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Abstract

An optimal stochastic control model of grazing that incorporates both pasture

and livestock dynamics is presented. The model is solved numerically using Markov

chain approximation methods. Markov chain approximation methods have a number

of advantages as a means of solving stochastic optimal control methods compared

with the usual alternatives. In particular, optimal control of the approximating

Markov chain may be determined using Linear programming methods, thus making

optimal stochastic control methods accessible to a wider audience.

1 Introduction

The use of Ito stochastic control techniques in the study of renewable resources generally
is quite well established but this approach has rarely been applied to the study of optimal
stocking in rangelands.

Ito stochastic control theory has been applied in agricultural and resource economics
by a number of authors. Pindyck (1984) (Pindyck 1984)gives a survey of applications to
renewable resources and Hertzler (1991) surveys applications to Agriculture. Applications
involving common property have typically been restricted to non-renewable resources and
have invariably involved postulating certainty to simplify the analysis1.

From the late 1970's onwards a series of paper examine the application of stochastic
control theory to the management of renewable resources, predominantly �sheries has
emerged. Much of this literature is surveyed by Mangel (1985).

�Paper presented at the 44th annual conference of the Australian Agricultural and Resource Economics
Society, Sydney January 22-25, 2000

1See Clemhout and Wan (1985)
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Gleit (1978) extends Clark's (1976) analysis of deterministic bioeconomic (�sheries)
models to a stochastic setting by using Ito calculus. Gleit considers two applications,

1) Harvesting from a natural population (sole harvester).

2) Harvesting from a farm population2.

Each of these situations is characterized by Gleit as having di�erent cost structures
analogous to our distinction between the continuous stocking strategy followed by west-
ern style ranch systems and the \intensive" herding system of mobile pastoralism. Gleit
criticizes the use of discounted pro�t as a payo� functional as this \ignores risk"(?, p.
113). As an alternative Gleit suggests maximization of the expected 
ow of discounted
future utility. He achieves this by using an isoelastic utility function with pro�t as the
argument. Gleit concludes that the optimal harvest rate should increase with the variance
of the underlying resource but that more noisy systems lead to lower utility.

Ludwig (1979), and Ludwig and Varah (1979) analyze a similar problem to that of
Gleit over an in�nite time horizon.

Pindyck builds on the work of Ludwig, adn Ludwig and Varah
Although a continuous-time deterministic optimal stocking model has been developed

by Torell, Lyon and Godfrey (1991), the emphasis in the literature has been on discrete-
time stochastic models using either dynamic programming or Hamiltonian approaches.
Undoubtedly, the inclusion of stochastic aspects is a central feature of any model of range
dynamics, nvertheless there is still considerable room for the analysis of the nonlinear de-
terministic dynamics of rangeland ecosystems that cannot be appropriately analysed from
within a stochastic framework. In particular, because, the qualitative theory of di�erential
equations has been primarily developed for deterministic di�erential equations, stability
issues are often more appropriately analysed within a deterministic framework.

Swanson (1994) recently attempted to remedy some of the de�ciencies of the early
literature on dynamic optimal stocking. Unfortunately, Swanson's model stops short of
interspeci�c competition by treating the base resource (Land) as a \parameter or decision
variable" but not as a state variable3. Consequently, rangeland degradation cannot be
analyzed within Swanson's model. Nevertheless, his work does point in the right direction.
Perrings (1994) goes further than Swanson in incorporating the base resource land not as
a constant but as a state variable. Perrings does this by viewing carrying capacity as the
state variable and showing how carrying capacity evolves through time in a grazed system.

Another approach is that of Hu�aker (1995) who use \fast-slow dynamics" to capture
the idea of the state and transition approach to pasture dynamics. although this model

2This begs the question as to what a renewable farm resource might be. Most crops are not that long
lived. Pastoral systems tend to involve two and not one trophic level and thus di�er conceptually from
Gleit's model. Gleit's model when applied to farm management therefore begs the question as to what a
real-world application might look like.

3Swanson's use of a generic variable for all land resources is probably too simplistic, in our context it
can be interpreted as pasture biomass. In the models presented in this thesis other land resources are also
viewed as constants in the same way as Swanson does this.

2



represents an interesting approach to modelling state and transition type dynamics, it fails
to incorporate livestock dynamics and thus fails to capture an essential feature of extensive
pastoral systems.

An alternative way of capturing fast-slow dynamics is to use stochastic processes,
whereby random variables represent fast processes and constants represent slow processes
relative to the time scale being examined.

1.1 Modelling Rangeland Ecosystems as Systems of Stochastic

Di�erential Equations

Rangeland ecosystems are characterised by at least two trophic levels(?, Noy-Meir). Fur-
ther their dynamics is characterised by considerable uncertainty. One way of incorporating
both these aspects into a single model is to model the ecosystem as a system of stochastic
di�erential equations(?, turelli).

In the following a general time-indexed stochastic process is assumed which may or
may not be Markovian gives s the following system of stochastic di�erential equations:

_x = x̂(x; y; t) (1)

_y = ŷ(x; y; t) (2)

where x represents pasture biomass and y represents livestock.
Typically, this system of stochastic di�erential equations would have an additive spec-

i�cation:

_x = F (x; y; t) + g(x)�(t) (3)

_y = G(x; y; t) + h(y)�(t) (4)

where g(x) and h(x) are measures of the intensity of noise and � and � are noisy
processes. The functions F (x; y; t) and G(x; y; t) are the deterministic component of the
di�erential equation.

It should be noted that a version of the \State and Transition model" may be recovered
from the model presented here in the following manner.

Given a probability space (
;A;P) a random variable x(t; !) with ! 2 
 and inter-
preting x(t; !) as a vector of key range condition indicators then the State and Transition
model is characterized by the following additional assumptions:

1) F (x; y; t) = �

2) G(x; y; t) = 0
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3) �(t) is a continuous-time Markov process

This approach is characteristic of those approaches which have interpreted state and
transition models as Markov processes.

Interestingly, the claims of Westoby, Walker and Noy-Meir that the state and transition
model is a disequilibrium model are for the most part not ful�lled by any of the attempts
to implement the state and transition approach in a concrete modelling framework (See
chapter 2 for further details).

In a stochastic context, equilibrium may be interpreted in a number of di�erent ways.
The underlying stochastic process may be interpreted as a,

1 Strongly Stationary (strong equilibrium concept - see appendix for a de�nition).

2 Weakly Stationary (weak equilibrium concept - see appendix for a de�nition)

process4.
If all forms of equilibrium were totally rejected then analysis would become impossible.

Such a situation would be characterized as \chaotic" in the sense of non-linear dynamic
systems theory. The existence of chaotic behaviour in real biological systems is however
contentious to say the least5.

The following model of the ecosystem, is therefore proposed:

dx = [f(x)� h(x; y)] dt+ �(x; y)dB

dy = [g(y; x)� u] dt+ �(x; y)dB

where x is forage plant biomass, y the total number of animals which may also be inter-
preted as the stocking rate, f(x) the biomass regeneration function, g(x; y) the herbivore
regeneration (reproduction) function, and the control variable u the turno� rate of livestock
and dB a Wiener or Brownian motion increment, with the properties that E(dB) = 0 and
E(dB)2 = dt. This model represents an extension of Noy-Meir (1975) in that livestock
numbers are also treated as a state variable. In other respects it is a continuous-time
generalization of Perrings (1994) model. Note, that such a system is called an indirect
feedback control system6. To see this note that yin equation 1 is in
uenced indirectly by
the control u acts on x only indirectly via the term dy.

2 Livestock as a Derivative Asset of Pasture and the

use of Weight-Gain Functions

An alternative approach is to view livestock as a derivative asset, which derives its \value"
from that of of an underlying asset - pasture. This idea draws on the �nancial literature on

4The term ergodic is sometimes used instead of stationary.
5Renshaw (1991), pp. 4-5.
6Lefschetz (1965): p. 18.
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derivatives which make use of Ito's lemma in valuing derivative assets. Instead of deriving
a monetary value we derive a physical measure of weight gain. it is assumed that this
functional relationship is known and a stochastic control approach is then applied in order
to determine an optimal management \policy" for the derivative asset livestock.

In empirical work done by Van Heerden and Tainton (1989) a negative linear relation-
ship between individual weight-gain and stocking rate was found7. A linear relationship
of the type discovered by Van Heerden and Tainton conforms to the following form, if one
de�nes average animal weight w as a linear function of livestock \numbers" y, measured
as some form of pasture intake then

w = a� by

x pasture

y livestock units

thus y = a�w
b
.

De�ne the feed conversion function

w = logx

Note that if one scales pasture to lie between zero and one then one must rescale the
feed conversion relationship to account for the fact that the logarithm becomes negative.
In this case one may use

w = dlog(x)

where d < 0
Substituting gives

y =
a� dlogx

b
and the equation for pasture dynamics as

dx = [nx(1� x=K)� xy] dt+ �xdB

Note that x = e
w
d .

Then use Ito's lemma to obtain an equation for livestock numbers measured in animal
units.

dy = �
1

b

"
n(1�

x

K
)� y +

�2

b

#
dt +

�

b
dz

The last equation needs to be modi�ed to include a turno� rate u.

dy = �
1

b

"
n(1�

x

K
)� y +

�2

b
� u

#
dt +

�

b
dB

From the linear weight-gain function one may derive a production function for a �xed
area of land (Y ) (short-run production function) in the following manner8

7See also Wheeler and Freer (1986) pp. 176-177.
8Humphreys (1987): p. 125.
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Y = ay � by2

This results in the revenue-cost function for a labour intensive economy. In a modern
pastoral sector with no intensive herding livestock may be treate as a 
ight resource, so
that the cost function when plotted against stock numbers or stocking rates is downward
sloping. This result appears at �rst sight to di�er from that of the �sheries literature, but
some re
ection shows that the result is in fact the same as the �sheries case. The same
cost structure exists in �sheries when one plots costs against �sh stocks rather than against
e�ort.

Thus the cost structure of the grazing enterprise is the same as that used in the literature
on renewable resources. This is important because it implies that bionomic equilibria may
still exist, whereas the linear weight-gain (production) functions used by Noy-Meir preclude
the existence of bionomic equilibria.

Two parameters of the revenue function are particularly important. These are the
maximum sustainable yield stocking rate ymsy and economic grazing capacity ycap. Note
that economic grazing capacity may di�er from the ecological grazing capacity. Economic
grazing capacity is de�ned as the least upper bound of the set of zero revenue stocking
rates. To calculate ymsy di�erentiate Y and set dY

dy
to zero

dY

dy
= a� 2by = 0

From this one obtains ymsy =
a
2b
. To obtain ycap set Y = 0 and solve for y. This gives

ycap =
a
b
. Note that ymsy =

1
2
ycap.

Pro�t is de�ne using a Jones-sandland technology as:

� = p(a� by)u� c(y)u

By appropriately de�ning the cost function c(y livestock can be treated as a 
ight or
captive resource, thus allowing on to treat both developed ranch style pastoral systems
and traditional pastoralism.

In the later numerical work it is asumed that c(y is linear in y.
Then one may de�ne following Gleit (1978) an isoelastic utility function of pro�t as

U(�) = �




= ((pw�c)u)




for the commerical pastoralism case or U(�) = �




(y � ymin)

� for
the semi-subsistence pastoralism case.

The pastoralists objective function is given by

max
u

E
�Z 1

o
U(�)E�rtdtjF0

�

subject to

dx = [nx(1� x=K)� cxy] dt+ �xdB
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dy = �
1

b

"
n(1�

x

K
)� y +

�2

b
� u

#
dt +

�

b
dB

From this one obtains the Hamilton-Jacobi-Bellman equation

0 = Jt+max
u

(
U(�)e�rt + [nx(1� x=K)� xy] Jx +

"
�
1

b

"
n(1�

x

K
)� y +

1

2

�2

b
� u

##
Jy+

1

2
�2x2Jxx +

1

2
�2Jyy

�

Maximisation gives

û = (
ertJy

(pw � c)

)




�1

for the case of a utility maximising but pro�t oriented pastoralist.
Substituting this into the Hamilton-jacobi-bellman equation gives the PDE.

0 = Jt + U(�)e�rt + [nx(1� x=K)� xy]Jx +

"
�
1

b

"
n(1�

x

K
)� y +

1

2

�2

b
� û

##
Jy+

1

2
�2x2Jxx +

1

2

�2

b2
Jyy

In order to solve this equation carryout a change of variables from y to x.
To change variables back to an equation solely dependent on x and t onemay make use

of the following identities

@J

@y
=

@J

@x

@x

@y

@2J

@y2
=

@2J

@x2

 
@x

@y

!2

Note that the @x
@y

term is obtained from the feed conversion and weight gain relations.
Substituting these in and using the livestock weight gain and feed conversion relations

gives.

0 = Jt + U(��)e�rt +

"
nx(1� x=K)� x

a� logx

b

#
Jx+

1

b

"
n(1�

x

K
)�

a� logx

b
+
1

2

�2

b
� û

#
Jxbx+

1

2
�2x2Jxx +

1

2

�2

b2
Jxxb

2x2

This equation then needs to be numerically solved in order to obtain a solution. This
done in chapter 8. note that in utililising Markov chain approximation via LP it is not
necessary to substitute û back into the Hamilton-Jacobi-bellman equation as the control
values are set at �xed levels (see below).
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3 Markov Chain Approximation

One of the probelms with using methods developed for the solution of partial di�erential
equations to solve stochastic control problems is that convergence results for methods such
as �nite di�erence may no longer be valid in the stochastic setting.

An alternative to �nite di�erence methods is to approximate the problem as one in-
volving solution of a possibly controlled Markov chain on a �nite state space(Kushner
and Dupuis 1992, pp. 67-68) . Thus, one discretizes the model in a similar way to �nite
di�erences methods but then derives transition probabilities for a Markov chain.

Thus, the Markov chain is constructed based on transition probabilities from one point
on a grid to another. With the grid representing the discretised state space.

There are two main approaches to the derivation of the approximating Markov chain:
One may iterate in either the value dimesnion or in the policy (strategy) dimension.

Computation of derivatives follows the standard �nite di�erence approach except that
backward derivatives are used instead of forward derivatives if the drift is negative (upwind
approximation).

In the following I will only present the general �nite di�erence method for obtaining
transition probabilities for an approximating Markov chain. This is not to be confused with
the �nite di�erence method for the numerical solution of a partial di�erential equation.

Given a stochastic control problem,

J(x; t0) = max
u

E

"Z T

t0

U(x; u)e�r(T�t0)dtjFt0

#

dx = b(x; u)dt+ a(x; t)dB

Then the partial di�erential equation

0 = Jt +
�
U(x; u)e�r(T�t0) + [b(x; u)] Jx +

1

2
ba(x; t)2Jxx

�

may be approximated by a Markov chain in the following manner.

W (x; u; n) =
X
y

U(x; u)�t + e�r�ph(x; yju)W (y)

Where ph(x; yju) represents the transition probability between state x and state y.
Transition probabilities may be computed in the following manner

ph(x; yju) =
aii(x)=2 + hb�i (x; u)

Qh(x; u)

The time step is:

�th(x; u) =
h2

Qh(x; u)
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The scaling term is given by

Qh(x; u) =
X
i

[aii(x) + hjbi(x; u)j]

Two problems may arise in implementing Markov chain approximation techniques. if
the di�usion term is dependent on the control variable it may be necessary to eliminate
the control variable from the scaling term by an appropriate transformation. In this case
de�ne

�ph(x; xju) = 1�
X
y:y 6=x

�ph(x; yju)

and

�Qh = max
u2C

Qh(x; u)

The terms with a bar are then used to replace those without a bar.
Secondly, a similar problem to sti�ness in partial di�erential equations arises if there

is a high degree of heterogeneity in the values taken on by the variance-covariance matrix.
The latter problem arises if the following condition is not ful�lled:

aii(x)�
X
j:j 6=i

jaij(x)j � 0

It should be noted that this will always hold univariate systems but in the multivariate
setting problems may arise. Following Noy-meirs de�nition of grazing problems as those
problems with two or more trophic levels. It is clear that numerical solution of such
problems may be a problem. the di�erence in scale between pasture and stock numbers
makes this almost inevitable.

Possible remedies include some form of rescaling and allowing transitions to states of
the grid other than nearest neighbours.

This involves \splitting the operator", ie.e. the value function and decomposing the
transition probability matrices into separate transition probability matrices for the di�usion
and drift.

The transition probabilities are given by

pha(x; yju) =
aii(x)

2Qh
a(x; u)

and

�tha(x; u) =
h2

Qh
a(x; u)

and
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phb (x; yju) =
b�i (x; u)

Qh
b (x; u)

and

�thb (x; u0 =
h

Qh
b (x; u)

and the scaling terms are

Qh
a(x; u) =

X
i

aii(x)

Qh
b (x; u) =

X
i

jbi(x; u)j

and combining terms:

ph(x; yju) =

"
aii(x)=2

Qh
a(x; u

h

)Qh
b (x; u)

+
b�i (x; u)

Qh
b (x; u)

h2

Qh
a(x; u)

#
� normalisation

=

"
aii(x)

2
+ b�i (x; u)h

#
� normalization

where the normalization is h
Qh
a(x;u)Q

h
b
(x;u)

and

�h(x; u) =
h2

Qh
a(x; u) + hQh

b (x; u)

This method can then be implemented in three possible ways:

i) Value iteration

ii) Policy iteration

iii) a mixture of value and policy iteration.

iv) Linear programming.

According to (1992) there is no apparent reason for preferring one approach over the
other. It is simply a matter of expediency.

In the following subsection both the primal and dual linear programming approach to
implementing the Markov chain approximation method will be reviewed.

10



3.1 Solution via Linear Programming

Markov chain transition methods can be implemented in the form of a linear program. This
allows one to solve stochastic control problems in a relatively simple manner. Solution of
stochastic di�erential games via this method is also posssible by means of linear multiob-
jective programming methods. The method has the disadvantage that the computational
complexity of the method increases exponentially with number of dimensions.

The primal problem is given by

maxW� =
X
i;k

U(i; uk)Mik

subject to

Mi = �i +
X
j;k

r(j; ijuk)Mjk

Mik � 0

where

Mi =
P

kMik are the mean occupancy times in thei-th state

�i the initial probabilities of the Markov chain for each state.

r(j; ijuk) are the transition probabilities between the j-th and i-th states.

U(i; uk) the utilities given each state of the system.

In the discounted case r(j; ijuk) = e�r�tph(x; yju). In addition in the case of multiple
state variables one neeeds to split the operator and consequently the transition probabili-
ties.

The dual LP problem may be formulated in the following manner:

min
X
i

�iYi

subject to

Yi �
X
j

r(i; jjuk)Yj + U(i; uk) for all i; k

The complementary slackness cond�tions of the dual minimisation problem give

Yi = min
k

2
4X

j

r(i; jjuk)Yj + U(i; uk)

3
5

However the right hand side of this is just the discretised HJB equation, so that the Yi
are numerical approximations to J(x; t).
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Whilst this approach works well for problems with a small number of dimensions (one or
two) for higher dimensional problems it su�ers from the curse of dimensionality. That is the
size of the grid being evaluated increases exponentitally with the number of dimensions. By
utilizing weight gain functions and Ito's lemma it is possible to reduce the dimensionality
of the original control problem so that it is amenable to numerical solution using Markov
chain approximation.

4 Results

The model presented above was implemented using Markov chain approximation using
MS-Excel 97. A small grid of approximately ten gridpoints was used with a step size of
0.1. Eight di�erent turno� rates were used giving a total of 80 occupation times needed to
be evaluated.

the LP approach to Markov chain approximation solves the model by generating occu-
pation times, i.e. the number of times states and control values occur simultaneously. In
reading the model output the Mik should be interepreted thin this way. they can be easily
converted to probabilities by dividing by Mi (see above). Some results are shown in the
appendix.

Preliminary results indicate a number of interesting features. Higher turno� rates
appear to occur in the presence of more abundant pasture. Although high levels of turno�
were observed for all pasture states. Low turno� levels also at the highest level of pasture
availability. Whilst it was expected that increased prices and reduced costs increased utility
it was found quite unexpectedly that increased volatility in weather actually increased
utility.

It would seem that uncertainty in fact provides opportunities for exploitation. Inter-
esstingly price increases do not appear to e�ect stocking behaviour as such but do appear to
a�ect welfare. Increased uncertainty does appear to have an impact on stocking behaviour
and seems to lead to reduced frequency of turno� at high pasture levels and increased
turno� at lower pasture levels. This appears to make sense and seems to indicate that it
pays pastoralists to practice conservative destocking strategies in highly uncertain systems
whereas at low to moderate levels of uncertainty good pasture is likelty to produce more
and heavier stock that is turned o� more frequently.

These are just some of the preliminary �ndings that the model seems to indicate a more
thorough sensitivity analysis is however necessary to determine what other factors may be
important. Some preliminary model output is to be found in the attached appendicesm
with a listing of the parameter values used for each model run.

5 Conclusion

In this paper I have presented a stochastic optimal control model of livestock as a deriva-
tive asset of pasture. the approach utilised exploits livestock weight-gain and feed con-
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version relationships to employ Itos lemma to reduce the dimensionality of the problem
to a level amenable to analysis using Markocv chain approximation methods. Markov
chain approximation methods are easily implementable for problems involving only a sin-
gle state variable. These emthods can be implemented as linear progams in which the
original continuous-time stochastic control problem is approximated by a discrete Markov
chain. The widespread availability of linear programming packages including in spread-
sheets makes numerical stochastic control for low dimensional problems using Markov chain
approximation an accessible tool for agricultural and resource economists.

A Model Output

13



References

Gleit, A. (1978), Optimal Harvesting inContinuous Time with Stochastic Growth, Mathe-
matical Biosciences 41, pp. 111-123.

Hertzler, G. (1991), Dynamic Decisions under Risk: Application of Ito Stochastic Control

in Agriculture, American Journal of Agricultural Economics, November, pp. 1126-1137.

van Heerden, J.M. and Tainton, N.M. (1989) Development of a General relationship Be-

tween Stocking Rate and Animal Production, in: XVI International Grassland Congress,
Nice.

Hu�aker, R. and Cooper, K. Plant succession as a Natural Range Restoration Factor in

Private Livestock Enterprises, American Journal of Agricultural Economics, vol. 77,
November, pp. 901-913.

Numerical Methods for the Solution of Stochastic Control Problems in Continuous Time,
Berlin, Springer-Verlag.

Mangel, M., Decision and Control in Uncertain Resource Systems, Academic Press, Or-
lando 1985.

McArthur, I.D., Dillon, J.L. (1971): Risk, Utility and Stocking Rate, Australian Journal
of Agricultural Economics Vol. 15 (1), pp. 20-35.

Noy-Meir, I. (1975): Stability of Grazing Systems: an application of predator-prey graphs,
Journal of Ecology 63, pp. 459-481.

Passmore, G., An Economic Analysis of Degradation in the Queensland Mulga Rangelands,
unpublished Masters Thesis, Department of Agriculture, University of Queensland, St.
Lucia 1992.

Passmore, G. and Brown, C. (1991) Analysis of Rangeland Degradation using Stochastic

Dynamic Programming, The Australian Journal of Agricultural Economics, Vol. 35, No.
2, August, pp. 131-157.

Perrings, C. (1993): Stress, shock and the sustainability of optimal resource utilization in a
stochastic environment, in: E.B. Barbier (ed.), Economics and Ecology: New Frontiers
and Sustainable Development, Chapman and Hall, London 1993.

Perrings, C. (1994) Stress,shock and the sustainability of resource use in semi-arid envi-

ronments, the annals of Regional Science Vol 28, pp. 31-53.

Pindyck, R. (1984), Uncertainty in the Theory of Renewable Resource Markets, Review of
Economic Studies, pp. 289-303.

14



Torell, L.A., Lyon, K.S.and godfrey, E.B., Long-run versus short-run planning horizons

and the rangeland stocking rate decision, American journal of Agricultural Economics,
August.

Standiford, R. B., Howitt, R.E. (1992): Solving Empirical Bioeconomic Models: A Range-
land Management Application, American Journal of Agricultural Economics, May, pp.
421-433.

Swanson, T.M. (1994): The Economics of Extinction: Revisited and Revised: A Gener-
alised Framework for the Analysis of the Problems of Endangered Species and Biodiver-
sity Losses, Oxford Economic Papers 46, pp. 800-821.

Virtala, M. (1992): Optimal harvesting of a plant-herbivore system: lichen and reindeer in
northern Finland, Ecological Modelling, 60, pp. 233-255.

Westoby, M., Walker, B., Noy-Meir, I. (1989a): Opportunistic management for rangelands
not at equilibrium, Journal of Range Management 42(4), July, pp. 266-274.

Westoby, M., Walker, B., Noy-Meir, I. (1989b): Range Management on the basis of a
model which does not seek to establish equilibrium, Journal of Arid Environments 17,
pp. 235-239.

Wheeler, J.L. and Freer, M. (1986): Pasture and Forage: The Feed Base for Pastoral
Industries, in: Alexander, G. and Williams, O.B., The Pastoral Industries of Australia,
Sydney University Press, Sydney 1986.

15


