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Abstract 
 
Issues of long term soil fertility decline and sustainability are becoming more 
important for cropping industries in Australia.  Helping to manage the level of soil 
fertility in this context is an aim of economic response analysis. This paper reviews 
the theory and methods used by economists to derive the optimal level of an input to 
be used in a production process.  In particular, response functions generated by a crop 
simulation model are used as a basis for the analysis.  The use of such models is 
becoming widespread in the research and extension community.  A variety of 
methods are presented, in increasing order of complexity, to account for the real 
world characteristics of the production environment in this context.  
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1. Introduction 

 
An important issue for grain growers in Australia is the management of soil fertility 
through a spectrum of management decisions, including artificial fertiliser 
applications and crop-sequence choices, in situations of long-term soil fertility 
decline.  In areas of historically fertile soils, where past cropping practices have often 
not included the addition of fertilisers, the question is becoming one of sustainably 
managing soil fertility levels given a current level of infertility. 
 
Two broad methods of changing soil fertility are possible - (1) the addition of 
artificial fertilisers, and (2) changing crop-fallow sequences (including the addition of 
legumes and altering fallow length).  These decisions are made not only to manage 
soil fertility levels, but they also impact issues such as soil erosion, or control of crop 
pests, weeds and diseases.  It is likely that a combination of these methods will be 
used in many cases.  These decisions are being made in a farming systems context, 
because of the potential interdependencies between components of the system. 
 
Whichever crop management is used, the practice of adding some artificial fertiliser 
to an existing level of soil fertility will be an important option when growing a crop.  
That there is a positive response to fertiliser is generally accepted, the question then 
becomes one of how much fertiliser to add.  
 
The aim of this paper is to review the methods and underlying theory available to 
analysts in determining answers to the 'how much' question, accounting for the 
important economic, biological and climatic factors bearing on the decision.  These 
methods are illustrated through the analysis of a synthetic crop-response dataset.  An 
important question that arises is whether the incorporation of more economically-
oriented prescriptions leads to a significantly better outcome than other methods 
which use less-sophisticated calculations. 
 
The paper is organised as follows.  Section 2 contains a review of the classical 
economic method of determining 'best operating conditions' and emphasises the 
assumptions underlying this approach.  Section 3 outlines a number of cases where 
these classical assumptions break down and presents methods to overcome each 
problem.  Section 4 details a set of data  that has been derived to illustrate the 
methods discussed.  Then in Section 5 the response analyses are presented, in 
increasing order of complexity, to account for the exceptions to the classical 
assumptions.  Finally a conclusion and implications for analysts are presented. 
 

2.  The economics of response analysis 
 
Anderson, Dillon and Hardaker (1977) set out the principles of decision-making 
based on rational choice.  In making decisions, especially those characterised by the 
presence of uncertain outcomes based on random factors (ie stochastic outcomes), the 
decision-analysis paradigm is proposed as an aid to decision makers.  When the 
consequences of decisions are important, and when there is uncertainty about which 
consequence will occur, a rational consideration of the available information will 
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allow a systematic approach to making the best possible decision, according to the 
objective of the decision maker. 
 
The decision-making process can be characterised as a 'choice-chance-consequence' 
process.  Faced with a set of information and uncertainties, the decision-maker has 
available a number of alternative acts or choices, which involve potentially a number 
of different events (outcomes or states of nature), each with a particular chance of 
occurring.  There may also be quantifiable consequences for different management 
choices, depending on which state occurs.  These outcomes may be expressed as 
payoffs (in dollar terms).  The decision-maker has certain objectives, or criteria, by 
which decisions will be made.  Given all of this, the process of decision analysis 
involves systematically quantifying these alternatives as an aid to making the best 
possible decision. 
 
Gaining further information (such as purchasing a forecast, or undertaking more 
research) can be worthwhile if it refines the probabilities of outcomes so that a 
different decision is made.  This mode of analysis can be used to develop a strategy, 
or "a recipe for future action conditional on observed experimental outcomes" 
(Anderson, Dillon and Hardaker p. 6).  Thus the management decision can be made 
according to some observed interim outcome. 
 
Two general farm management cases where economic principles apply are the 
selection of an input level within an enterprise and the selection of enterprise mix to 
use in a whole-farm context.  Makeham and Malcolm (1981) emphasise the 
importance of whole-farm analysis in determining management recommendations 
about choice of enterprises (crops, pasture and livestock mixes) when there are a 
number of alternative enterprises.  In this paper the focus is on selection of a level of 
input to use, which is considered here separately from the question of enterprise 
selection. 
 
2.1 Deterministic single output 
 
The classical approach to agricultural decision analysis has been outlined by, among 
others, Anderson (1967) and Dillon and Anderson (1990).  Dillon and Anderson 
discuss a normative approach to solving the problem of manipulating an input to a 
production process to determine the best operating conditions to achieve a specific 
goal.  If profit maximisation is considered an important aim for commercial grain 
growers, then the likely biological response of the crop to the input, given the relevant 
input and output prices, can be used to determine the ‘best’, or most profitable, level 
of input to use.  
 
In the case of certain (ie deterministic) outcomes, the biological response function for 
a single output can be represented as: 
 
 Y f X X X n ( , ,... )1 2 ,       (1) 
 
where Y is the quantity of output and the X’s are the quantities of inputs.   
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France and Thornley (1984) have characterised this function as being generally of the 
diminishing returns type.  Similarly, Dillon and Anderson base their theory of crop 
and livestock response on three assumptions about relationship (1).  These are: 
 
1. that there is a continuous smooth causal relationship between the inputs and the 

output, implying that the first derivative of the response function (1),  Y X i/ , 
exists; 

2. that diminishing returns prevail with respect to each input factor X i , implying 
that for each input Y Xi/  is positive but decreasing as X i  increases, and that the 
function is concave so that the Hessian matrix of second partial derivatives is 
negative definite (Simon and Blume 1994); and 

3. that decreasing returns to scale prevail, so that an equal proportionate increase in 
all inputs results in a less than proportionate increase in output, implying 

( / )( / )X Y Y Xi i   1. 

 
Dillon and Anderson state that "there is no strong evidence of any but diminishing 
returns" under the usual conditions of crop and livestock production. 
 
Assuming no constraints on inputs or output, they then write the profit function as: 
 

   p Y p Xy i i
i

  ( , )p py i  0  (i = 1, … ,n)   (2) 

where   is the net gain from the response process, or profit, and py  and pi  are the 

(fixed) prices of the output and inputs, respectively. 
 
By deriving the first order conditions and assuming sufficiency holds, Dillon and 
Anderson state the necessary conditions for the profit maximising input levels to be: 
 
 p Y X py i i* /   .        (3) 

 
Solving these n equations yields the set of X si '  that constitute best operating 
conditions, or the optimum levels of inputs to use.  Condition (3) can be interpreted as 
requiring that each input be added until the marginal value product equals the price of 
the input.  Alternatively the condition is that the slope of the production function 
(marginal product) equals the price ratio of input to output.  The input increments are 
added while ever extra revenue exceeds extra costs, and stops when marginal revenue 
equals marginal cost.  This is the marginalist paradigm that is the basis of the neo-
classical approach to economic analysis. 
 
For the one-input case, the solution (3) is illustrated in Figure 1.  For the response or 
production function, Y = f(X), the economically optimum (or best) level of X to use, 
X e , is found where the slope of the production function, the marginal productivity 
 Y X/ , equals the price ratio p pi y/ .  Note that this is different from the point of 

maximum yield X y , which should not be used to determine the economic input level 

because it does not account for the incremental cost of inputs relative to the value of 
output. 
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One way of determining the best level of input to use (ie best operating conditions) is 
to calculate enterprise gross profit, expressed as the Gross Margin (GM), for different 
levels of the input.  The GM is defined for a production unit (eg one hectare of land 
sown to wheat) as the unit returns less variable costs.  When GM, which is equivalent 
to   above, is plotted against an input, the point of maximum profit is taken to be the 
best level of the input to use.  By definition the maximum point of this relationship 
corresponds with the optimum level of input to use to maximise profit, as derived 
above using (3).   
 
This profit function is relatively easy to calculate and plot when only one input level 
is being considered, but is difficult for two and impossible for three or more inputs 
considered simultaneously.  In this latter case, the algebraic approach in (1) to (3) 
above must be used to determine best operating conditions. 
 
One aspect of many profit functions calculated in this way and plotted from 
experimental data is that they are relatively flat or unresponsive for levels of input 
near to the profit maximising point (Anderson 1975).   
 
2.2  Deterministic multiple output 
 
Dillon and Anderson also consider the case of unconstrained multiple responses, or 
the simultaneous production of a variety of outputs.  Examples that they give are grain 
and straw in cereals, muscle and fat in livestock or various grades of meat in beef 
production.  In these cases it is impossible to allocate inputs between the various 
responses, that being done within the plant or animal.  They posit r simultaneous 
responses, each characterised by a response function: 
 
 Y f X X Xk k n ( , ,..., )1 2   (k = 1, … r),    (4) 
 
and write the profit function as: 
 

   
k

k k i i
i

p Y p X. .   (i = 1, … n).    (5) 

 
Subject to the sufficiency condition that the Hessian matrix be negative definite, best 
operating conditions can be derived from the simultaneous solution of the set of n 
equations: 
 

 p Y X pk k i i
k

.( / )    0 .       (6) 

 
2.3  Stochastic single output 
 
Dillon and Anderson (1990) and Anderson, Dillon and Hardaker (1977) also consider 
the derivation of best operating conditions under conditions of variable (ie. stochastic) 
or risky outcomes.  This involves maximising a utility objective function for the 
decision maker which is directly proportional to profits, these being in turn related to 
the response function Y and prices, which may reflect uncertainty.  If decision maker 
is risk averse, as is generally assumed, the best operating conditions derived under 
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risk provide for a lower level of input than the deterministic case above, because 
variance of income constitutes a friction to efficient production or a risk-induced 
increase in input costs.   
 
Anderson, Dillon and Hardaker (Chapter 6) derive a modified version of (3), which 
states that the optimal level of input occurs when the marginal factor cost (or input 
price) is equal to the value of the marginal expected product minus a marginal risk 
deduction that depends on the utility function and the marginal variance of revenue.  
Alternatively the best input level is where marginal revenue is equal to marginal cost 
(with respect to changing expected output) plus a marginal addition due to risk. 
 

 3.  Exceptions to these cases 
 
For wheat growing in the North Eastern cropping region of Australia, the 
deterministic or riskless theory above breaks down in a number of important ways.  
One of those ways involves issues of variability, but there are others that arise for 
other reasons.  These cases and possible remedies are discussed in the next sub-
sections. 
 
3.1  Yield and grain quality response and non-fixed prices 
 
The first of these cases involves the assumptions of smoothness and concavity of 
response and price.  The wheat response to added artificial fertiliser nitrogen can be 
expressed in terms of two outputs, yield (quantity) and protein content (quality).  The 
generalised response relationship presented by Strong (1981) is shown in Figure 2.  
The yield response is of the form of (1) and accords with the standard assumptions 
stated above.  However, over at least part of the domain of added nitrogen, the protein 
content is hypothesised to be a convex response to the added input.  The first order 
conditions can still be derived if the response is smooth and differentiable, however 
the second order sufficient conditions need to be checked for a maximum. 
 
In addition, prices received for wheat are an increasing and non-smooth function of 
protein content.  Figure 3 shows prices at two different times in 1997.  The price per 
tonne is set according to grade (based primarily on protein content) and protein 
increments within grade. Wheat grades (such as Australian Standard White, 
Australian  Hard and Prime Hard) are based on protein levels plus other criteria such 
as screenings, grain hardness, milling quality and dough properties.  Protein content 
has a greater influence on overall processing quality than any other single factor.  The 
stepped nature of the price function has implications for incentives to wheat growers 
and nitrogen application decisions (Fraser 1998). 
 
The stepped and non-smooth price function causes the classical economic response 
analysis to break down, because of its reliance on smooth functions and algebraic 
derivation of first-order conditions. 
 
Economists have also investigated the use of Linear Response and Plateau (LRP) 
functions to represent the yield response to added inputs (eg Lanzer and Paris 1981, 
Waggoner and Norvell 1979).  This notion is based on von Liebig’s ‘Law of the 
Minimum’, which states that plant growth is proportional to an increase in the supply 
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of the most limiting factor (the “minimum factor”), see Figure 4.  Jomini et al. (1991) 
show an example of a response analysis using such a specification.  LRP functions 
also violate the classical smooth function assumption.  
 
3.2  The multiple non-separable output case 
 
The second case involves the characteristic of wheat response to added nitrogen 
whereby there are two outputs (yield and protein content).  For wheat, the response 
function cannot be written as in (4), because the outputs are jointly determined by the 
inputs.  So the function must be written as: 
 
 ( , ) ( ,..., )Y Y g X X n1 2 1 .       (7) 
 
In the case of wheat, outcomes of yield and protein content are not separable in terms 
of price received.  Payment is made on a unit basis that is determined by yield (ie 
$/tonne), but based primarily (although not exclusively) on quality characteristics.  
 
Anderson, Dillon and Hardaker (1977) define an objective function that is separable 
as one that can be expressed as the sum of separate functions of single variables.  If 
(7) was to be used in a profit function such as (5), it would be separable if the yield 
and protein effects were independent and could be simply added together.  
Importantly, Dillon and Anderson’s profit function (5) requires that both outputs have 
a separate price.   
 
Yield and protein are jointly determined by seasonal characteristics.  Martin et al. 
(1996) illustrate how conditions during the grain filling period affect grain protein 
percentage.  For a similar amount of total nitrogen in the grain harvested, yield (in 
terms of starch) and quality (protein) vary inversely according to whether the finish to 
the season is 'hard' or 'soft', that is, according to the temperature and moisture 
conditions during the grain filling stage.  If temperature is relatively high then, when 
moisture becomes limiting due to high evapo-transpiration, the plant partitions energy 
more into protein at the expense of starch.  When temperature is lower, or moisture is 
less limiting, the plant places more emphasis on starch production (higher yield) and 
less on protein. 
 
Therefore, (7) should be written as: 
 
  ( , ( )) ( ,..., )Y Y Y g X X n1 2 1 1 ,       (8) 
 
and Dillon and Anderson’s best operating conditions for the multiple response case do 
not apply because of the non-separable wheat response to added nitrogen.   
 
3.3  Accounting for non-smoothness and multiple non-separable outputs 
 
One way to deal with the problems of non-smooth responses and prices, and the non-
separable joint response, is outlined in CIMMYT (1988).  In making good 
recommendations regarding evaluation of technologies from the farmer’s point of 
view, three premises are made about decision-making: 
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1.  farmers are concerned with the benefits and costs of particular technologies; 
2.  they usually adopt innovations in a stepwise manner; and 
3.  they will consider the risks involved in adopting new practices. 
 
Leaving aside the third consideration for the time being, the first two can be 
incorporated by the use of partial budgets, a marginal rate of return analysis and the 
target rate of return concept.   
 
Partial budgeting involves determining costs that vary between input levels, 
principally the application of extra nitrogen and harvesting costs for the resulting 
higher-yielding crops.  Gross benefits result from the extra yield and/or protein levels, 
and net benefits are the difference between extra benefits and extra costs.  A net 
benefit curve can be plotted and the marginal rate of return can be calculated as the 
change in net benefits divided by the marginal costs, expressed as a percentage.  
Treatments that are dominated by others (always inferior) can be deleted from the 
analysis. 
 
A target or minimum rate of return needs to be determined as a criterion for whether 
funds should be invested incrementally in the input or technology.  Investment 
continues while the marginal rate of return remains above the minimum or target rate.  
CIMMYT (1988) discusses how the target rate of return might be determined.  It 
could be set relatively high, eg 50% or 100% per annum for an adjustment to existing 
farming practices or implementing a new technology respectively.  Alternatively, a 
rate of twice the cost of capital might be used.  This rate might be in the order of 20 to 
25%.  Extension officers sometimes refer to the '2 to 1' rule which, if referring to a $2 
return for $1 outlay, corresponds to a 100% rate of return. 
 
Note that this approach does not depend on concavity, continuity or smoothness 
assumptions, and also overcomes the problem of joint and non-separable responses.  
But it does retain the marginalist approach and additionally includes the concept of 
opportunity cost.  The equalisation of marginal benefits and marginal costs in (3) now 
includes as a cost the required rate of return on the invested capital.  Therefore this is 
a more general approach than calculating the economic response (ie, GM) over input 
levels because it incorporates a specific required rate of return. 
 
It is important to understand the rationale for setting a target rate of return.  In 
CIMMYT (1988) working capital is defined as the value of input allocated to an 
enterprise with the expectation of a return within the production period.  The cost of 
this capital is the benefit given up by tying the capital into the enterprise for that 
period of time.  This may be a direct cost (if borrowed) or an opportunity cost (if 
earnings are given up from the best alternative use).  For a farmer to invest in an 
input, the need is to consider the level of additional returns beyond the cost of capital 
that will satisfy some criterion that the investment is worthwhile.  Something must be 
added to the cost of capital to repay the farmer for the time and effort in learning to 
manage, or trying, a new technology.  CIMMYT (1988) does not interpret the extra 
return as a return to offset risk, although the uncertainty in agronomic and economic 
data is mentioned as an issue.  Risk is addressed in the next section. 
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The target rate of return concept has been incorporated into the determination of 
classical best operating conditions be Jauregui and Sain (1992) for a single output 
response function.  Adapting their notation to that used here, the best operating 
conditions are given by: 
 
 p Y X p Ry i i. / .( )   1       (9) 

 
where R is the minimum rate of return acceptable to the farmer.  Note that in Figure 1, 
the solution to (9) will lead to a lower level of X e  than the level given by (3), because 
the slope of the price ratio line is greater.  The extra return required to cover the cost 
of capital and other factors included in the target rate of return leads to a higher 
marginal revenue requirement to cover marginal costs. 
 
The target rate of return concept could be included in the plot of the profit (or GM) 
function against fertiliser input, as shown by Jauregui and Sain.  Adapting their 
notation, the profit or GM would need to be adjusted to account for the target rate of 
return at each level of input.  The profit function of (2) becomes: 
 
     p Y p N R TCNVy n. . .( )1      (10) 

 
where N incorporates the total costs that vary and TCNV denotes the variable costs 
that do not vary as N is increased. 
 
3.4  Variability in response and price 
 
The classical approach of Dillon and Anderson includes the case of variable outcomes 
with concave response functions. A complicating case to consider is where variability 
in yield, protein and price is allied with non-smooth and non-concave functions and 
the multiple non-separable issues mentioned above.  In the northern cropping region 
of NSW and Queensland the crop growing environment is characterised by substantial 
climatic variability with respect both to in-crop rainfall and the moisture and 
temperature conditions during grain fill after crop tillering, and to fallow conditions.  
An example of the response of yield and protein to different levels of nitrogen input in 
different seasons is presented later in this paper. 
 
In addition there is price risk.  Figure 3 shows that there can be a wide divergence in 
prices, and prices can change on a weekly basis.  At sowing the extent of subsequent 
price movements and payment schedules may be unknown.  However, hedging and 
forward contracting options are now available to wheat growers which reduce the 
importance of price risk.  Hence, the issue of variability in this analysis has only been 
considered with respect to the impact of climate on yield and protein outcomes. 
 
An alternative, and more general, way of considering the best operating conditions via 
the distribution of returns is through comparing entire probability distributions 
according to specific rules.  The essence of these approaches is in determining 
whether particular cumulative distribution functions (CDFs) are dominated, or 
whether certain distributions (even when they cross) might be preferred by a risk-
averse decision-maker.   
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3.4.1  Methods of comparing distributions 
 
Anderson, Dillon and Hardaker (1977) have espoused the use of expected utility 
theory in representing the choices of decision makers.  That is, Bernoulli’s principle,  
which is deduced from a number of axioms, states that a utility function exists for a 
decision maker whose preferences are consistent with those axioms.  This function 
associates a single real number (utility value) with any risky prospect.  When utility is 
plotted against income, the utility curve is posited to be concave if the higher levels of 
income are associated with increased riskiness or variation in income.  The degree of 
risk aversion is associated with the curvature of this function.  
 
There are three common measures of risk aversion, the absolute, partial and relative 
risk aversion coefficients.  In Bardsley and Harris’ (1987) terminology, these are 
respectively: 
 
   U W U W' ' ( ) / ' ( )        
 
   [ ' ' ( ) / ' ( )].U W U W W       
 
 r U W U W   [( ' ' ( ) / ' ( )].0 0   .   
 
Here W is average wealth of the decision maker, W0  is initial wealth, and   is 
stochastic income.  It can be noted that although these measures are generally 
specified in terms of wealth levels (a stock concept), they have often been applied to 
distributions of income or profit (which are flow variables). 
 
The measure of absolute risk aversion,  , is not unit-free, ie. it depends on the level 
of wealth.  The measures of relative and partial risk are both unit-free.  When using a 
particular measure of risk aversion to compare income distributions, and in 
considering parameters from other studies to make comparisons, it is desirable to 
utilise a unit-free measure (Bardsley and Harris). 
 
 In comparing distributions of outcomes, first degree stochastic dominance (FSD) and 
second degree stochastic dominance (SSD) rules can be applied.  These decision rules 
imply that marginal utility is positive ( ' ( ) )U W  0 , and that it is positive and 
diminishing ( ( ' ( ) )U W  0  and ( ' ' ( ) )U W  0 ), respectively.  The main problem for 
SSD is the case of low crossing points of the CDFs, since SSD always requires the 
dominant distribution to have a greater minimum than the dominated distribution  
because stochastic dominance rules assume that the individuals belong to the class of 
all risk averters including infinitely risk averse individuals.  The question for cases of 
low crossings of CDFs can only be resolved based on the particular level of risk 
aversion of individuals. 
 
Parton and Carberry (1995) discussed the theoretical and practical shortcomings of 
stochastic dominance and mean-standard deviation analysis.  These included the 
assumption of risks being nonnormally distributed.  Just and Weninger (1999) have 
recently cast some doubt on a number of analyses showing yield distributions to be 
nonnormal.   
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The extension developed to overcome this problem of low crossing points of CDFs 
involves placing bounds on the risk aversion parameter and determining the outcomes 
when the parameter fall into particular numerical ranges.  Two techniques have been 
developed to overcome the low crossing problem.  The first is generalised stochastic 
dominance (GSD), which starts from the expected utility function.  Meyer (1977) 
investigated the magnitude of this expression under the conditions that the Pratt 
(1964) risk aversion coefficient (  in the terminology above) falls within an interval 
 

  1 2 [
' ' ( )

' ( )
]

U W

U W
.        

 
Using this framework, the approach is to look at the utility difference between two 
distributions but hold the risk aversion parameter in a particular interval.  Meyer 
solved this problem using an optimal control framework, so that when the decision 
maker’s utility function has  (W ) in the interval [ , ] 1 2  then a particular 
distributional dominance holds.  This is a numerical evaluation technique for given 
probability distributions, a computer program (MEYEROOT) is available for this 
analysis.  The problem with this approach is the use of arbitrary 1  and 2  values.  It 
should be noted that GSD is a generalisation of other stochastic dominance forms.  
Parton and Carberry demonstrated the use of generalised stochastic dominance (or 
stochastic dominance with respect to a function) for a simulation model dataset of 
kenaf production in Northern Australia. 
 
An alternative approach was described by Hammond (1974) who showed that, for two 
alternatives whose CDFs cross once, under constant absolute risk aversion there is a 
break-even risk aversion coefficient (BRAC) that differentiates between these two 
alternatives.  Anyone with a risk aversion coefficient (RAC) larger than the BRAC 
will prefer one alternative, while anyone with an RAC smaller than the BRAC would 
prefer the other.  The important difference between this technique and Meyer’s GSD 
is that rather than specifying RAC bounds, one can solve for the BRAC and then 
proceed to investigate whether it is reasonable for individuals to have RACs that are 
larger or smaller than the particular value.  However, this requires knowledge of the 
functional form of the assumed probability distribution.  
 
McCarl (1988, 1990) developed a computer program (RISKROOT ) to implement 
Hammond’s approach with an empirical discrete distribution of unknown form.  The 
program takes data for two alternative distributions and searches for the BRAC(s) 
which distinguish between them. 
 
Of the techniques that can be used to resolve stochastic dominance choices (ie. 
Meyer’s GSD using MEYEROOT and McCarl’s RISKROOT), the latter has the 
advantage that it identifies the BRAC points at which preferences switch.  This gives 
stronger results than GSD. 
 
 
3.4.2  Interpreting results in terms of Risk Aversion Coefficients 
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The RISKROOT program generates results showing which distributions are dominant 
for ranges and values of RACs.  As discussed above, these RACs are the Pratt 
absolute risk aversion coefficient.  When interpreting the results of such comparisons 
for groups of decision makers (eg farmers), an important question relates to the levels 
of risk aversion that those decision makers might usually exhibit, and therefore which 
choice they would be most likely to make.  From the viewpoint of the R&D 
institution or researcher trying to interpret experimental or other results, the important 
question is: “Which outcome is most likely to be chosen by a risk-averse profit-
maximising farmer or group of farmers”? 
 
This question is necessary when making recommendations to farmers based on R&D 
activities for decision support within extension or advisory programs.  Vital 
information in this context is evidence of the typical levels of risk aversion for 
farmers within the target group of decision makers.   
 
What is an appropriate level of risk aversion for Australian farmers?  There have been 
a number of studies of this question, the most recent and comprehensive is by 
Bardsley and Harris.  Bar-Shira, Just and Zilberman (1997) estimated risk aversion 
parameters for Israeli farmers and compared them to the Bardsley and Harris results 
for Australian farmers. 
 
Bardsley and Harris estimated   at the median level of mean income and wealth for 
the wheat-sheep zone to be 21 10 5. x  .  Patten, Hardaker and Pannell (1988) derived a 
range of values for   of 6 10 6x   to 2 10 6x  .  Parton and Carberry used a figure of 
3 10 5x  . Bar-Shira et al. estimated the median value of this coefficient for Israeli 
farmers to be 4 4 10 6. x  .  Patten et al. considered the appropriate range for this 
parameter to be between 1/W and 3/W (where W is net wealth as defined above). 
 
If it is considered desirable to use a unit-free measure of risk aversion, then the 
equivalent relative risk aversion coefficient parameter (r) should be derived.  Patten et 
al. suggested that a plausible range of r from the literature is between 1 and 3.  
Bardsley (personal communication 1999) has suggested the range is from 0.5 to 2.  
Bar-Shira et al. estimated the median value of this parameter to be 0.615 for Israeli 
farmers.  Average farm net worth over three years (1995-97) in the northern NSW 
Wheat Sheep Zone is $1.27 million (ABARE 1999).  Using a range of the relative risk 
aversion parameter from 0.5 to 3 together with this figure,   is estimated to lie in the 
range 39 10 7. x   to 2 4 10 6. x  .   
 
Therefore, working from a generally-accepted relative risk aversion coefficient range 
and a relevant measure of current farm wealth for the target population of farms, the 
appropriate level of   to use as a BRAC comparison in the RISKROOT output has 
been derived as 39 10 7. x   to 2 4 10 6. x  .  This is quite comparable with values estimated 
directly by other authors. 
 
 
 
3.5  Implications of the Nitrogen cycle 
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The last, and perhaps the most important, divergence from the classical static 
response analysis is the case of accounting for the effects of the changing stocks of 
fertility in the soil over time, due to the effects of the nitrogen cycle.  Hayman and De 
Vries (1995) have illustrated the nitrogen cycling processes in a natural (balanced 
cycle) and a continuous cereal (broken cycle) systems.  Organic soil nitrogen is a 
relatively large pool from which the mineral (plant available) nitrogen is derived by 
mineralisation. In cropping systems with a net export of nitrogen, only small amounts 
of mineral nitrogen are returned (immobilised) to the organic pool, resulting in 
decline of the soil nitrogen fertility.   
 
Crop land fertility decline over time is the process of long term decline in nitrogen in 
the soil.  Growing a crop without adding fertiliser means that after grain protein is 
removed at harvest there will be less soil and plant available nitrogen for the next 
crop.  Continuation of this process means that crop yield and/or protein levels will fall 
over time.  Therefore, both the organic and mineral nitrogen levels in a soil will 
decline with repeated cropping in the absence of added fertiliser nitrogen.  This has 
been the experience under long cropping phases in many areas of initially-fertile soil 
in Australia (Dalal and Mayer 1986). 
 
A static (or single-period) response analysis does not account for this carryover 
characteristic, especially when it is combined with a stochastic environment.  The 
incorporation of the dynamics of nitrogen accumulation and loss with exploitative 
land use and climatic effects over time addresses this issue. 
 
The amount of organic nitrogen is associated with the level of organic carbon in the 
soil.  Average levels of fertility decline through continuous cropping of a black 
vertisol soil over a long period can be hypothesised.  Levels of organic carbon in 
Waco soils of southern Queensland have declined by 28%, and levels of mineralizable 
nitrogen have declined by 55% as a result of this fertility decline in Queensland 
(Dalal and Mayer 1986). 
 
In this paper we are interested in the nitrogen fertility directly available to the wheat 
plant, ie in mineral rather than organic nitrogen (even thought the two are linked).  
We will use the term ‘soil fertility’ to refer to the mineral nitrogen which is made 
available to the plant via application of artificial nitrogen.  The soil fertility levels that 
have been generated in this paper are fertiliser nitrogen plus soil-derived mineral 
nitrogen. 
 
3.6  Accounting for the nitrogen cycle 
 
The existence of nitrogen effects in the next year due to actions in the current year 
means that the static or single year decision must be extended over a longer period.   
 
3.6.1  Nitrogen budgeting 
 
One way to account for the nitrogen cycle in deriving farmer recommendations for  
fertiliser application to wheat crops is to utilise a nutrient budgeting approach (Martin 
et al. 1996).  When grain is harvested, nitrogen (protein) is also harvested and 
removed from the system.  The total amount removed can be estimated from the 
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actual or projected yield and protein content.  Then the required amount of nitrogen is 
estimated according to what will be removed, the mineral nitrogen demand needs to 
account for efficiency of uptake (although this depends on the protein content of the 
final crop to some extent).  The soil nitrate supply can be determined by use of soil 
tests, or in some cases by interpreting historical yields and protein contents.  Account 
must also be made for late fallow and in-crop mineralisation or release of nitrate in 
the soil from the pool of mineral nitrogen.  Then the difference between demand and 
supply can be determined, and the amount of fertiliser to apply can be calculated. 
 
This is a useful process to achieve a steady-state in soil fertility, but the approach does 
not account for economic factors.  And it uses a target yield approach rather than an 
optimising method.  It must be remembered, though, that the nutrient budgeting 
approach is applied as a learning tool for farmers and that it does stress the 
importance of the concept of nutrient balances in making cropping decisions.  Also it 
is often difficult to be precise when the underlying data sources are not exact and the 
climatic effects are important.  
 
Farmer practices in fertiliser application for wheat appear to involve using either zero 
fertiliser, a fixed annual rate (a rule of thumb) or a tactical (flexible) approach on a 
year to year basis (Hayman and Alston 1999).  The extent to which farmers believe 
and utilise results from R&D simulation models of fertiliser response is uncertain 
(Hayman and Alston).  However, with the aim of evaluating alternative tactical 
approaches to nitrogen fertilisation, the foregoing analysis takes a longer term view. 
 
3.6.2  Undertaking response analysis over time 
 
Dillon and Anderson (1990) note two approaches to determining best operating 
conditions when time is an important element of the decision.  One is by use of 
differential calculus, where the overall problem is treated as a single problem in many 
variables.  The other, known as Dynamic Programming (DP), involves approaching 
the problem as a series of recursively-related problems, each involving a few 
variables.   
 
A dynamic optimisation methodology such as DP is useful for strategic and tactical 
management decisions with the following characteristics: 
 the outcomes of decisions in one year, plus the impacts of climatic events, 

influence the ‘state of nature’ of a resource or stock in the subsequent year; 
 decisions at points of time depend on uncertain events (such as rainfall); and  
 the aim is to maximise an objective such as profits while accounting for the 

biological changes to stocks that occur because of the regular decisions. 
 
3.6.3  Optimal fertiliser applications for wheat fallow rotations 
 
Because of the effects of the Nitrogen cycle and the carryover effects from one year to 
the next, the tactical farm management decision about fertiliser application for wheat 
crops has impacts beyond that year (Kennedy et al. 1973, Kennedy 1981a,b, 1986, 
1988) .  The effect of alternative crop sequences (where pulse crops or pasture 
legumes might be included) on mineral nitrogen status can also be important in a 
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strategic sense.  In addition the effects of tillage methods and fallow management 
affect the fertility of the soil.  
 
The effects of crop rotation, tillage method and fertiliser application decisions 
contribute to dynamic processes, whereby current decisions have impacts on future 
conditions or states.  The stochastic nature of product prices and climatic events are a 
complicating factor.  At the time of making these decisions, the possible outcomes are 
not known with certainty.  Therefore the problem is stochastic and returns should be 
viewed in an expected value framework. 
 
An optimal strategy for choice of crop rotation and level of fertiliser application 
involves determining a sequence of decisions so that the expected present value of net 
returns is maximised, possibly subject to risk exposure constraints.  DP is an 
appropriate method to study a stochastic dynamic problem such as this. 
 
There are a number of examples of analyses that have considered the dynamic and 
stochastic nature of this question.  Taylor (1983) initially used certainty equivalence 
in determining optimal fertiliser application rates with carryover.  Stauber, Burt and 
Linse (1989) considered the issue of optimal nitrogen fertilisation for seeded grasses 
in semiarid regions where carryover is significant, and used a stochastic DP approach.  
Chiao and Gillingham (1989) also developed a DP model to examine the effects on 
yield and profitability of variability in spread of phosphate fertiliser under carryover 
conditions and the value of technology which reduces this variability.  Segarra et al. 
(1989) developed a dynamic optimisation model which introduced an intertemporal 
nitrate-nitrogen residual function to derive and evaluate optimal fertiliser decision 
rules for irrigated cotton production in Texas.  They found that single-year 
optimisation led to sub-optimal nitrogen applications , which helped explain long-
term cotton yield declines in the region.  Jomini et al. (1991) modelled fertiliser 
response in a static and dynamic framework using a LRP function for pearl millet 
production in Niger.  Kim and Hostetler (1991) developed a water-constrained 
optimal control model of nitrogen fertiliser use, which they used to discuss the effects 
of a user tax and a government subsidy program as price guided policies for pollution 
control.  Dai et al. (1993) modelled crop decisions, especially for nitrogen fertilisation 
and soil moisture, for a number of different soil and water conditions in Columbia, 
Missouri.  They incorporated the effects of stochastic factors such as rainfall and 
temperature on yield response to input changes.  Feinerman and Voet (1995) used 
stochastic DP to evaluate optimal long-run fertilisation and irrigation policies for a 
perennial crop.  In particular they evaluated the economic impact of extra information 
about the level of leaf nitrogen from leaf tissue analysis.  Yadav (1997) used an 
economic relationship between agricultural production and groundwater pollution to 
investigate the optimal nitrogen application rates to maintain nitrate contamination in 
groundwater at a particular standard level over time.  He showed that when 
accounting for groundwater contamination, the best fertilisation rates were less than 
the profit maximising level. 
 
In this analysis the decision is confined to fertiliser application to a wheat fallow 
rotation.  We abstract from questions of alternative crop rotations, fallow lengths, 
tillage methods, soil water planting rules or pollution issues.  The model can be 
subsequently expanded to address some of these questions. 
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3.6.4  Soil Nitrogen dynamics 
 
The DP model must consider the effects of carryover of soil fertility from one 
crop/year to the next.  A critical component of this equation is the nitrogen removed 
with harvested grain ( GrainNt ), at time t, which depends on the yield (Y) and protein 
(PR) level of the crop: 
 
 GrainN Y PRt t t * * .175.      (11) 
 
The amount of nitrogen left unused after harvest results from a number of processes 
which occur during the crop growth period, and which are modelled simultaneously 
within APSIM.  The relationship explaining the change in soil available (or mineral) 
nitrogen during the cropping period is: 
 

N N FertiliserN GrainN StrawN RootsNH t t t t t     .   
 Denit leachN NewMinNt t/     (12) 

 
In this equation, the nitrogen remaining after harvest ( N H ) equals nitrogen at sowing 
( Nt ) plus added nitrogen ( FertiliserNt ), less nitrogen removed with grain 
( GrainNt ), or tied up in straw ( StrawNt ) and roots ( RootsNt ), less losses during the 
crop by denitrification and leaching processes ( Dnit leachNt/ ) plus nitrogen newly 
mineralised during the crop period ( NewMinNt ).  Estimates of N H  from APSIM are 
used in the analysis. 
 
The change in mineral nitrogen over the subsequent fallow period was also estimated.  
This depends on the amount left over after the previous harvest, and the type of  
rainfall/climate experienced during the fallow.  Rather than producing the outcomes 
for each of the 250 yield/protein figures, a simplified rule was used for fallow losses 
and gains.   
 
Fallow losses (denitrification and leaching) were assumed to be 10% of N H .  Fallow 
gains or net mineralisation ( FMt ) were assumed to be 17, 27, 30, 33 and 40 units of 
mineral nitrogen depending on the rainfall during the fallow period following the 
crop, where 17 units corresponds to a 10 percentile rainfall and 40 units to the 90 
percentile rainfall.  Note that these numbers are soil specific but are averaged over the 
crop stubble residue loads.  Therefore they do not exactly relate to the residue loads 
likely to have resulted from specific applied nitrogen decisions in the previous crop. 
 
The expected relationship between soil available nitrogen at subsequent sowing 
periods is: 
 
 N N FMt H t  1 0 9. . , or       (13) 
 N N FertiliserN E GrainN StrawN RootsNt t t t t t     1 0 9. .( .  

    Denit leachN NewMinN FMt t t/ )  
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Here Nt  is part of N H  in (12), and FMt  is the fallow gain, or net mineralisation, 
which depends on fallow rainfall and comprises the figures (17, .. , 40) above.  This 
relationship represents the change in soil available nitrogen levels between crops, 
which depends on the fertiliser nitrogen decision in each year, on in-crop and fallow 
seasonal conditions, and on fallow mineralisation conditions. 
 
3.6.5  The general decision model and recursive equation 
 
In the model used here the problem is to select fertiliser applications out of a set of 25 
rates (from 25 to 250 kg/ha in 10 kg intervals).  A multi-year planning horizon is used 
with a decision required annually at planting time.  The planning unit is one hectare of 
crop land, all relevant biological and economic variables are expressed on this basis. 
 
The state variable (N) is the amount of soil mineral nitrogen at the beginning of any 
sowing stage.  The trajectory of the state variable through time depends on the control 
variable (the amount of fertiliser applied each year, xt), and on the type of seasons 
experienced during the planning horizon for both in-crop and fallow periods.  The 
state variable in turn determines the crop response and amount of nitrogen removed at 
harvest. 
 
The objective function is to maximise the expected present value of net returns from 
producing wheat over the planning horizon (0, …, T).  The recursive relationship for 
this problem is: 
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with:  )((.)11 T

x
TT NTVALqV   , (15) 

 
where: 
 
Vt ( ) : the expected present value of net returns from year t to the end of the 

planning horizon; 
Nt : amount of mineral nitrogen at sowing; 
xt : amount of nitrogen applied; 
PWt : price of wheat; 
Ct : type of in-crop rainfall season (very poor, .. , very good); 
PF: price of fertiliser; 
Yt : yield of crop; 
PRt : protein content of crop; 

)(N
tq : expected one-period return associated with the current state N; 

 : discount factor,  1/(1+r); 
r: discount rate; 
E: expectation operator; and 
TVAL( ) : terminal value of land. 
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The terminal value in the objective function (equation 15) depends on the fertility in 
year T.  It is assumed that the land market is efficient and pays for soil fertility at fair 
market value.  
 
3.6.6  The empirical model 
 
In this analysis we use deterministic prices, wheat prices are from May 1999 (Figure 
3).  The twenty-five seasonal outcomes for yield and quality are assumed to be 
equally likely. 
 
The model to be solved consists of (14), subject to (12), (13) and (15).  The one-
period return function is: 

     FVCPFxCxNYCxNPRPWq tttttttttt
N
t  ,,,,

____

, (16) 

 
where FVC represents variable costs associated with fallow, and the bars over wheat 
price and yield variables indicate expectations conditional on the state Nt and the 
control xt .  The terminal value function (TVAL) was approximated as the return 
vector (16) divided by the discount rate. 
 

4.  A synthetic data-set 
 
The APSIM model (McCown et al. 1996) is used in this paper to generate biological 
outcomes as a basis for discussion and analysis.  APSIM is a cropping systems  
simulation model developed for use as a systems analysis tool for both researchers 
and growers in the grain cropping regions of North Eastern Australia.  The major 
factors affecting production addressed by this model are climate variability, soil water 
characteristics, soil nitrogen fertility, variety phenology, planting time and density. 
APSIM is a relatively complex, daily time step wheat model capable of simulating 
soil water and nitrogen dynamics over long time spans and under crop rotations with 
either fixed length fallows or opportunistic sowing rules.  For this paper, APSIM has 
been configured to simulate continuous wheat with summer fallow, where soil 
fertility and water supply is reset each planting at predetermined levels. 
 
The dataset of outputs from this model is considered to be a good biological 
representation of responses to added Nitrogen in wheat, and is therefore used in the 
economic response analysis.  It exhibits the characteristics discussed in Section 3, and 
so is useful in an analysis of the derivation of best operating conditions under each 
type of departure from the classical response case. 
 
For this exercise, the model output used consists of three variables (wheat yield and  
protein content are harvested outputs, and residual mineral nitrogen at harvest is 
another outcome of the process) for each of the 91 simulated years.  The soil type 
chosen is a black vertisol (ie deep cracking) and soil available (mineral) nitrogen is 
set to 25 kg/ha at planting each year.  This enables a response to total soil mineral 
nitrogen to be estimated.  The wheat variety Hartog was sown on 15 July each year 
using Gunnedah, NSW, climate records. 
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The model output consists of 91 observations for three variables of interest.  These 
comprise distributions of outcomes, which vary according to seasonal characteristics 
of rainfall and temperature during crop growth and grain fill periods of the crop, and 
fallow rainfall conditions. 
 
The model does not deal with phosphorus cycling, so phosphorus supply was assumed 
to be non-limiting.  Similarly, the impacts of frost and disease were assumed to be 
non-limiting.  However, the planting date was chosen when the risk of frost damage 
would be low. 
 
4.1  Experimental design 
 
The two dominant factors in crop production (provided weed and disease 
management are adequate) are water and nitrogen supply.  While nitrogen supply is 
manageable through fertiliser addition, variability in water supply (rainfall) is a 
feature of the northern Australia dryland cropping environment.  Rainfall variability 
in both the in-crop and fallow periods must be considered in this environment as 
water supply for wheat yield is determined by the level of stored water at planting 
(the result of fallow rainfall) and in-crop rainfall.  Fortunately the amounts of fallow 
and in-crop rainfall appear to be uncorrellated (Peter Hayman, personal 
communication). 
 
Simulations of the summer fallow (1900-1990) at Gunnedah have allowed 
determination of the 10th, 30th, 50th, 70th and 90th percentile values of soil water at 
planting from frequency distributions.  These values correspond to 63mm, 97mm, 
124mm, 180mm and 222mm respectively, and have subsequently been referred to as 
the ‘very poor’, ‘poor’, ‘average’, ‘good’ and ‘very good’ fallow rain treatments.  
Model simulations were conducted over the 1990-1990 period for 50 treatments, ie 
each year reset at a combination of the 5 starting soil moisture levels by 10 nitrogen 
supply levels (25, 50, 75, 100, 125,150, 175, 200, 225 and 250 kg nitrogen/ha).  The 
outcomes of the 91 simulated years for each treatment were summarised by 
determining the 10th, 30th, 50th, 70th and 90th percentile yield, protein and residual 
nitrogen levels, reflecting the level of in-crop rainfall.  The final result is 250 values 
for each of the output variables resulting from 25 different water supply scenarios (5 
fallow season outcomes by 5 in-crop seasons outcomes) and 10 different nitrogen 
supply scenarios. 
 
4.2  Yield and protein outcomes 
 
The yield responses to total nitrogen (comprising the initial 25 soil available units 
plus added amounts) are shown graphically for very poor, average and very good 
fallow rainfall seasons in Figure 5.  The corresponding protein responses are also 
shown there.  These figures contain a subset of all results used in this analysis. 
 
In Figure 5, each set of figures (which corresponds to an initial soil moisture level) 
shows that as extra nitrogen is added the resulting yield generally increases but at a 
decreasing rate, so that a concave relationship is observed. In general the yield rises at 
some rate, which depends on the moisture availability, and then reaches a maximum 
or ceiling level beyond which there is no further gain as extra nitrogen is added.  This 
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level of maximum attainable yield is lower for both drier than wetter fallows and for 
drier than wetter in-crop rainfall seasons.  This type of response is expected from first 
principles of fertiliser and water requirements in crop growth.  As expected from 
these principles, the yield level reaches its maximum at higher levels of soil fertility 
as more water is present.  That is, the point of maximum yield moves to the right as 
moisture presence (from whatever source) increases.  There are characteristics of the 
LRP representation in these responses. 
 
For the corresponding protein responses, the general trend is for protein levels to 
increase as the level of moisture decreases.  This is consistent with the crop growth 
principles (dryness in the finishing stage) discussed above.  There are some slight 
indications of convexities in the shape of the response function.  Another feature of 
the protein response is that as the level of in-crop rainfall declines, protein limits are 
reached in some cases, this is a ceiling concept similar to the yield case.   As moisture 
conditions decline, especially for average or below fallow rainfall seasons, the protein 
content of wheat rises and the plateau moves to the left. 
 
In summary, for the fertiliser responses shown in Figure 5 wheat yield responds to 
both added nitrogen and extra moisture positively, but the protein percentage 
responses are positive for added nitrogen but negative for extra moisture.  As nitrogen 
is added, yield responses appear to move up and to the right with wetter seasons, and 
protein responses appear to move up with drier seasons.  Thus the probabilities of 
different seasonal outcomes and the interactions of yield with quality and the payment 
basis for wheat grain make for a complicated decision by farm managers. 
 
4.3  Soil available nitrogen outcomes 
 
The third outcome from the APSIM results is the amount of soil fertility left after the 
crop is harvested.  This is the mineral nitrogen outcome resulting from crop inputs 
and the predicted outputs based on weather.  This includes both the likely mineral 
nitrogen available (or unused) after harvest and the net additions to those amounts in 
the subsequent fallow.  Figure 5 also contains a plot of the estimates of unused 
nitrogen after harvest for very poor, average and very good fallow rainfall seasons. 
 
4.4  Estimated response functions 
 
The APSIM model was used to obtain estimates of wheat yield, protein levels and soil 
mineral nitrogen after harvest at various levels of fertility.  These data were then used 
to estimate a response function based on the Mitscherlich (1909) equation: 
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The parameter values for  ,   and k are given in Table 1 for the different climatic 
combinations which each provided a different response.  The responses describing 
nitrogen left at harvest (measuring N H  in (12) and (13)) were generally positively 
linear above a certain level of N.  
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5.  Response analyses accounting for the exceptions 

 
In this section the analytical methods available to address the issues in Section 3 using 
the dataset described in Section 4 are presented, along with the results from the case 
study analysis.   
 
5.1  Non-smooth response and multiple non-separable outputs 
 
An example of a net benefit curve and marginal rate of return analysis, based on the 
case study data set, is shown in Figure 6.  This applies to immediate responses to 
added nitrogen, without considering potential carryover effects.  For an average in-
crop and fallow season, the marginal return analysis indicates that using 100 units of 
nitrogen provides a marginal rate of return of 97%.  Below the level of 100 units, the 
rate is higher, and beyond that the return is negative.  
 
A plot of adjusted GM against input level could be used as an indication of best 
operating conditions.  Figure 7 shows GM and adjusted GM after requiring a 50% 
return on invested capital.  In the first case the highest profit is realised at 125 units, 
but with a 50% target rate the highest profit is shown at 100 units of total Nitrogen. 
 
Neither the marginal rate of return nor the profit function approaches overcome the 
third major problem with classical economic response analysis; the issue of 
uncertainty in production and price responses and the task of determining best 
operating conditions likely to be preferred by risk averse decision makers.  These 
results are presented next. 
 
5.2 Accounting for variability in response and price 
 
Figure 5 contains the yield and protein responses to different levels of total nitrogen 
from APSIM for different in-crop and fallow climate outcomes.  There are clear 
differences in response between in-crop season types, and  the divergence for yield 
increases as higher levels of fertiliser are applied, although this is not the case for 
protein.  Yield increases and protein decreases with improved seasonal conditions. 
 
5.2.1  Profit functions and marginal analysis 
 
When these two sets of responses are combined into a GM using prices like those in 
Figure 3, the resulting trends for each climate type are as shown in Figure 8 which 
shows the situation for an average fallow rain season.  The distribution of returns 
widens dramatically as levels of input are used up to about 150 units.  Similar 
divergent patterns are present for other fallow rain patterns.  The problem becomes to 
identify the best input level amongst this variability. 
 
The stochastic problem for the decision maker can also be illustrated using the 
marginal rate of return analysis.  By applying a target rate of return to partial budgets 
for each climate type (in-crop and fallow seasons) for the yield and protein responses, 
the best operating conditions for different nitrogen application are shown in Table 2.  
In that table two sets of farm-gate prices are used, and two target rates of return (25% 
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and 50%) are analysed.  The prices are from December 1997 (with the base (13% 
protein) Prime Hard price of $230/t fob) and May 1999 (with base Prime Hard price 
of $153/t fob).  The results are for total nitrogen used by the crop. The wheatgrower 
would need to determine how much available fertiliser is in the soil prior to sowing 
and then add artificial nitrogen to make up the total amount shown in the table. 
 
A number of observations can be made from the results in Table 2.  The first is that 
there is a range of optimum total fertiliser input levels.  Depending on seasonal 
conditions (both for fallow and in-crop periods) total nitrogen required varies from 75 
to 200 units. The second is that the optima do not vary much between the 25 and 50% 
target rates of return.  The marginal analysis in this case seems to give reasonably 
consistent answers for these target rates.  The third is that the optimum rate does not 
seem to change much for a lower versus a higher price.  Thus price variation  per se 
does not seem to influence input levels very much.  However, it must be noted that 
these results are developed for particular sets of prices, and we cannot say how 
general they might be. 
 
5.2.2  Results of Generalised Stochastic Dominance analysis 
 
The distributions of some of the GMs for added nitrogen levels from Figure 8 are 
presented as CDFs in Figure 9.  The results of the analysis using RISKROOT to 
compare the distributions are shown in Table 3.  Based on the premise that the results 
of the fallow rainfall are observable at the time of crop planting, the stochastic 
dominance results are presented separately for each fallow season type.  The results 
are presented for an absolute RAC level of 2 4 10 6. x  , as discussed above.  Two sets of 
results are shown, for GM distributions with a target rate of return of zero and 50%. 
 
For this level of risk aversion a zero rate of return indicates optimal levels of total 
nitrogen range from 100 to 150 units for very poor to very good fallow rainfall 
seasons.  Thus the optimal level varies according to initial soil moisture conditions.  
When a 50% target rate of return is specified, the optimal rates are reduced by 25 
units in the very poor and good seasons. 
 
5.3  Accounting for the dynamics of nitrogen carryover 
 
The DP results are presented in Table 4 and Figures 10, 11 and 12.  With a terminal 
value of soil nitrogen specified as shown above, variable costs (apart from nitrogen) 
of $170/ha and a fertiliser price of $0.80/kg (Scott 1998), the model was solved using 
a Matlab program (The MathWorks Inc. 1998).  Initially, the model was solved for 
the deterministic case over all combinations of in-crop and fallow seasons, and for the 
higher priced scenario.  The problem was solved over an 8-year horizon, this was long 
enough to obtain a convergent solution for both variables.  Then a stochastic model 
was solved.  
 
5.3.1 Deterministic results 
 
The results are presented in Table 4 as the optimal stock levels of soil fertility and 
optimal decisions for nitrogen application.  An example of the optimal state output for 
an average fallow and average in-crop rain season is shown in Figure 10.  In all cases 
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results for optimal state and decision converge to a single value from any initial level 
of soil fertility. The increase in N* in the final year is caused by the final value 
function and can be ignored in the analysis of longer planning horizons. 
The results on Table 4 are for the case where a specific type of fallow season is 
followed by a specific type of in-crop season for every year of the planning horizon 
considered.  As such, the results are unrealistic since the randomness of climate is 
ignored.  However, the results provide some insights in the process of setting up and 
solving a more representative DP model. 
  
The DP results can be interpreted as follows.  Taking the average in-crop and fallow 
season case of N* = 110 and x* = 75 units, we can say that the optimal mineral 
nitrogen stock prior to sowing in any year is 110 units.  The economically optimal 
amount of fertiliser nitrogen to apply is 75 units, and in this certain world the protein 
removal in harvested grain plus carryover effects ensure that 110 units are present 
prior to the next sowing.  These results are derived from the combined effects of yield 
and protein outputs and the nitrogen carryover outcomes shown in Figure 5. 
 
The static marginal results for the same case are given in Table 2, where 125 fertility 
units in total is the optimal level.  Remember that this result is derived from the same 
APSIM outputs for yield and protein.  The interpretation of this figure is that the farm 
decision maker must establish how much mineral nitrogen is present in the soil prior 
to sowing and add the extra to make the total to be 125.  The marginal analysis is 
static in the sense that it does not incorporate the carryover effects shown in Figure 5.  
 
In comparing the two results we see that the optimal stock level for the dynamic case 
is lower.  This is expected because of the incorporation of carryover effects.  Similar 
results are reported by Kennedy.  
 
Optimal average nitrogen input levels (x*), across in-crop rainfall seasons, were 55, 
68, 76, 100 and 101 units applied for very poor, poor, average, good and very good 
fallow rainfall seasons.   
 
In comparison with the generalised stochastic dominance results in Table 3, the DP 
results are also generally lower.  The stochastic dominance results for an average 
fallow season indicate a soil fertility level of 125 units.  From Table 4 the DP results 
provide an optimal state of up to 106 units, for any in-crop rainfall season.  The 
stochastic dominance results exclude the carryover effects, so they would be expected 
to be higher.  However, the inclusion of risk aversion would normally lead to a lower 
optimal rate. The actual outcome would depend on the specific assumptions regarding 
the level of risk aversion relative to the strength of the carryover effect. 
 
5.3.2  Stochastic results 
 
The stochastic DP model incorporates the expected value framework, so that the 
response information within any crop season involves weighted probabilities of each 
in-crop outcome (yield, protein and carryover).  In the return function (16), expected 
profit is now expressed as a probability-weighted sum of price and yield less variable 
costs. In practice, the DP model is solved by utilising a probability transition matrix 
for fallow rainfall (FR) and in-crop rainfall (ICR) seasons. The stochastic DP model 



 24

solves over random fallow rainfalls (initial soil moisture conditions) by taking 
expectations over each in-crop rainfall outcome range. 
 
The output from this model, for both the state and control variables, comprises a three 
dimensional matrix of dimensions (N, FR, ICR).  A characteristic of this model is 
that, although over the planning horizon both ICR and FR are random variables, 
within each decision period t, FRt is known at planting time, and this information can 
be used when making fertiliser application decisions. In other words, the fertiliser 
decision can be improved upon by using information on the current FR outcome. 
When retrieving the optimal path, a given sequence of ICR and FR values is assumed, 
and the decision-rule matrix produced by the DP model solution is used to obtain the 
particular optimal solution. During this process each FRt  is given its actual value and 
the optimal value of xt is determined based only on possible ICR outcomes. 
 
To study the stochastic results, a Monte Carlo simulation of 1000 different vectors of 
random FR and ICR combinations was undertaken. The plots in Figure 11 (solid 
lines) were derived by averaging the optimal results from these 1000 possible climatic 
sequences. Note that the assumption of risk neutrality is implicit in the derivation of 
these solutions. To represent other risk attitudes the objective function must be 
modified to maximise utility rather than profit. 
 
The same 1000 climatic sequences were applied to the DP decision rule for the 
deterministic case with average ICR and FR values. The results are shown in Figure 
11 (dotted lines). The stochastic dynamic programming yields slightly higher optimal 
equilibrium state and control values than the deterministic model.  This is plausible 
because the inclusion of seasonal response functions and downside risk would make it 
reasonable to maintain a higher fertility level to account for the possibility of good 
seasons. The nitrogen carryover process reinforces this decision. 
 
Differences in optimal state and control values (N* = 108 kg and x*  = 77 kg in the 
deterministic case compared to N*  = 122 kg and x*   = 83 kg in the stochastic case) 
result in a very small difference in average returns (compare solid and dotted lines for 
q* in Figure 11). The discounted annual returns are initially over $450, and decline 
over the 15 years.  The initial return is well within the range of other estimates for the 
assumed prices and yield outcome (Scott 1998). The return declines over time due to 
the effects of discounting. 
 
The small differences in returns suggest that the use of a certainty equivalent is a 
good approximation to the solution of this problem, which implies that it may not be 
necessary to explicitly account for stochasticity of the environment in this particular 
problem. This is good news because it means that the high cost of solving the 
stochastic model can be avoided. This result can be explained through the carryover 
process, which ensures that a 'bad' fertiliser decision in one year still provides benefits 
in future years. It is optimal to maintain soil fertility at a level that will allow the firm 
to take advantage of good years. 
 
The distribution of the present value of profits for a 15-year period is shown in Figure 
12.  The 50th percentile value is just under $6000. The stochastic returns lie 
marginally (but consistently) to the right of the deterministic returns, however the 
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distributions are very close. The advantage of using a stochastic solution approach 
may become relevant at higher income target levels. The probability that the present 
value of returns will be above $6,000/ha, for example, is 0.28 in the deterministic 
solution and increases to 0.33 in the stochastic solution. Whether this five percent 
difference in the probability of obtaining higher profits is enough to warrant the extra 
cost of using a stochastic model is an open question. The present discounted value is 
an indication of the market value of the fixed resource (land) when used optimally to 
grow short fallow wheat.  Extending the time frame beyond 15 years would shift the 
distribution slightly to the right. 
 
5.4  Comparison with other studies 
 
Turpin et al. (1998) and Hayman and Turpin (1998) have analysed nitrogen fertiliser 
decisions for the same location when considering stored soil water and climate 
forecasts, and paddock history and soil tests, respectively.  They used APSIM to 
investigate the effects of using fixed versus flexible fertiliser strategies.  With respect 
to prior information on stored soil water and climate forecasts, Hayman and Turpin 
suggested that farmers aiming to apply between 85 and 100 units of nitrogen are on a 
relatively flat part of the economic response curve, and that by selecting a fixed 
application rate in this range they would not sacrifice too much potential gain in good 
seasons nor lose too much in poor seasons.  Once farmers apply these amounts, the 
flatness of the curve means that adjusting nitrogen rates has a small impact on GM. 
 
While it can be difficult to compare between analyses which are conducted with 
different aims, a couple of observations can be made about these other results 
compared to the present study.  First, Turpin et al.’s results for nitrogen at planting 
and rate of nitrogen fertiliser appear to be slightly higher than the optimal state and 
application decision figures in Table 4.  Second, Hayman and Turpin’s range of 85 to 
100 units of applied nitrogen is also slightly higher than the range of x* in Table 4.   
 
The reasons for any differences are unclear because of the methods used and factors 
incorporated into each analysis.  There is scope for further cooperative work here. 
 

6.  Discussion 
 
In this paper the economic theory and practice of response analysis are reviewed and 
applied to a synthetic crop response data set.  A range of methods that can be applied 
to real-world questions are illustrated. Our results are consistent with other analyses 
and also reasonable in terms of a priori expectations. 
 
The DP model of wheat production we develop accounts for grain quality (protein 
content) and nitrogen carryover between time periods. Results suggest that it may not 
be necessary to account for the stochastic production environment in this type of 
problem, because of the forgiving nature of nitrogen application outcomes in the 
presence of carryover. The effect of stochastic prices was not explored and remains an 
important topic for future research. 
 
In closing, we point out that the applied agricultural R&D industry does not appear to 
utilise marginalist economic thinking very widely. A more widespread usage of some 
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of the methods discussed here in the agricultural research, development and extension 
community, where technology and adoption by groups of industries is the primary 
objective, may be desirable. However, it may be some time before the more complex 
stochastic and dynamic models developed here will be adopted. 
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Table 1 

Smooth functions fitted to APSIM results 
 

Fallow In-crop  Yield response (a) Protein response (a) Nitrogen left (b) 
rain rain    k    k Intercept Slope 
Very  Very poor  1.007 (c) (c) 15.185 15.323 0.417 -54.56 1.010 

poor Poor 1.717 (c) (c) 13.023 13.427 0.563 -68.05 0.995 

 Average 2.202 2.285 0.575 11.348 12.730 0.791 -66.76 0.930 

 Good 2.775 2.777 0.251 10.735 11.481 0.713 -81.13 0.964 

 Very good 3.508 3.780 0.643 9.880 11.130 0.835 -94.63 0.914 

          

Poor Very poor 1.466 (c) (c) 14.256 14.358 0.403 -63.55 0.989 

 Poor 2.279 2.289 0.346 11.891 12.737 0.690 -76.13 0.968 

 Average 2.776 2.815 0.471 10.773 11.757 0.750 -76.85 0.935 

 Good 3.249 3.414 0.601 10.154 11.226 0.797 -92.06 0.954 

 Very good 3.756 4.272 0.717 9.615 11.159 0.881 -91.17 0.846 

          

Average Very poor 1.996 2.150 0.245 12.844 13.543 0.634 -77.26 0.981 

 Poor 2.793 2.844 0.521 10.814 12.093 0.797 -74.51 0.919 

 Average 3.152 3.280 0.596 10.271 11.588 0.825 -82.63 0.928 

 Good 3.537 3.816 0.663 9.788 11.108 0.854 -87.96 0.906 

 Very good 3.939 4.682 0.770 9.314 10.978 0.918 -82.89 0.780 

          

Good Very poor 3.204 3.394 0.644 10.524 11.915 0.822 -80.35 0.905 

 Poor 3.489 3.844 0.712 9.920 11.366 0.867 -80.68 0.877 

 Average 3.698 4.145 0.727 9.613 10.977 0.872 -85.83 0.881 

 Good 3.942 4.684 0.781 9.372 10.982 0.917 -80.33 0.790 

 Very good 4.257 5.435 0.826 9.078 10.573 0.941 -75.92 0.694 

          

Very  Very poor 3.380 3.672 0.667 10.524 11.915 0.822 -84.71 0.928 

good Poor 3.586 4.088 0.734 9.201 11.366 0.867 -81.73 0.885 

 Average 3.759 4.390 0.757 9.613 10.977 0.872 -81.51 0.859 

 Good 3.954 4.866 0.798 9.372 10.982 0.917 -79.05 0.796 

 Very good 4.242 5.645 0.842 9.078 10.573 0.941 -75.59 0.709 

(a)  Mitscherlich curve. 
(b)  Linear form. 
(c)  Linear response, intercept parameter only, zero slope. 
Claire Alston and Steve Harden of NSW Agriculture estimated these parameters. 
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Table 2 

Optimal total fertiliser levels from marginal analysis 
Target rate of return: 25 and 50% 

Prices: December 1997 and May 1999 
Different in-crop and fallow seasons 

 
Fallow In-crop rain 

rain Very poor Poor Average Good Very Good 
 Prices 12/97 (higher) Target rate 25%  

Very poor 75 75 75 100 125 
Poor 75 75 100 125 150 

Average 75 100 125 125 175 
Good 125 125 125 175 200 

Very good 125 150 150 150 200 
      
 Prices 12/97 (higher) Target rate 50%  

Very poor 75 75 75 100 125 
Poor 75 75 100 100 150 

Average 75 100 125 125 150 
Good 125 125 125 150 200 

Very good 125 150 150 150 200 
      
 Prices 5/99 (lower) Target rate 25%  

Very poor 75 75 75 100 125 
Poor 75 75 100 100 125 

Average 75 100 100 125 150 
Good 125 125 125 150 175 

Very good 125 125 150 150 200 
      
 Prices 5/99 (lower) Target rate 50%  

Very poor 75 75 75 100 125 
Poor 75 75 100 100 125 

Average 75 75 100 100 150 
Good 100 100 125 150 175 

Very good 125 125 125 150 200 
Units are kg nitrogen/ha wheat sown 
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Table 3 
Optimal total fertiliser levels 

Generalised Stochastic Dominance analysis 
Distributions of profits for different season types 

Zero and 50% target rate of return 
Risk Aversion Coefficient of 2 4 10 6. x   

 
Zero required rate of return 50% required rate of return 

Fallow Rain  Dominant set Fallow Rain Dominant set 
Category Total N required Category Total N required 

    
Very poor 100 units Very poor 75 units 

Poor 100 units Poor 100 units 
Average 125 units Average 125 units 

Good 150 units Good 125 units 
Very good 150 units Very good 150 units 

 
 

Table 4 
Deterministic Dynamic Programming  

Convergent results for fallow and in-crop season categories 
Optimal fertiliser input levels and soil fertility levels 

Units are soil available Nitrogen kg/ha 
 
Fallow In-crop rain  
rain Very poor Poor Average Good Very good Mean 
 Optimal state (N*) 
Very poor 67.3  62.8 108.0 56.8 96.8 78.3 
Poor 48.5 87.8 99.7 88.8 111.6 87.3 
Average 62.0 74.6 110.1 101.7 106.3 91.0 
Good 140.9 135.0 115.3 110.6 114.7 123.3 
Very good 141.7 135.7 122.7 134.4 118.3 130.5 
       
 Optimal control (x*) 
Very poor 27.7 42.2 57.0 58.2 88.2 54.7 
Poor 36.5 57.2 65.3 76.2 103.4 67.7 
Average 53.0 60.4 74.9 83.3 108.7 76.0 
Good 84.1 90.0 89.7 104.4 130.3 99.7 
Very good 83.3 89.3 92.3 110.6 126.7 100.5 
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