, this process is white noise, , which has mean E{} = 0 and covariance 
E{   } = /dt, where  is a correlation matrix.  Weiner increments are normally distributed 
white noise over time, dZ = dt, and have mean E{dZ} = 0 and covariance E{ ZdZd  } = dt.  
The change in wealth, dW = dt + dZ, is a transformation of Weiner increments and has 
mean E{dW} = dt and covariance E{ ))((  dtdWdtdW  } = dt  . 
 
A continuous-time Markov process with rapid uncertainty has a probability density that is the 
solution of two partial differential equations called the forward and backward equations 
(Grimmett and Stirzaker, p. 494).  These equations depend upon the functions  and .  If the 
functions are constant, the forward and backward equations are linear and integrate to become 
the normal probability density.  Over a short decision interval of length dt, functions  and  
are approximately constant and the change in wealth is normally distributed.  Over longer 
intervals, however, functions  and  are not constant.  The forward and backward equations 
are non linear and do not integrate to become the normal density.  Although the probability 
density of wealth exists, its functional form may be unknown.  This is an advantage, however, 
because it allows stochastic dynamic programming to model probability distributions in a 
general way, simply by specifying the functions  and . 
 
Maximising expected utility over society’s time horizon is equivalent to maximising the 
Hamilton-Jacobi-Bellman equation in each decision interval.  The Hamilton-Jacobi-Bellman 
equation is a partial differential equation in time and wealth, subject to a boundary condition 
at time T. 
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In the boundary condition, expected utility at the terminal time equals the discounted utility of 

wealth, )ˆ()( WWVe T
tT  , if wealth is above a subsistence level, Ŵ , and equals zero if 

wealth is below the subsistence level.  This is the overall constraint at the lowest sustainable 
level of society.  It is the only inequality in the model but it is not a hard constraint.  
Extinction is feasible, just not pleasant. 
 
The expression to maximise in brackets is discounted current utility of consumption U, plus 
the marginal utility of wealth, WJ  , multiplied by the instantaneous mean, , plus one-half 

the derivative of the marginal utility of wealth, 22
2

1 WJ  , multiplied by the instantaneous 
covariance,   , which equals the standard deviation squared.  Optimality conditions are 
the derivatives set equal to zero. 
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The first optimality condition is for consumption and the second is for production and 
investment decisions.  The marginal utility of consumption is normalised by the expected 
marginal utility of wealth, .  The terms containing R are marginal risk premiums.  To 
simplify notation, R is defined as the coefficient of absolute risk aversion.  It measures the 
curvature of expected social welfare with respect to current wealth.  It is distinguished from 
an Arrow-Pratt coefficient of risk aversion that would measure the curvature with respect to 
terminal wealth.  Marginal utility of wealth and the risk aversion coefficient encapsulate all of 
the information about the future.  If their current values can be measured, optimal decisions in 
a single period are also dynamically optimal. 
 
A Model of Options Including the Environment 
 
The instantaneous mean and covariance required in equation (2) are determined by the 
stochastic differential equation for wealth.  This differential equation is derived in the 
Appendix.  From Appendix equation (A1), the instantaneous mean is: 
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On the left hand side, the instantaneous mean is a function of wealth, W, consumption, Q, and 
decision variables, D.  On the right-hand side, the first line includes investment in options; the 
second line includes expenditures on consumption, returns from production and returns from 
resource stocks; and the third line includes returns from production, forward and futures 
contracts. 
 
Upper case letters denote quantities.  The expected change in wealth depends upon wealth 
itself, W, consumption, Q, and the vector of decision variables, D.  This vector includes 
investments in minimum price contracts, M, options on futures, N, and options on the 
environment, E.  It includes production, Y, and resource stocks, S.  It also includes hedging 
with production contracts, K, forward contracts, H, and futures contracts, F.  An 
environmental variable, X, is also included, but it is not a decision variable and cannot be 
controlled. 
 
Lower case letters denote prices.  Prices include the value of minimum price contracts, m, the 
price of options on futures, n, the value of options on the environment, e, the consumption 
price, q, the commodity price, y, and the futures price, f.  Prices expectations are modelled as 
log normal distributions with percentage changes denoted by , standard deviations by  and 
correlation coefficients by . 
 
In equation (3), investments include minimum price contracts, options on futures and options 
on the environment.  Wealth, W, could be invested at a risk-free rate of W, even if the risk-
free rate equals zero.  Minimum price contracts, M, options on futures, N, and options on the 
environment, E, are valued at prices m, n and e and attract returns above the risk free rate of 
m(m – W), n(n – W) and e(e– W ).  The expected returns on investments, mm, nn and ee, 
are defined by the partial differential equations shown in equation (3) and are functions of the 
commodity price, the futures price and the environmental variable.  The environmental 
variable could be almost anything about which data is available and a prediction can be made.  
Examples include the Southern Oscillation Index, the size of the ozone hole, changes in world 
temperature, stream flow in a catchment, rainfall on a farm, kangaroos in the back paddock 
and sunspots. 
 
Decisions are made about physical quantities, including consumption, production and 
resource stocks.  Consumption, Q, is purchased at price q.  Production, Y, has expected 
returns equal to the expected price at the end of the season, y(1 + y), as modified by the 
covariance between the commodity price and production, yyyY.  A negative covariance 
will reduce expected returns.  Production costs c(Y).  In this simple model, resource stocks, S, 
are valued at commodity price for the economy with a return on investment above the risk-
free rate of y(y – W).  Stocks will depreciate at the rate S, with a depreciation cost of yS.  
Maintaining the resource stocks will cost s dollars per unit. 
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Some risk management decisions are made once in a year.  These include production 
contracts and forward contracts.  Production contracts, K, are not for production directly, but 
for the environmental variable, X.  If the environmental variable is less than a contract level, 
X , production contracts will be profitable.  Production contracts are an artificial construct 
that may, but probably won’t exist.  They are included in the model as a way to design 
options on the environment.  Forward contracts, H, are profitable if the expected price at the 
end of the decision interval, y(1 + y), is less than the contract price, h , at which commodities 
must be sold.  Commodity futures are traded continuously and there is no fixed contract price 
that remains in force throughout the life of the contract.  Trading in commodity futures will be 
profitable if the change in the futures price, f, is negative. 
 
Also from equation (A1) in the Appendix, the error terms for the change in wealth are: 
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The first line of this equation includes price risks and the second line includes quantity risks.  
Variances and co variances are found by squaring the errors. 
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The first line includes variances for price risks; the second line includes variances for quantity 
risks; and the third and fourth lines contain co variances. 
 
Optimal Decisions 
 
More specific versions of the optimality conditions in equation (2) are derived using the mean 
in equation (3) and the variances in equation (4).  Decisions about consumption and 
production will not be analysed.  Decisions about resource stocks, production contracts, 
forward contracts, futures contracts, minimum price contracts, options on futures and options 
on the environment are: 
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Futures Contracts 
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Minimum Price Contracts 
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Options on Futures 
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Although the optimality conditions seem complex, they are easy to interpret.  Terms 
beginning with R are marginal risk premiums.  If agents are risk neutral, the marginal risk 
premiums are zero and the optimality conditions collapse to simple profit maximising 
behaviour.  If agents are averse to risk they will choose an optimal portfolio that balances 
profit and risk. 
 
In the finance literature, lack of profitable arbitrage and continuous trading are assumed.  The 
portfolio becomes riskless and the prices of options are independent of risk preferences 
(Merton, p. 281, Hull, p. 539).  For a society making decisions about resources and the 
environment there is no arbitrage, there may be no trading at all, the portfolio is risky and 
agents may be risk-averse.  Never-the-less, option pricing formulas can be derived from 
optimal decisions.  These formulas will be illustrated for the parameters in Table 1. 
 

aTable 1:  Parameter Values. 
y 160 W 0.05 y 0.20 
f 155 y 0.10 f 0.30 

s 10 f 0.11 Y 0.30 

X 1 S 0.03 S 0.15 

X  0.90   X 0.30 

h  156     

 
Options on Futures 
 
Options can be priced without assumptions about how markets work.  To demonstrate this, 
consider how a single agent would price options on futures.  If the agent takes out a futures 
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contract there will be a loss if the futures price rises.  An option on futures lets the agent avoid 
losses from a rising futures price, but gain from a falling futures price.  A call option on 
futures gives the agent the right but not the obligation to buy a futures contract at an agreed 
exercise price. 
 
Combining the optimality conditions for futures contracts and options on futures, equations 
(8) and (10), shows that futures and options on futures are equivalent hedges against price 
risk. 

 
.

fn

n
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The marginal risk premiums are eliminated and the expected loss or gain from holding a 
futures contract equals the expected capital gains from owning options on futures.  Options 
incorporate the same information as futures prices and hedge against the same risks. 
 
Substituting for the expected change in the price of an option on futures, nn, from equation 
(3) gives a partial differential equation defining how the price of an option evolves beginning 
from the current time.  This is combined with boundary conditions that an option must satisfy 
at the time of maturity. 
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The boundary conditions are for a European call option that can be exercised only at the time 
of maturity, , but not before.  If the futures price, f, exceeds exercise price, f̂ , the option is 
“in the money” and will be exercised; otherwise it is worthless.  With the boundary 
conditions, the solution becomes a cumulative probability, in this case the Black-Scholes 
formula for pricing options on futures (Merton, p. 347, Hull, p. 277). 
 
Figure 1 shows the prices of a call option on futures as a function of the futures price and 
time.  The exercise price is set to equal the agent’s expected futures price, f(1 + f), or $172 / 
tonne and the options prices are the amounts the agent would pay to avoid the upside risk of a 
higher than expected futures price.  In Table 1, the current futures price is $155 / tonne.  
Suppose the option is 52 weeks from maturity at time zero.  In this case, the agent would pay 
$11.55 / tonne for the option.  The price changes as the option matures.  If the futures price at 
maturity of the option is less than $172 / tonne, the option will be worthless.  The agent will 
throw away the option and buy futures contracts for less than the exercise price.  Otherwise, 
the option at maturity is valued as the difference between the futures price and the exercise 
price.  The agent will exercise the option to buy futures contracts at the exercise price. 
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Options on Forward Contracts 
 
In much of the literature on hedging, forward contracts and futures contracts are treated as 
equivalent.  However, there is a distinction.  Forward contracts have a fixed contract price and 
the agent gains or loses depending upon whether the commodity price is below or above the 
contract price at the time of maturity.  Although futures contracts “locks in” a price, there is 
no fixed contract price and the agent gains or loses depending upon whether the futures price 
falls or rises.  This distinction may not be important for choosing between forward contracts 
or futures contracts, but options on forward contracts are less valuable than options on futures 
because forward contracts are less flexible. 
 
To show this, the optimality conditions for forward contracts and minimum price contracts in 
equations (7) and (9) are combined. 
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The expected return from holding a forward contract equals the expected capital gains from 
owning a minimum price contract.  Substituting for the expected change in the value of a 
minimum price contract, mm, from equation (3) gives a partial differential equation which is 
solved subject to boundary conditions. 
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Minimum price contracts have an additional term,   yhym  , in the option pricing 
formula.  This term compares the fixed contract price to the changing commodity price.  This 
differs from options on futures for which the “contract price” is simply the current futures 
price.  The equivalent term would be   fffn   which is always zero. 
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Figure 1:  Prices of a European Call Option on Futures. 
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The boundary conditions are for a European put option.  At the time of maturity, if the 
exercise price, ŷ , exceeds the commodity price, y, the minimum price contract is “in the 
money” and will be exercised.  The option pricing formula is a non linear differential 
equation and no analytical solution is known.  Therefore, the solution was calculated 
numerically using the Crank-Nicholson method for finite differences (Hill, p. 378, Burden 
and Faires, p. 692).  The software is available upon request. 
 
Figure 2 shows the values of a minimum price contract as a function of the commodity price 
and time.  The exercise price is set to $156 / tonne which equals to the contract price for a 
forward contract in Table 1.  Therefore, the minimum price contract avoids the downside of a 
commodity price that is lower than the contract price but retains the upside of a commodity 
price that is higher.  The value of the minimum price contract is the amount the agent would 
pay to avoid the downside and retain the upside.  From Table 1, the current commodity price 
is $160 / tonne.  For this commodity price a year from maturity, the minimum price contract 
has a value of $7.15 / tonne.  The agent’s expected commodity price, y(1 + y), is $176 / 
tonne.  Even though this is $20 / tonne above the exercise price, the agent is still willing to 
pay to avoid the downside. 

 
Petzel first proposed and Bardsley and Cashin first applied the Black-Scholes formula for 
options on futures to the evaluation of the benefits from government programs.  The Black-
Scholes formula or its equivalent is now used to value many things from crop insurance (Just, 
Calvin and Quiggen; Mahul; Stokes, Nayda and English) to old growth forests (Conrad).  
Valuing a government program as if it were an option of futures is equivalent to assuming 
that the support guaranteed by the government varies continuously.  Valuing an old growth 
forest as if it were an option on futures is equivalent to assuming that the government 
continuously changes its mind about how much forest to save.  Figure 3 shows the prices of a 
put option on futures for the same exercise price of $156 / tonne.  At a futures price of $160 / 
tonne one year from maturity, the price of a put option on futures is $10.16 / tonne.  This 
overvalues the benefits to the agent by about $3 / tonne.  Comparing Figure 3 with Figure 2 
shows that options on futures are priced higher than minimum price contracts. 
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Figure 2:  Values of a Minimum Price Contract. 
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Options on Resource Stocks 
 
Originally, the Black-Scholes formula was derived for options on financial stocks.  This can 
be compared with an option on resource stocks by combining equations (5) and (9). 
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The return above costs for holding resource stocks equals the capital gains from a minimum 
price contract.  Substituting for the expected change in the minimum price contract from 
equation (3) gives the option pricing formula. 
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The Black-Scholes formula for options on stocks also has a term such as    SWyym    

for the opportunity cost of holding stocks.  Resource stocks must also be stored and 
maintained with an additional term  sym  . The prices of a European call option on 
resource stocks for an exercise price of $156 / tonne are shown in Figure 4. 
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Figure 3:  Prices of a Put Option on Futures. 
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The prices of a European call option on financial stocks are shown in Figure 5. 

 
In this case, call options on financial stocks are less valuable than call options on resource 
stocks.  Although not shown in a figure, put options on financial stocks are more valuable 
than put options on resource stocks.  This can be explained by the cost of maintaining the 
stocks.  With a call option, the agent promises to buy resource stocks and doesn’t have to pay 
the maintenance costs.  With a put option, the agent promises to sell resource stocks but does 
have to pay the maintenance costs. 
 
Options on the Environment 
 
Options on the environment are not a new idea.  Rainfall insurance and hail insurance for 
crops are examples (Bardsley, Abbey and Davenport; Quiggin).  Combining equations (6) and 
(11) shows that options can be written on almost any environmental variable. 
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Figure 4:  Prices of a Call Option on Resource Stocks. 
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Figure 5:  Prices of a Call Option on Financial Stocks. 
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The expected return from a production contract equals the expected capital gains from 
investing in an option.  Whether or not production contracts actually exist does not matter for 
designing an option pricing formula.  Production contracts and options on the environment 
are equivalent methods of managing environmental risk and so long as one or the other exists, 
the risk can be hedged.  Substituting for the expected change, ee, from equation (3) gives a 
partial differential equation for the price of options on the environment. 
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Like minimum price contracts, options on the environment are defined by a non linear 
differential equation which must be solved numerically.  The boundary conditions are for a 
European call option.  At the time of maturity, if the environmental variable, X, exceeds the 
exercise price, X̂ , the option on the environment is “in the money” and will be exercised.  
Solving the differential equation subject to the boundary conditions gives the cumulative 
probability that the environmental variable will exceed the exercise price.  This cumulative 
probability is the actuarially fair price of an option on the environment. 
 
Suppose the option is a water right to divert stream-flow from a river with multiple users.  In 
a wet year, the option is “out of the money” because stream flow is high.  In a dry year, the 
option can be exercised to maintain the agent’s diversions while others must cut back.  In 
Table 1, the environmental variable is scaled until it has a mean of 1 and the agent is 
expecting an average year.  The contract amount of 0.9 can be interpreted as 90% of average.  
The environmental variable is also multiplied by $1 to give units of dollars.  Figure 6, gives 
the prices of rights to divert water in a year with less than 90% of average stream flow.  If, at 
the beginning of the year, an average year is expected, the price of the water right is $0.09. 

 
Figure 7 shows the prices that would be predicted if water rights were treated as if they were 
call options on futures. 
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Figure 6:  Prices of a Call Option on the Environment. 
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If an average year is expected, the price of an options of futures would predict the value of the 
water right to be $0.17. 
 
As with all options, prices of water rights are independent of the agent’s risk aversion.  In 
addition prices are independent of the correlation between stream flow and production.  
However, risk aversion and correlations affect the quantity of water rights an agent will buy.  
This quantity can be found by solving the optimality conditions in equations (5) through (11) 
as a system.  Solving the system several times for all users of the river will give the demands 
and supplies of water rights.  These could be aggregated into a model of a market for water 
rights.  A market for water rights is a market for trading in options. 
 
Concluding Remarks 
 
Options can be written on any environmental stock or flow that is continuously measured and 
has enough historical data to estimate a stochastic differential equation.  However, the Black-
Scholes option pricing formula does not apply.  A new option pricing formula is derived 
which considers the provisions of the contract that underlies the option.  The price of an 
option is a non linear function of the environmental variable.  The contract provisions will 
alter the degree of non linearity.  A simple example is a forward contract with a fixed contract 
price over the life of the contract.  This inflexibility lowers the value of options on forward 
contracts compared with options on futures.  Another example is the value of a water right.  
The contract level must be agreed when a water right is purchased.  Because of this 
inflexibility, the value of a water right is much less than predicted by the Black-Scholes 
formula or any of the usual methods of calculating cumulative probabilities. 
 
However, the new option pricing formula is far from a complete model of options on the 
environment.  For example, exploration for minerals is the creation of an option that may or 
may not be exercised in the future as the prices of minerals change.  Creating the option is a 
complex production problem and not a simple investment as modelled here.  Further, the price 
of minerals is an endogenous variable in the system.  Perhaps the major area for future work 
is options on environmental variables that are endogenous to the system.  Society may want to 
invest in options on old growth forests, but the value of those same forests depends upon how 
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Figure 7:  Prices of a Call Option on Futures. 
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much forest is preserved.  Most of the large environmental questions, such as greenhouse gas 
emissions, overpopulation, and available farmland, are in this category. 
 
Pricing these options is not an impossible task.  Notice that equation (1) for the formulation of 
a stochastic dynamic program is an option pricing formula complete with boundary 
conditions.  Expected social welfare is the value of a call option on the wealth as affected by 
decisions over the planning horizon.  As one example, the precautionary principle for 
greenhouse gases can be put into practice by formulating a suitable model of society’s wealth 
during global warming and solving equation (1).  The result will be how much society is 
willing to invest to avoid the risks of global warming. 
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Appendix:  Stochastic Wealth 
 
To derive the stochastic differential equation for wealth, begin with society’s wealth as the 
sum of all assets and liabilities. 

.aAbBW   
Wealth, W, consists of risk-free bonds, B, with price b, and a vector of risky assets, A, with 
prices a.  Negative quantities of B and A are liabilities.  The change in wealth is found by Ito 
stochastic differentiation. 

    .dAdaadBdbbdaAdbBdW   
The first and second terms on the right hand side are capital gains or losses on beginning 
inventories of bonds and risky assets.  The third and fourth terms are acquisitions and 
depreciation valued at ending prices.  Assume that the quantity of bonds can change over time 
by acquisitions and the quantities of risky assets can change by acquisitions and physical 
degradation. 

  .

;

AAA dZAdtAAdA

dtBdB

 


 

Acquisition of bonds is B  and acquisition of risky assets is A .  Risky assets are expected 
degrade by AA , with error AAdZA .  Substituting these changes in bonds and risky assets 
gives another expression for the change in wealth. 

      .AAA dZAdtAAdaadtBdbbdaAdbBdW    
By definition, the acquisition of bonds and risky assets must be financed by profits generated 
by the economy. 

    .dtAdaadtBdbbddt    
The left hand side of this equation is the stochastic profit at the end of each decision interval.  
Profit substitutes for acquisitions in the change in wealth. 

  ./  ddtdZaAAdtadaAbaAWdbdW AAA   
Bonds have been eliminated by rearranging the equation for wealth to solve for B and 
substituting into the change in wealth.  The terms daAAdt and daAAdZA have been 
eliminated as well because dadt equals zero by the rules of stochastic differentiation and 
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dadZA equals zero because the covariance between the prices of assets and their physical 
degradation is assumed to be zero. 
 
The vector of risky assets can include both natural resource and financial assets.  Assume that 
risky assets include stocks of exhaustible resources, minimum price contracts, options on 
futures and options on an environmental variable.  Of these, only resource stocks will 
depreciate.  Assume this depreciation is not stochastic. 

 
.

/

 ddtdeEdnNdmMSdtydyS

beEnNmMySWdbdW

S 


 

Resource stocks, S, are valued at the price for all commodities in the economy, y.  Minimum 
price contracts, M, options on futures, N, and options on the environment, E, have market 
prices m, n and e. 
 
Society benefits from production, plus any gains from forward and futures contracts.  
Subtracting consumption expenditures, costs of production and costs of maintaining resource 
stocks gives profit. 

         .          dtFffHyhKXXsSYcyYqQdt   
Consumption goods, Q, are purchased at price q.  Production, Y, will sell for price y, and will 
cost c(Y) to produce.  Resource stocks, S, will cost s per unit to maintain.  K is a forward 
contract written on an environmental variable, X, and will add to profit if the environmental 
variable is less than a contract level, X .  Forward contracts, H, add to profit if the contract 
price, h , exceeds the price society would receive for selling the commodity.  Commodity 
futures contracts, F, add to profit if the contract prices, f  exceeds the futures prices, f. 
 
Profit is stochastic because the commodity price, production, the environmental variable and 
the commodity futures price are stochastic. 

  .dfFdyHKdXdYdyydyYd   
Substituting in profit and its stochastic derivative gives another expression for the change in 
wealth. 

 
      

  . 

/

dfFdyHKdXdYdyydyY

dtHyhKXXsSYcyYqQ

deEdnNdmMSdtydySbeEnNmMySWdbdW S




 

 

For commodity futures, the contract price, f , is simply the futures price, f, at the time the 
contract was taken out.  Hence, the contract price and the beginning futures prices cancel 
from the change in wealth. 
 
Decision-makers in society must form expectations about prices, production and the 
environmental variable.  Assume log-normal distributions. 
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;

;
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dzfdtfdf
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Substituting in the differential equations for expectations and rearranging gives yet another 
expression for the change in wealth. 
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For society, the commodity price and production will be negatively correlated with 
covariance dydY equal to yYyY, where yY is the correlation coefficient. 
 
Minimum price contracts, options on futures and options on the environment are assets which 
must be purchased at prices m, n and e.  The value of a minimum price contract is a function 
of the commodity price, y, and the time to maturity,  - t, where  is a maturity date in the 
future.  In other words, the value of a minimum price contract is the function, m(t, y).  Its 
differential equation is found by stochastic differentiation. 
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Substituting in the differential equation for the commodity price gives the final result. 
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Because m is nonlinear, its expected change, in brackets, depends upon the expected change 
in the price, yy, as well as the variance of the price, y2y

2.  Its error term is a transformation 
of the error term for the price. 
 
Similarly, options on futures are defined by a function of the futures price, n(t, f), which 
evolves according to a stochastic differential equation. 
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Options on the environment are an asset with a value, e(t, X), which depends upon the 
environmental variable and also has a differential equation. 
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Finally, substituting in these expectations for minimum price contracts, options on futures and 
options on the environment gives the stochastic differential equation for wealth. 
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To make the presentation clearer, expected changes in the values of minimum price contracts, 
options on futures and options on the environment have been abbreviated as mm, nn and ee. 
 


