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Abstract 
In econometrics there is a long history of using continuous functions to force 
distributed lag coefficients to behave in an economically accepted way. For 
example, geometrically declining lags have often been used to model coefficients 
that we believe should be declining.  Polynomial lags have been used to model lag 
coefficients expected to increase and then decrease. In this paper a more flexible 
way of imposing such prior information is investigated. Inequality constraints are 
used to impose knowledge about the relative magnitudes of coefficients without 
forcing them to lie on a smooth continuous curve. A Metropolis algorithm is used 
to get posterior density functions for the lag coefficients and functions of those 
coefficients for the Nerlove orange data and the Almon capital expenditures data. 
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FLEXIBLE DISTRIBUTED LAGS 
 
 

1. INTRODUCTION 

Distributed lag models have played a prominent role in numerous applications in the 

economics and agricultural economics literature. Early examples include the studies 

by Nerlove (1956,1958) on the response of agricultural supply to price, the study on 

capital appropriations and expenditures by Almon (1965) and the response of capital 

investment to various aspects of the economic environment (Koyck 1954, Jorgenson 

1965). Textbook treatments of distributed lag models appear in Judge et.al. (1988, Ch. 

17), Greene (1997, Ch. 17 ), Davidson and MacKinnon (1993, Ch. 19) and Baltagi 

(1999, Ch. 6). The distributed-lag literature has been surveyed by Griliches (1967), 

Dhrymes (1971), Hendry, Pagan and Sargan (1984) and Judge et.al. (1985). Some 

recent results have been derived by Dufour and Kiviet (1998). 

 

One of the main features of many distributed-lag applications is the desire to have lag 

weights that are declining. It is often thought that the greatest impact of the 

explanatory variable tx  on a dependent variable ty  is the immediate one with the 

impact declining for values of the explanatory variable further in the past. That is, 

itt xy   declines as i increases. In some cases (for example, area crop response 

where a decision about area sown is made prior to observation of current price) the 

first and largest impact is assumed to be for i = 1, but the presumed declining nature 

of the distributed lag is still the same. In other applications, it is recognized that the 

lag weights are likely to increase to a maximum and then decline. For example, in the 

relationship between capital expenditures and capital appropriations, the major effect 

of an appropriations decision on expenditure is not likely to be felt immediately. Most 
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investment projects require a start-up time when the expenditures from an 

appropriation are likely to be increasing; then, as the work on the investment projects 

draws to a close, the expenditures from the appropriation are likely to decline (Almon, 

1965). 

 

To capture lag weights that continually decline, or that increase up to a point in time 

and then decline, distributed lag models have forced the lag weights to lie on an 

appropriately-chosen continuous function. Declining lag weights are frequently 

captured using a geometrically declining lag, or a polynomial lag of degree one, with 

much of the popularity of the geometrically-declining lag being attributable to its 

justification in terms of partial-adjustment or adaptive-expenditures modelling (Judge 

et. al., 1988, p.735). Lag weights which increase and then decrease can be captured 

with polynomial lags of degrees 2 or 3; or, the added restriction that the weights be 

nonnegative can be handled via an exponential lag (Lutkepohl, 1981). Other lag  

schemes, documented in the surveys referred to above, have also been suggested. 

 

A frequent consequence of not forcing the lag weights to lie on a continuous function, 

and using unrestricted estimation instead, is an estimated lag pattern that is not 

acceptable relative to our prior views. High correlations between lagged values of an 

explanatory variable can lead to least-squares lag-weight estimates with high 

variances. High variances can, in turn, produce lag patterns that do not conform to 

reasonable prior expectations. It is the existence of high correlations between lagged 

values of an explanatory variable, and the fact that we have strong prior information 

about acceptable lag patterns, that have motivated the use of continuous functions for 

modelling lag structures. Imposing such structures on the estimated parameters of a 



 4

model makes the estimates (or the relationship between them) conform more closely 

to our a priori expectations. It is also hoped that the restrictions are true, or at least not 

"too false" (in the context employed by Toro-Vizcorrondo and Wallace, 1968), such 

that the distributed lag estimates have smaller mean-squared errors than their 

corresponding unrestricted counterparts. 

 

The purpose of this paper is to introduce distributed lag models which place less 

structure on the weights than any of the alternatives considered so far in the literature, 

but which still preserve the essential features of typical prior information. It is our 

belief that the essential a priori restrictions that many applied researchers wish to 

impose can be written in terms of inequality restrictions. When declining lag weights 

are assumed, researchers usually do not feel strongly about the rate of decline or 

whether the decline over several periods has to be smooth. Nevertheless, they proceed 

with structures that ensure a smooth decline and which are more restrictive than 

necessary because of the convenience of tools that impose those structures. Similar 

comments can be made for lags that increase, then decline. The tool which we are 

suggesting is one that insists the parameter estimates satisfy inequality restrictions, 

but nothing more. As we will see in the examples that follow, both declining lag-

weights, and weights that increase and then decline, can be readily expressed in terms 

of inequality restrictions. Furthermore, estimation of the lag-weights subject to 

inequality restrictions is best achieved within the framework of Bayesian inference. 

Much of the early work on inequality–restricted estimation was carried out within the 

sampling-theory framework by George Judge and his colleagues. Judge and 

Takayama (1966) showed how quadratic programming can be utilized to obtain least-

squares estimates subject to inequality restrictions. Studies which evaluate the 
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sampling-theory properties of such estimators for a number of special cases are 

reviewed in Judge and Yancey (1986). However, as noted by Geweke (1986), 

sampling-theory estimation subject to inequality restrictions has two undesirable 

characteristics. It produces boundary solutions whose estimates can be uninteresting 

and not very informative, and our ability to carry out finite-sample inference is 

restricted to a few special cases. On the other hand, the posterior means from 

Bayesian inference provide a set of estimates which are not boundary solutions, and 

the posterior density functions of the lag weights form a basis for finite-sample 

inference. 

 

Geweke (1986) described how truncated posterior density functions that are a 

consequence of inequality restrictions can be estimated via importance sampling. The 

importance-sampling algorithm is equivalent to drawing values of the parameter 

vector from a (nontruncated) multivariate t-distribution, and discarding draws which 

do not satisfy the restrictions. One problem with this approach, when there are several 

inequality restrictions, is that the probability of drawing a feasible vector can be 

almost zero, making the total number of draws needed for reasonable accuracy 

prohibitive. A Gibbs-sampling algorithm which overcomes this problem for linear 

inequality restrictions has been suggested by Geweke (1991, 1996). This algorithm 

could be applied to our inequality-restricted distributed lag model. However, as an 

alternative, we suggest a Metropolis algorithm which we believe is easier to 

implement. We have used this algorithm before for imposing inequality restrictions in 

the context of nonlinear seemingly unrelated regressions (Griffiths and Chotikapanich, 

1997). It has the added advantage of being able to handle nonlinear inequality 

constraints, although such constraints do not exist with the distributed lag models 
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studies in this paper. The Gibbs-sampling and Metropolis algorithms come under the 

general heading of Markov Chain Monte Carlo which has turned many previously 

intractable Bayesian applications into a practical reality. For access to the literature, 

and an appreciation of the wide variety of applications that can be handle via Markov 

Chain Monte Carlo, see Tanner (1993), Albert and Chib (1996), Chib and Greenberg 

(1996), Gilks et.al. (1996), and Geweke (1999). 

 

In the examples that follow we compare Bayesian and sampling-theory inequality 

restricted estimates. The sampling-theory estimates can be computed using quadratic 

programming (Judge and Takayama, 1966). However, given that many researchers 

may find it more convenient to use a standard econometric software package, we 

demonstrate how these estimates can be computed by applying nonlinear least squares 

to a transformed model. The general model and estimation details are described in 

Section 2. A distributed lag model with declining lag weights is considered in Section 

3. In Section 4 a model with weights that increase and then decline is considered. 

 

2. THE MODEL AND ESTIMATION 

A general finite-lag distributed lag model can be written as: 

 
  ttntntttt ezxxxxy   '22110    (1) 

       Nt ,,2,1   

where  te  is independently and identically distributed as ),0( 2N ; 

 n ,,, 10   are lag weights where n is known or set sufficiently large; 

 tz  is a )1( p  vector containing other explanatory variables, one of which is 

usually a constant; 
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   is a )1( p  vector containing other parameters. 

Equation (1) can be written more compactly as: 
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The density function for the data generation process, which is identical to the 

likelihood function for the unknown parameters   and  is given by 
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Note that because of the lags of the explanatory variables, n observations are "lost" in 

creating nttt xxx  ,, ,21  , and therefore nNT  . 

 

The necessary steps to proceed with Bayesian estimation are (1) specification of a 

prior probability density function (pdf) that accommodates the inequality restrictions 

on the lag-weights, (2) derivation of the joint posterior pdf for all the unknown 

parameters through application of Bayes' Theorem, and (3) isolation of information 

from the joint posterior pdf (marginal posterior pdfs, posterior means and standard 

deviations) so that meaningful results can be presented. 

 

For specification of a prior pdf, a uniform distribution is assigned to all parameters in 

 , with the parameters in   constrained to lie within the feasible region defined by 

the inequality restrictions. The uniform inequality restricted prior implies that values 
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of the parameters that do not satisfy the inequalities are impossible, and that all values 

that do satisfy the inequalities are equally likely. Examples of a feasible region, that 

we denote by R, are given in the next two sections. The expression for the prior 

distribution is 

  )(constant)( RIf   

where )(RI  is an indicator function with the following properties. 
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R
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 region outside falls  if      0

 region  withinfalls  if       1
)(  

Assuming a priori independence of   and  , and using the conventional 

noninformative prior 1)( f (Judge et al, 1988, p.150), the joint posterior pdf for 

  and  can be written as 
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Using Bayes' Theorem to combine the prior pdf in equation (3) and the likelihood 

function in equation (2) yields the joint posterior pdf 
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Given equation (4) is the joint posterior pdf for all the unknown parameters, in a 

Bayesian investigation it is the source of joint inferences about these parameters. Our 

interest centers on  . For this case the marginal posterior pdf for   is the relevant 

posterior pdf. To obtain it   is integrated out from equation (4) to yield 

 )()'()|,()|(
2

1

2 RIwydyfyf
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nt
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     (5) 

Equation (5) contains information on a number of quantities of likely interest. 

Marginal posterior distributions for each of the lag weights, for the other parameters 
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in the vector  , and for functions of the lag weights, such as their sum, are likely to 

be useful. Also, posterior means and standard deviations are a convenient way of 

summarizing our information about such quantities. In the examples that follow, it is 

the posterior means of the lag weights which we take as point estimates to compare 

with estimates obtained using other techniques. All these quantities of interest are 

defined as integrals involving equation (5). However, these integrals are analytically 

intractable because the endpoints defined by the region R depend on  . To overcome 

the analytical intractability, we estimate the various quantities using draws from the 

pdf in equation (5). Marginal posterior pdfs for the lag weights (for example) can be 

estimated by putting the draws in histograms. Estimates of the posterior means and 

standard deviations are given by the sample means and standard deviations of the 

draws. To obtain the draws we use what is called a random-walk Metropolis-Hasting 

algorithm. References given in the Introduction provide access to the Markov Chain 

Monte Carlo literature which has more details on this algorithm. The steps that we 

employ are as follows. 

 

The Metropolis-Hastings Algorithm 

1. Select feasible initial values for the elements of  , say 0 . One possibility is the 

least-squares estimates from an appropriately chosen polynomial lag. Perform the 

remaining steps with i set equal to 0. 

2. Compute a value for the kernel of )|(log yf i  given in equation (5). 

3. Generate d from ),0( kVN . The choice of V and k are discussed below.  

4. Compute a candidate draw di   . 
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5. If *  falls outside the feasible region, the next draw is identical to the previous 

one. That is, set ii  1 , set 1 ii  and return to step 2; otherwise, proceed 

with step 6. 

6. Compute a value for the kernel of )|(log * yf   and the ratio of the pdfs 

    )|(log)|(logexp
)|(

)|( *
*

yfyf
yf

yf
r i

i





  

7. If 1r , the next draw becomes the candidate draw. That is, set *
1  i , set 

1 ii  and return to step 2; otherwise proceed with step 8. 

8. If 1r , the next draw is * with probability r and i  with probability 1-r. That 

is, generate a uniform random variable, say   from the interval (0, 1). If r , 

set *
1  i . If r , set ii  1 . Set 1 ii  and return to step 2. 

The Metropolis-Hastings algorithm provides a means for moving around the 

parameter space and drawing observations consistent with )|( yf  . The vector d in 

step 3 represents a potential change from the last drawing of  ; the potential new 

value *  is given by the random walk process in step 4. The choice of covariance 

matrix V in step 3 is not critical. We chose the one from unrestricted least-squares 

estimation. In line with convention, the value k used for step 3 was set so that the 

acceptance rate for *  was approximately 0.5. The first check to see whether a 

potential new draw *  is acceptable is that in step 5; if any of the elements in *  do 

not satisfy the inequality constraints, the whole vector is rejected. In steps 7 and 8 we 

accept it with probability given by the ratio of the two densities. Thus, the procedure 

explores the posterior pdf yielding a relatively high proportion of observations in 

regions of high probability and a relatively low proportion of observations in regions 

of low probability. 
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Because Markov Chain Monte Carlo procedures produce observations that are 

correlated, their sample means and variances are not as efficient as they would be 

from independent observations; larger samples are needed to achieve a desired level 

of accuracy. Also, the draws are not genuine draws from )|( yf   until the Markov 

Chain has converged. For this reason, a number of the early draws, referred to as a 

“burn-in” are discarded. In the two studies in this paper, 20,000 draws were discarded 

for the burn-in, 160,000 subsequent draws were used for the declining lag imposed on 

the orange data, and 100,000 subsequent draws were used for the lag imposed on the 

Almon data. 

 

Restricted Maximum Likelihood Estimation 

To obtain maximum likelihood estimates subject to the inequality restrictions, we 

apply nonlinear least squares to a transformed model. The model is reparameterized 

so that the inequality restrictions on the original parameters can be written in terms of 

nonnegative restrictions on single parameters in the transformed model. 

Nonnegativity of the transformed parameters is ensured by using nonlinear least 

squares with squared parameters. Let D be a )( kk   non-singular matrix such that the 

inequality restrictions can be written as  

   CD         (6) 

where the elements of C are   for parameters not subject to inequality restrictions 

and 0 for linear functions of parameters that are subject to inequality restrictions. 

Examples of the matrix D will be given in the applications which follow. Let  D  

and rewrite the model ttt ewy   as 
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tt

ttt
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 1

      (7) 

where 1 Dwq tt . For the elements of   that are restricted to be positive (the 

corresponding elements of C are zero), define 2
kk  . Estimate equation (7) via 

nonlinear least squares with the relevant k  replaced by 2
k . This strategy yields 

estimates k̂  where restrictions are involved, and estimates ĵ  where they are not. 

Find 2ˆˆ kk  . Maximum likelihood estimates subject to the inequality restrictions are 

then given by  

     ˆˆ 1D       (8) 

 

3. A DECLINING LAG 

For our first illustration we reconsider a well known and often cited study by Nerlove 

and Waugh (1961) who investigated the effect of advertising expenditure on the 

demand for oranges over the period 1910-1959. Their study was considered further by 

Berndt (1991). They related tq  (per capita deliveries of oranges in boxes in year t) to 

tp  (price of oranges per box), ty  (per capita disposable income of consumers), and 

ta  (per capita advertising expenditures of oranges by Sunkist Growers and the Florida 

Citrus Commission). The basic model specification that was used in this study is: 

 tttttttt eaaaaypq   8822110210   

The lag length of 8 was chosen after experimentation with different lag lengths for 

both unrestricted and linearly declining lags. If we assume that the greatest effect of 

an advertising expenditure is felt immediately, and the effect gradually declines as we 
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move further into the future, and never becomes negative, then the feasible region of 

the parameter space is 

 }0|{ 876543210 R  

Equation (6) can be written as 
























































































































































0   
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0   

0   

0   

0   

0   

0   

0   

 1     0     0     0     0     0     0     0     0     0     0     0

 1-    1     0     0     0     0     0     0     0     0     0     0

0     1-    1     0     0     0     0     0     0     0     0     0

0     0     1-    1     0     0     0     0     0     0     0     0

0     0     0     1-    1     0     0     0     0     0     0     0

0     0     0     0     1-    1     0     0     0     0     0     0

0     0     0     0     0     1-    1     0     0     0     0     0

0     0     0     0     0     0     1-    1     0     0     0     0

0     0     0     0     0     0     0     1-    1     0     0     0

0     0     0     0     0     0     0     0     0     1     0     0

0     0     0     0     0     0     0     0     0     0     1     0

 0     0     0     0     0     0     0     0     0     0     0     1

8

7

6

5

4

3

2

1

0

2

1

0

 

Table 1 contains four sets of estimates: 

1. Unrestricted least-squares estimates (OLS). 

2. Least-squares estimates where the lag weights are constrained to lie on a 

polynomial of degree one (equality restricted LS). 

3. The maximum likelihood estimates subject to inequality restrictions (inequality 

restricted LS). 

4. The posterior means of the parameters (Bayesian). 

 

The values in parentheses are standard errors for the sampling-theory estimates and 

posterior standard deviations for the Bayesian estimates. No standard errors are given 

for the inequality restricted least squares estimates because of the lack of a suitable 
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distribution theory. Figure 1 gives a plot of the posterior means and the least squares 

estimates for the weights 80   to .  

 

The first point to note from the results in Table 1 and Figure 1 is the erratic nature of 

the OLS weights. They are negative for lags 1 and 2, and then increase sharply to a 

maximum at lag 4, after which they decline, then increase, and then decline again. 

Forcing the weights to lie on a straight line produces estimates which are almost 

constant over the eight lags, declining only very slowly. The inequality restricted LS 

estimates (not plotted in Figure 1) take the form of a step function, being constant for 

6 lags after the initial impact, and then declining. Using the Bayesian posterior means 

produces lag weights with a sharper, more credible decline. The initial impact is 

greater, and the final impact less, than the other estimates. After the first two lags, the 

decline is almost linear. 

 

The marginal posterior pdfs for the lag weights are graphed in Figure 2. Note that, as 

the lag length increases, the location of the posterior pdfs for the weights at each lag 

length declines, and the precision of the estimation increases. 

 

4. A LAG THAT INCREASES THEN DECLINES 

For an example when the lag weights are expected to increase and then decline, we 

chose the Almon (1965) data where capital expenditures ty  are related to capital 

appropriations tx  in the current and preceding periods. Following the lead of a 

popular textbook (Hill, Griffiths and Judge, 1997), we choose a lag of 8, implying the 

model  

  tttttt exxxxy   88221100   
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Using inequality constraints to force the lag weights to increase and then decline 

means specifying one or two lags at which the weights are expected to reach a 

maximum. We estimated the following two cases: 

1. The maximum lag weight is specified as 4 . 

2. The maximum lag weight is 43 or   , with the choice between these two 

being made by the data. 

These choices were motivated by previously estimated lag schemes. The maximum is 

at 4  if a polynomial distributed lag of degree 2 is estimated. It is at 3  when 

estimated by unrestricted least squares. 

Denoting the two feasible regions for the two cases that we considered by 1R  and 2R , 

we have  

 }00|{ 8765432101 R  

 }0,0|{ 8765432102 R  

For the purpose of inequality restricted least-squares estimation, the inequality 

restrictions for these cases can be written, respectively, as 
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and 
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The various estimated lag schemes are reported in Table 2. Like in the previous 

example, the Bayesian estimates are the posterior means; the values in parentheses are 

standard errors for sampling theory results and posterior standard deviations for the 

Bayesian results. The polynomial lag of degree 2 is described as a quadratic lag. Also 

included with the Bayesian estimates is the inequality restricted estimator that insists 

the lag weights are positive, but impose no other restrictions. These estimates are 

slightly different from the OLS estimates which, from a Bayesian standpoint, still 

allocate some positive probability to negative values. 

A number of pairwise comparisons of different estimated lag schemes are graphed in 

Figures 3-6. Pairwise comparisons are used to emphasize particular differences and to 

avoid the congestion that occurs when too many lag schemes are drawn on the one 

figure. From Table 2 and Figures 3-6, we can make the following observations: 

1. The OLS-estimated lag scheme conflicts with a priori expectations at lags 7 

and 8. The slight increase at lag 7, and the larger increase at lag 8 do not 

conform with the view that the weights decline towards the end of the lag 

distribution. 
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2. The quadratic lag conforms with expectations. However, it produces a lag 

distribution that is much flatter than that from OLS, with the large weights at 

lags 2, 3 and 4 reduced considerably. (See Figure 3.) 

3. When compared with OLS, the Bayesian inequality restricted estimator (with 

maximum at 3 or 4) also reduces large weights and increases small weights. 

(See Figure 4.) However, the effect is much less dramatic than with the 

quadratic lag estimator. The maximum weight still occurs at lag 3 and is 

similar in magnitude to that from OLS. Thus, the Bayesian inequality 

restricted estimator provides a lag scheme which conforms with our prior 

views, and conflicts less with the information provided by the data. 

4. If we force the maximum weight to occur at lag 4 instead of letting the data 

choose between 3 and 4, the essential shape of the lag distribution is similar, 

except the maximum moves from 3 to 4. (See Figure 5.) 

5. A comparison of the quadratic lag with the Bayesian inequality restricted with 

a maximum at lag 4 (Figure 6) reveals very similar lag distributions, except 

the greater flexibility of the Bayesian estimator has led to a larger impact from 

the largest weight. 

6. The inequality restricted ML estimator that sets the maximum at lag 3 or 4 

gives a reasonable flexible lag distribution until lag 5, after which the 

estimated lag weights are constant. When the maximum is set at lag 4, the 

weights at lags 2, 3 and 4 also become constant. 

As examples of posterior densities for some of the lag weights, those for 0 , 3  and 

5  are graphed in Figures 7 and 8 for the two different Bayesian estimated lag 

schemes. What is particularly noticeable from a comparison of the two figures is the 

difference in the posterior densities for 3 . Forcing the maximum to be at lag 4 
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implies greater precision in our knowledge about 3 . When the maximum can be at 

lag 3 or 4, 3  can take on a much wider range of possible values. 

 

5. CONCLUDING REMARKS 

Bayesian estimation with inequality restrictions provides a method for including 

typical distributed-lag prior information without the need to force lag weights to lie on 

a less flexible continuous function. We have shown how the approach can be 

implemented for continuously declining lags, and for lags that increase and then 

decline. Our approach has two restrictions which could be relaxed in future research. 

The first is the need to specify, a priori, one or two lags at which a lag distribution 

reaches a maximum. A researcher may be reluctant to be so restrictive about where 

the maximum lies. The second restriction is a priori specification of the finite lag 

length. The relaxing of both the restrictions could be investigated within the context 

of a model averaging framework (Geweke, 1999) where alternative points for a 

maximum lag weight, and alternative lag lengths, could be introduced. 
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Table 1: Restricted Least Squares and Bayesian Parameter Estimates 

 
 

Parameter 
 

 
OLS 

Equality 
Restricted LS 

 

Inequality 
Restricted LS 

 
Bayesian 

1  -0.0534 
(0.0084) 

-0.0544 
(0.0071) 

 

-0.0529 -0.0509 
(0.0054) 

2  0.3602 
(0.0463) 

0.3740 
(0.0444) 

 

0.3804 0.3369 
(0.0343) 

0  

 
 

0.0297 
(0.0212) 

0.0152 
(0.0087) 

0.0320 0.0377 
(0.0099) 

1  -0.0080 
(0.0197) 

0.0147 
(0.0066) 

 

0.0121 0.0252 
(0.0052) 

2  -0.0041 
(0.0197) 

0.0143 
(0.0046) 

 

0.0121 0.0204 
(0.0041) 

3  0.0177 
(0.0189) 

0.0138 
(0.0030) 

 

0.0121 0.0170 
(0.0037) 

4  0.0377 
(0.0201) 

0.0133 
(0.0026) 

0.0121 0.0140 
(0.0036) 

5  0.0098 
(0.0191) 

0.0128 
(0.0038) 

 

0.0121 0.0108 
(0.0034) 

6  0.0245 
(0.0198) 

0.0124 
(0.0057) 

 

0.0121 0.0080 
(0.0032) 

7  0.0118 
(0.0204) 

0.0119 
(0.0078) 

 

0.0119 0.0051 
(0.0027) 

8  0.0065 
(0.0213) 

0.0114 
(0.0099) 

 

0.0032 0.0025 
(0.0020) 

i  0.1256 
(0.0248) 

0.1199 
(0.0233) 

0.1197 0.1407 
      (0.0216) 
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Table 2: Lag Coefficients for Almon Data 

 
 

   Inequality Restricted 
ML 

Bayesian  
Inequality Restricted 

 
 OLS

 
Quadratic 

Lag 
Max'm 
is 4  

Max'm is 

3  or 4  
0 i  Max'm is 

4  
Max'm is 

3  or 4  

        

0  0.038 
(0.035) 

0.067 
(0.015) 

0.046 0.044 0.043 
(0.023) 

0.046 
(0.018) 

0.038 
(0.018) 

        

1  0.067 
(0.069) 

0.100 
(0.005) 

0.074 0.066 0.075 
(0.045) 

0.090 
(0.018) 

0.089 
(0.023) 

        

2  0.181 
(0.089) 

0.123 
(0.005) 

0.168 0.177 0.173 
(0.063) 

0.129 
(0.017) 

0.139 
(0.025) 

        

3  0.194 
(0.093) 

0.136 
(0.009) 

0.168 0.198 0.175 
(0.077) 

0.154 
(0.018) 

0.197 
(0.037) 

        

4  0.170 
(0.093) 

0.138 
(0.011) 

0.168 0.129 0.168 
(0.083) 

0.188 
(0.023) 

0.148 
(0.028) 

        

5  0.052 
(0.092) 

0.130 
(0.009) 

0.078 0.080 0.061 
(0.042) 

0.120 
(0.021) 

0.109 
(0.016) 

        

6  0.052 
(0.094) 

0.112 
(0.005) 

0.078 0.080 0.068 
(0.055) 

0.090 
(0.015) 

0.091 
(0.013) 

        

7  0.056 
(0.094) 

0.083 
(0.007) 

0.078 0.080 0.087 
(0.048) 

0.068 
(0.016) 

0.071 
(0.014) 

        

8  0.127 
(0.060) 

0.044 
(0.018) 

0.078 0.080 0.098 
(0.027) 

0.036 
(0.018) 

0.044 
(0.021) 

        
        

 i  0.939 
(0.012) 

0.933 
(0.011) 

0.936 0.934 0.948 
(0.012) 

0.923 
(0.011) 

0.926 
(0.013) 
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Figure 1: Estimated Lag Weights for Orange Data 

 

 
 
 
 
 

Figure 2: Marginal Posterior pdfs for the Lag Weights for Orange Data 
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Figure 3: Lag Weights for Almon Data. 

OLS and Quadratic Lag 

 
 
 
 

Figure 4: Lag Weights for Almon Data.  
OLS and Bayes Inequality Restricted with Maximum at Lag 3 or 4 
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Figure 5: Lags Weights for Almon Data. 

Bayes Inequality Restricted with Maximum at Lag 4 and 
with Maximum at Lag 3 or 4. 

 

 
 
 

Figure 6: Lag Weights for Almon Data. 
Quadratic Lag and Bayes Inequality Restricted with Maximum at Lag 4. 
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Figure 7: Posterior Distributions for Lag Weights with Maximum at Lag 4 

 

 
 
 

Figure 8: Posterior Distributions for Lag Weights with Maximum at Lag 3 or 4 
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