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Abstract

Many explanations of agricultural technology adoption have either been based

loosely on di�usion concepts and have ignored economic factors or have been static

economic models that ignore dynamic and spatial aspects of adoption. In this paper

we propose a model of adoption which incorporates economic factors in a spatial and

dynamic framework. the approach used is based on extending replicator dynamics

models in evolutionary game theory to a spatial setting. The replicator dynamics

of adopters versus non-adopters are characterised by a spatial di�usion model the

solution of which illustrates how local institutions drive spatial technology adoption

processes via the rules of the game. The model is applied to forage technology adop-

tion in the Philippines and a method of empirically testing the model is presented.

1 Introduction

Theories and models of agricultural technology adoption have been plagued by an appar-
ent incompatibility between the di�usion models of agricultural extension that have been
largely devoid of economic content and the view of many economists that adoption is based

�We would like to thank the Forages for Smallholders Project in the Philippines for access to some of
their data.
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on economic incentives. If the factors which lead to adopion of some agricultural technol-
ogy and the failure to adopt others are to be properly understood, a theoretical framework
that overcomes the limitations of both the di�usion approach and the incentive approach
needs to be developed.

Traditionally model of technology adoption have been based upon logistic di�usion
curves whereby the percentage of the population that have adopted an innovation grows
according to a logistic di�erential equation. In the agricultural extension literature the
di�erential equation is typically ignored and the logistic \adoption curve", which is actually
the solution of the logistic di�erential equation, is used to explain the adoption process in
terms of stages of \early" and \late" adoption of technology.

The logistic di�usion model as used in agricultural extension avoids a discussion of the
spatial aspect of adoption and concentrates solely on temporal aspects. The spatial di-
mension of agricultural technology di�usion has been emphasized by Ha�agerstrand (1967).
Cavalli-Sforza and Feldman (1981) suggested ways of mathematically modelling the spatial
di�usion of innovation using a spatial version of the logistic equation - The Fisher equation:

@x

@t
== nx(t; s)(1� x(t; s)=K) +r2x

where x(t; s) represents for example the proportion of the population that have adopted
an innovation and r2x represents a spatial interaction term.

The Fisher equation is a non-linear partial di�erential equation of di�usion type. At
any given location it assumes that adoption follows a logistic pattern at that location and
that the technology then spreads out spatially according to the di�usion term r2x. Space
may be modelled as a line, a plain, a volume or even in higher dimensions if need be. note
that this model completely lacks any economic basis and is purely mechanistic in nature.

An alternative approach suggested by (1981) is based on the analogy of the di�usion
of technology with an epidemic.

This approach has also been adopted in the literature on rumour modelling(Bartholomew
1967). Rumour models treat the spreaders of news and rumours as \infectives" and the
\hearers" of news and rumours as \susceptibles" analogous with mathematical models of
epidemics.

Within economics, evolutionary economists have also shown an interest in technology
di�usion and adoption. Dalle (1997) for example proposes a model of technology adoption
based on random �elds. A random �eld is a generalisation of a stochastic process which
depends on both time as a parameter and a spatial parameter. the use of random �eld
models by evolutionary economists has been restricted to discrete-time and discrete-space
Markov random �elds, such as Gibbs random �elds and Ising type spin-glass models.

The Ising spin glass model of a socioeconomic system is represented on a grid as follows:

+ + - + + - +

- + + + + - +

+ - + + + - +

- + - + - - +

+ - + + - + +
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where + represents an individual that has adopted and � an individual with the old
technology.

the analogoy here is that technology adoption can be viewed as analogous to a \`mag-
netization" process.

Each of the approaches reviewed here to modelling the di�usion of technology suf-
fers from the drawback that economic incentives are not incorporated explicitly into the
modelling framework.

In this paper we suggest an alternative approach based on evolutionary game theory
that combines features of the models discussed above with game theoretic ideas concerning
economic incentives.

2 Learning versus Rumours

It is important to distinguish �rstly between the di�usion of technology as a learning
process and di�usion of technology as a process involving the spread of ideas. Models
based on learning are not necessarily spatial in nature. Game theoretic model of learning
(see Fudenberg and Levine) fall into this class.

The literature on rumour modelling has much to o�er if one is interested in modelling
the adoption of technology( 1967, pp. 204-260). Rumour models have typically modelled
the spread of rumours and news in analogy with epidemics. Mathematically epidemiological
and rumour models are virtually identical1.

Such models have as their basis sociologically concepts of communication between
memebers of a society.

The population is divided up into three groups( 1967, p.224)

m(t) those who have not heard the rumour/news

n(t) those who have heard and are spreading the rumour

l(t) = N �m(t)� n(t) persons who have heard the news but have ceased to spread
it

The dynamics of the rumour can be described by the following system of di�erential
equations

_n = �nm� �n

_m = ��mn

_l = �n

where � is the rate of contact between rumourmongers and those yet to hear the rumour.
� is the rate at which rumourmongers lose interest in the rumour.

1Dare one suggest that extension agents may be viewed as analogous to vectors in epidemiologial
models?
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Note that in this formulation spatial aspects of the problem are completely ignored. In
the agricultural setting, especially, in deeloping countries information spreads within the
context of a community within a particular geographical context.

This spatial context of the spread of technology through rural communities is clearly
demonstrated by (1967). To account for this the rumour model presented above would
have to be modi�ed to incorproate a spatial dimension. this could be done by allowing
spreaders to become \mobile". The population dynamics of the spreaders would then be
represented by a partial di�erential equation.

The problem with this approach is that it is in some sense too sociological, it fails to
take into account economic aspects of the problem. this is the essence of the distinction
between learning and simple acquisition of information.

The rumour models used above could be coupled to a simple pro�t function. Thenif
it is assumed that producers adopt better technologies on hearing of the rumour changing
adoption patterns over time and space could be studied. But this does not explain why
producers fail to adopt even after being informed of the supposed bene�ts of the technology
- this model still assumes rational decision-making. If one introduces learning into the
model, producers will not necessarly adopt even after hearing of the supposed bene�ts of
the technology. Instead they will observe the actual bene�ts within the community and
adopt if it appears that they have a chance of gaining from doing so. This approach leads
to one viewing technology adoption from the perspective of evolutionary game theory.

3 Spatial Replicator Dynamics

There are a number of di�erent approaches to incorporating learning in evolutionary games.
The approach taken here makes use of replicator dynamics but other approaches such as
those based on \imitation" dynamics are also possible.

We distinguish to types of agents those who have adopted a new technolgy and those
who have not. The bene�ts of the technology are assumed to depend also on whether
or not others in the community have also adopted the technology. This is primarily a
technical assumption as it may well be that the bene�ts to a particular producer are the
same whether or not others have adopted or not.

In developing countries in particular there are many uncertainties in the adoption of
technology, concerning how widespread a particuar technology is at a particular time and
a particular location. In addition, agents may adopt technology brie
y only to give it up a
short while later. To capture the uncertain nature of the adoption process the population
dynamics of the adoption process are modelled as a system of stochastic partial di�erential
equations. To analyse trend e�ects we can recover a deterministic system by setting the
noise parameter � to zero where appropriate.

The population dynamics for agents using old and new technology are given by

@pold =
h
pold(�old +�old � Æold) +r

2pold
i
dt+ �2pold

@2B

@s@t
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@pnew =
h
pnew(�new +�new � Ænew) +r

2pnew
i
dt+ �2pnew

@2B

@s@t

where

pi i = old; new represents the poluation of i-th player strategy.

�i is the expected payo� to the i-th player strategy

�i is the brith rate of the i-th player strategy

Æi is the death rate of the i-th player strategy

�

s is a spatial parameter.

the partial \derivative" @2B

@s@t
is the derivative2 of the Brownian sheet.

This system of equations can be viewed as an extension of the stochastic evolutionary
game model of Fudenberg and Harris (1992) to a spatial setting. In (1992) model a
stochastic evolutionary game using Ito stochastic di�erential equations. In the spatial
setting the Wiener increments of the ito equations need to be replaced by the derivative of
the Brownian sheet. Note that the derivative of the Brownian sheet and the Brownian sheet
W (s; t) possess the same distribution(Walsh 1984, pp. 284-285). Thus @2B

@s@t
is a normally

distributed random variable with mean 0 and standard deviation of �nite measure. The
solution of tese equations will be a random �eld, i.e. p(s; t; !) is a random �led.

The Brownian sheet was �rst introduced by Kitagawa (1951) as a means carrying out
analysis of variance in continuous-time( 1984, p. 270).

In order to derive the spatial stochastic replicator dynamics, i.e. the dynamics of the
population proportions. the following identity is used:

xi(s; t) =
pi(t; s)P
N

i
pi(s; t)

8s; t

xi(s; t) =
pi(s; t)

p1(s; t) + p2(s; t)

Thus xi is the population proportion of the i-th player strategy.
Rearranging one obtains

pi(s; t) = xi(s; t)(p1(s; t) + p2(s; t))

2the derivative exists only in the more general sense of a Schwartz distribution. Not in the usual sense
of ordinary calculus.
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The total change in this is then given by

@pi(s; t) = @xi(s; t)(p1(s; t) + p2(s; t)) + xi(s; t)(@p1(s; t) + @p2(s; t)

Which on rearranging gives

@xi(s; t) =
@pi(s; t)

p1(s; t) + p2(s; t)
� xi(s; t)(

@p1(s; t)

p1(s; t) + p2(s; t)
+

@p2(s; t)

p1(s; t) + p2(s; t)
)

Substituting in gives the stochastic spatial replicator dynamics model:

@xi(s; t) = xi
h
�i �

�Pi
i
+r2x)dt+ �2x2

@2B

@s@t

where i = old; new.

4 Numerical Solution

The stochastic spatial replicator dynamics model presented in the previous section may be
solved numerically using a method known as method of lines3. The idea behind method
of lines is to �rst discretize the SPDEs' in the spatial direction. This is done using a
�nite di�erence procedure wherby partial derivatives are represented using �nite di�erence
approximations. The result is that one obtains a systems of ordninary stochastic di�erential
equations that must then be solved by an implicit scheme for solving stochastic di�erential
equations. The reason for this is that such systems are generally sti� requiring very small
step sizes and hence large amounts of compoutational power to solve.

Due to the nonlinear nature of the model the usual method of simply rearrangingthe
right-hanfd side of the equation to obtain the current value of the di�erential equation
fails. However backward solution appears a possibility.

In general a backward SDE will not have the same solution a s a forward SDE, however,
one should bear in mind two things:

Firstly, we are really only going to solve the a system of �nite di�erence equations
backwards not the SDE itself.

Secondly, the point is rather technical as the backward solution could be de�ned if
the stochastic integral were anticipative, e.g. Skorokhod rather than Ito integral4.

Thus for each location s on a discretized grid. One solves a system of SDE's backwards
using the Euler-Maruyama method for stochastic di�erential equations.

For small to moderate spatial grids this method may be implemented in a Spreadsheet.
The following graphs present numerical results of solving the stochastic spatial replicator
dynamics in this way.

3See (Ames 1992, pp. 33-34) for a discussion of method of lines.
4For further discussion of backward stochastic di�erential equations see (Ma and Yong 1999)
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Setting � = 0 gives us the numerical solution of the deterministic spatial replicator
dynmamics model thus allowing us to analyse trends. Whilst this is more suited for model
validation and prediction. Solution of the stochastic model allows one to \bootstrap" con�-
dence intervals that are more appropriate in the small sample setting typical of developing
countries.

5 Case Study: Forage Crop Adoption in the Philip-

pines

The case study involves the adoption of forage crops in Mindanao in the Philippines. These
crops were introduced into the Malitbog region of northern Mindanao. Malitboglies in the
province of Bukidnon at latitude 8o N and longitude 124o E. the area is a mountainous
area ranging in altitude from 250-1000 m above sea-level. The Malitbog muncicpality is
spread over 58000 hectares.

Farming is the main source of livelihood for 90% of the people. Most farmers possess
one or two hectares of land. The major crops are corn and bananas and to a lesser extent
coconut, rice, co�ee, and vegetables. Livestock include cattle, carabao, goats, horses, swine
and poultry.

The data were collected as part of the Forages for Smallholders Project (FSP)in which
one of the authors (Purcell) is involved. The FSP is funded by AUSAID and coordinated by
CIAT and CSIRO. A precursor to this project the Pilot provincial Agricultural Extension
Project introduced forages to the region in 1995 as an attempt to supplement existing
natural feeds available on roadsideds and in �elds. Since then the FSP has been asked in
response to farmer interest to help farmers integrate forage technologies into their farm
activities.

The approach of the FSP has been participatory in nature. Of interest is whether
the extension work of FSP has adided adoption or whether the adoption process can be
explained by purely economic motives. To this end it is of interest to determine whether
the proposed economic model of adoption using spatial replicator dynamic is consistent
with the observed pattern of adoption or whether the extension program explains adoption
more plausibel.

Clearly without an extension program forages would not have been introduced into the
area at the time they were introduced. However, the dynamics of adoption may be more
plausibly expalined by economic arguments than by di�usion of information.

The following graph shows percentage adoption of forages by Malitbog farmers over
time.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
S1

S2

S3

S4

S5

Location

Time

Malitbog adoption patterns (% adoption)

0.06−0.08

0.04−0.06

0.02−0.04

0−0.02

This may be contrasted with the simulated graph showing adoption patterns over tiem
based on replicator dynamics.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1

S2

S3

S4

S5

Location

Time

Simulated Adoption under Uncertainty

0.015−0.02

0.01−0.015

0.005−0.01

0−0.005

One notices that with the empirical data a number of jumps occur due to visits of
extension oÆcers to villages. thus information transmission in reality does not appear to
follow the di�usion model that is illustrated in the second graph.

In order to account for these jumps the model needs to be modi�ed we have not yet
extended the model to account for this.

One possible way of doing this is by using a jump-di�usion approach with a Poisson
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distributed random variable appended to the equations.
In the following we outline the proposed means of empriical testing the �nal model.

6 A Statistical Test Procedure

A popular procedure for model validation in population biology is to compare predicted
versus actual using a �2 test for goodness of �t. In the partial di�erential equation setting
a similar procedure can be used for model validation but instead of interpreting �2 in terms
of goodness of �t, it is now interpreted in terms of homogeneity.

The patterns of adoption clearly di�er from the model as it now stands so we have not
bothered to implement this test. On extending the model to account for jumps and leaps
in the adoption pattern the �2 method seems appropriate.

7 Conclusion

Adoption of forages by farmers in the Malitbog region of the Philippines does not appear to
follow a pure replicator based di�usion process but involves jumps in the adoption process.
Nevertheless the basic methodology for modfelling adoption appears promising and we
intend to continue re�ning the methodology.

Lack of detqailed dat on economic bene�ts of technology and how they are driven by
community interaction has to some extent hampered our analysis.

References

Ames, W.F. Numerical Methods for Partial Di�erential Equations, 3rd Edition, academic
Press, San Diego.

Bartholomew, D.J. Stochastic Models for Social Processes, John Wiley and Sons, London.

Cavalli-Sforza, L.L. and Feldman, M.W. (1981) Cultural Transmission and Evolution: A

quantitative Approach, Princeton University Press, Princeton, N.J.

Dalle, J-M. (1997) Heterogeneity versus Externalities in technological comptetition: a tale

of two possible technological landscapes, Journal of Evolutionary Economics Vol. 7, No.
4: pp. 395-413.

Fudenberg, D. and Harris, C. (1992)Evolutionary Dynamics with Aggregate Shocks, Journal
of Economic theory, vol. 57, pp. 420-441.

H�agerstrand, T. (1967) Innovation di�usion as a Spatial Process, University of Chicago
Press, Chicago.

9



Ma, J. and Yong, J-M. (1999) Forward-Backward Stochastic di�erential Equations and

their Applications, Lecture Notes in Mathematics, 1702, Springer-Verlag, Berlin.

Rogers, E.M. (1995) Di�usion of Innovations, Free Press, New York.

Kitagawa, T. (1951) Analysis of Variance Applied to Function Spaces, Mem. Fac. Sci.
Kyusu Univ. Vol. 6, pp. 41-53.

Walsh, J.B. (1984) An Introduction to Stochastic Partial Di�erential Equations, in: R.
Cormona, H. Kuston, J.B.Walsh (eds.) Ecole d'Ete de Probabilites de Saint-Flour XIV,
1980, Lecture Notes in Mathematics 1180, pp. 265-439.

Weibull, J. (1995) Evolutionary Game Theory The MIT Press, Cambridge.

10


