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Abstract

von Liebigs law of the minimum is frequently proposed as a model of crop pro-

duction which captures agronomic reality better than substitutional production func-

tions. Whilst many studies of the law of the minimum and optimal fertilizer carryover

have been undertaken separately, the of the minimum for optimal fertilizer carryover

has it would appear until now not been analysed, because of the non-di�erentiable

nature of the agricultural producers objective function. In this paper I develop an

optimal control model of fertilizer carryover subject to the law of the minimum using

the di�erential inclusion approach to optimal control.

1 Introduction

The problem of optimal fertilizer carryover in agriculture has had a long tradition in agri-
cultural economics, beginning with Heady and Dillon (1961). Optimal control methods
were �rst applied to the fertilizer carryover problem by Lanzer and Paris (1981). God-
den and Helyar (1980) have suggested that the optimal control approach lacks intuition.
Kennedy (1986) therefore proposed dynamic programming as a possible alternative ap-
proach. For standard production functions whether one chooses to use optimal control or
dynamic programming is probably simply a matter of taste although, it may be that the
choice has implications for predictions regarding soil nutrient depletion rates, as evidenced
by Reinganum and Stokey (1985) concern over tyhe choice between closed versus open loop
controls in the study of nonrenewable resource problems.
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In an alternative literature on the response of crops to fertilizer application it has been
suggested that crop responses are best characterised by limitational production functions
rather substituional production functions. von Liebigs law o� the minimum suggests that
crop yields are limited by those nutrients that are most limiting. Paris (1992) has found
empirical evidence to support this notion using a nonlinear response of Mitscherlich form.

It seems desirable that at some stage an attempt should be made to combine these two
strands of the literature on crop responses to fertilizer and to attempt to ascertain what
the implications of von Liebigs law of the minimum are for the fertilizer carryover problem.

The combination of the law of the minimum with fertilizer carryover raises a numbert of
technical issues that largely make the discussion of dynamic programming versus optimal
control redundant. In this paper I will argue that the law of the minimum leads to the non-
di�erentiability of the farmers objective function and that consequently methods drawn
from non-smooth analysis need to be brought to bear on the fertiliser carryover problem. In
particular the di�erential inclusion approach to optimal control provides a fruitful approach
to the analysis of the problem of optimal fertilizer carryover in the presence of the law of
the minimum.

2 Di�erential Inclusions and Optimal Control

Di�erential inclusions are generalisations of di�erential equations to the case where the
function mapping the value of a state variable, e.g. soil nutrients, to the time derivative of
the state variable is set-valued.

Thus instead of writing:

_x = f(x(t); t)

one writes

_x 2 F (x(t); t)

Note that control problems of the form

_x = f(x(t); t; a(t))

where a(t) 2 U(t) is a control variable in some set U(t) can be rewritten as di�erential
inclusions:

_x 2 F (x(t); t; a(t))

An elementary discussion of the application of di�erential inclusions to optimal control
is provided by Clarke (1983), a more technical treatment is provided by Kisielewicz (1991).
In addition, Aubin (1991) has extended the theory of di�erential inclusions with a view
to developing a general theory of the \evolution", i.e. dynamics of socioeconomic and
biological systems.

Di�erential inclusions are particularly useful when the assumptions underlying Pon-
tryagins maximum principle do not hold. although they appear to be a useful addition to
the control theorists toolkit, they have rarely been used in applied work.
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3 The Model

The farmers objective function is given by the discounted expected pro�t under the as-
sumption of von liebigs law of the minimum with nonlinear mitscherlich responses of crops
to soil nutrients.

max
ai

Z
1

t
e�rtpmin

n
m(1� k1e

��1r1); : : : ; m(1� kne
��nrn)

o
�

nX
i

ciai

subject to the dynamics of soil nutrients (carryover) being given by

_xi = �ri

where ri = xi + ai, i.e. the sum of soil nutrients plus applied fertilizer in addition
fertilizer application is non-negative:

ai � 0

( 1986) utilised this carryover function in his discussion of alternative rules for fertiulizer
application. Note that we could have used a more realistic but complicated speci�cation
but have opted to use a simple form for expositionalpurposes. Need a nonlinear carryover
function.

As it stands the farm objective function is non di�erentiable. This is a consequence of
the limitational nature of von Liebigs law of the minimum.

A number of approaches could be used to address this issue. One might for example use
generalised directional derivatives which do not require the usual smoothness properties of
ordinary derivatives.

Alternatively, one can view the objective function as a set-valued map (correspondence)
and formulate the optimization problem as an optimal control problem using di�erential
inclusions.

In order to do this one proceeds as follows:

rearrange the state equation and substitute in to eliminate fertilizer application ai
from the objective function.

the function F (x; _x; t) is now a set-valued map

Now we wish to determine an optimal trajectory of x such that F (:) is maximised
Hence we de�ne the multifunction

F (x; _x; t) := f�(xi + ai); �iai; �iai : ai 2 U(t)8i

;
nX
i

ciai � �
X
i

�i(xi + ai)�
X
i

�iai � e�rtpmin
n
m(1� k1e

��1r1); : : : ; m(1� kne
��nrn

o
� � �M

)
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where U(t) is the control set, M is a the maximal element that the objective function
can take on.

Next we determine the Hamiltonian inclusion:

h(t; xi; ai; �i; �i) := e�rtpmin
n
m(1� k1e

��1r1); : : : ; m(1� kne
��nrn)

o

�
nX
i

ciai + �
X
i

�i(xi + ai) +
X
i

�iai

Note that the Hamiltonian inclusion implies the existence of a di�erential inclusion

( _�i; _xi) 2 @h

the solution of which gives the solution of the optimal control problem. Furthermore,
� is not time dependent as it represents the lagrange parameter associated with a non-
negativity constraint.

Now consider the case where we have only two types of fertilizer, e.g. nitrogen and
phosporus, so that the Hamiltonioan inclusion becomes:

e�rtpmin
n
m(1� kNe

��N (xN+aN )); m(1� kPe
��P (xP+aP ))

o

�cNaN � cPaP + �(�N(xN + aN) + �P (xP + aP )) + �NaN + �PaP

Then we can distinguish at four maxima:

Case I � = a�N =
log

�
(��N+�N )ert�cN

pmkN�N

�
�N

� xN ; aP = Pmax

Case II � = a�N =
log

�
(��N+�N )ert�cN

pmkN�N

�
�N

� xN ; aP = 0

Case III aN = Nmax;  = a�P =
log

�
(��P+�P )ert�cP

pmkP �P

�
�P

� xP

Case IV aN = 0;  = a�P =
log

�
(��P+�P )ert�cP

pmkP �P

�
�P

� xP

Case I and Case II are nitrogen limited and Case III and Case IV are phosphorus
limited. The folowing conditions characterise these two situations:

log(kN)� log(kP ) > �N(xn + aN )� �P (xP + aP )

implies plant growth is limited by the availability of phosphorus and
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log(kN)� log(kP ) < �N(xn + aN )� �P (xP + aP )

implies growth is limited by the avialability of nitrogen.
Substituting each case into the the Hamiltonian inclusion gives the following values of

the Hamiltonian:

h = max
n
e�rtpm(1� kNe

��N (xN+�))

�cN�� cPPmax) + �(�N(xN + �) + �P (xP + Pmax)) + �N�+ �PPmax

; e�rt(pm(1� kNe
��N (xN+�))

�cN�) + �(�N (xN + �) + �PxP ) + �N�

; e�rt(pm(1� kPe
��P (xP+ ))

�cNNmax � cP ) + �(�N (xN +Nmax) + �P (xP +  )) + �NNmax + �P ;

e�rt(pm(1� kPe
��P (xP+ ))

�cP ) + �(�NxN + �P (xP +  )) + �P g

The derivatives of these @hP and @hN in xN ; xP ; �n; �P de�ne multifunctions which
contain the di�erential equations for � _�N ;� _�P ; _xN ; _xP . these must be determined for
each of the four possible values of h at the edge of the control set. Thus we have eight
cases obtained by dividing the state space into a number of regions within which a system
of di�erentiable equations is de�ned. The solution of each of these systems of di�erential
equations solves the di�erential inclusion proiblem and hence the control problem within
each region. The di�erential equations for the costate variable must be solved backwards
in time as only the terminal condition of the costate variable is known, e.g. �(T ) = 0.
The state equation on the otherhand must be solved forwards in time as only the initial
condition is known. This can be done simultaneously in a spreadsheet so the method is
not overly complicated.

First we split the state space into regions corresponding to each solution for the control
variable, e.g.

h = e�rt(pm(1� kNe
��N (xN+�))

�cN�� cPPmax) + �(�N(xN + �) + �P (xP + Pmax)) + �N�+ �PPmax

hence the di�erential inclusion is given by

(� _�N ;� _�P ; _xN ; _xP ) 2 (e�rtcN + ��N � �N ; ��P

; e�rt(pmkN�N��Ne
��N (xN+�) � cN��N ) + ��N��N + �N��N

; �xP )
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h = e�rt(pm(1� kNe
��N (xN+�))

�cN�) + �(�N (xN + �) + �PxP ) + �N�

hence
(� _�N ;� _�P ; _xN ; _xP ) 2 (e�rtcN � �N ; ��P

; e�rt(pmkN�N��N e
��N (xN+�) � cN��N+

�(xN + �+ �N��N ) + �N��N ; �xP )

h = e�rt(pm(1� kPe
��P (xP+ ))

�cNNmax � cP ) + �(�N (xN +Nmax) + �P (xP +  )) + �NNmax + �P 

hence
(� _�N ;� _�P ; _xN ; _xP ) 2 (��N ; e

�rtcP � �P ; �(xn +Nmax;

e�rtpmkP�P �P e
��P (xP+ ) � cP �P )

+�(xP + �P �P +  ) + �P �P )

h = e�rtpm(1� kPe
��P (xP+ ))

�cP ) + �(�NxN + �P (xP +  )) + �P 

hence
(� _�N ;� _�P ; _xN ; _xP ) 2 (��N ; e

�rtcP � �P ; �xN ;

e�rt(pmkP�P �P e
��P (xP+ ) � cP �P )

+�(�P �P + xP +  )� �P �P )

From this one obtains the following system of di�erential equations for the case in wich
phosphorus is limiting:

First solution:
_�N = �e�rtcN � ��N + �N

_�P = ���P

_xN = e�rt(pmkN�N��Ne
��N (xN+�) � cN��N ) + ��N��N + �N��N

_xP = �xP
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Second solution:
_�N = �e�rtcN + �N

_�P = ���P

_xN = e�rt(pmkN�N��N e
��N (xN+�) � cN��N )+

�(xN + �+ �N��N ) + �N��N

_xP = �xP

For the case in which nitrogen is limiting the following system is obtained:

_�N = ���N

_�P = �e�rtcP + �P

_xN = �(xn +Nmax)

_xP = e�rtpmkP�P �P e
��P (xP+ ) � cP �P )

+�(xP + �P �P +  ) + �P �P

_�N = ���N

_�P = �e�rtcP + �P

_xN = �xN

_xP = e�rt(pmkP�P �P e
��P (xP+ ) � cP �P )

+�(�P �P + xP +  )� �P �P

Solving these equations along with the appropriate control values for cases I-IV gives
the solution of the control problem.

4 Interpretation of Solution

This system was solved numerically using a �rst-order Euler scheme. Studying the solution
curves of each of these equations gives some indication of when the system switches from
one regime to another.

The results are ofcourse speci�c to the chosen parameter values. The values chosen were
purely for illustrative purposes and not actual estimates. The results are quite sensitive
to price variatons which appear to have a large impact on soil nitrogen and phosphorus
levels.

The graph show declining soil nutrient values it should be noted that in the early
stages nitrogen is limiting and later phosphorus and that the optimal allocation rule will
accordingly change. Which equilibrium occurs for the factor that is not limited depends
on a switching function similar to that used in bang-bang control. I have not evaluated
this function in this paper but it involves a simple extension to the analysis.
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Optimal Soil nutrient Balances  with the Law of the Minimum
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Figure 1: Optimal Soil Nutrient Balance
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5 Possible Extensions IViability vs. Sustainability

How can soil resources be managed in a lasting way is question that is playing an increas-
ingly important role in agricultural practice. One way of examining this question is to view
the problem in terms of sustainability, e.g. maintenance of the stock of natural capital.

An alternative to the notion of sustainability is the concept of viability. Instead of
managing resources sustainably it might be preferable to manage soil resources viably.
\Viability theory is a mathematical theory that o�ers metaphors of evolution of macrosys-
tems arising in biology, economics, cognitive sciences, games, and similar areas, as well
as in nonlinear systems of control theory"( 1991, p. vii). Viability can be viewed as an
o�shoot of control theory based on the theory of di�erential inclusions. s in addition to
the question as to what the optimal level of fertilizer application and carryover should be.
The fertilizer carryover can be posed di�erently from the perspective of viability theory.
The basic idea behind viability theory is that not all trajectories of the system are possible
but subject to constraints - hence only some trajectories are viable. Secondly, controls, e.g.
fertilizer application should be kept constant over-time unless the viability of the system
is at stake. this is known as the inertia principle.

Viability theory should be contrasted with the di�erential inclusion approach to optimal
control in that the approach is not based on optimization. Two main solution concepts are
used in viability theory - smooth viable solutions and heavy viable solutions.

A system is said to be viable if there is asubset of F such that the trajectory always
remains within this subset.

Analysis of sustainability and farm viability could be carried out by extendsing the
di�erential inclusion approach used in this paper to a setting involving viability theory.

6 Possible Extensions II: Variable Rate Application

Technology and Precision Farming

Variable rate application technology, sometimes known as precision farming invlolves ap-
plication of fertilizer at di�erent rates at di�erent locations depending on variations in
soil chemistry at these di�erent locations. Thus this approach to fertilizer application re-
quires taking spatial heterogeneities in soil chemistry into account. How can the fertilizer
carryover problem be addressed under these circumstances?

A spatial model could be introduced by representing fertilizer carryover in terms of a
partial di�erential equation in time and space. The optimal fertilizer carryover problem
would then involve optimal control of a partial di�erential equation. The di�erential inclu-
sion approach used here would then need to be modi�ed to incorporate partial di�erential
inclusions. This would be the case regardless of whether an optimization or a viability
approach is taken.

Whilst the analysis would be more complicated, the fact that the approach presented
here can conceivably be extended to the spatial setting is testament to the strength and
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exibility of the di�erential inclusion approach to analysing control problems. The imple-
mentation of this approach will be left to a later paper.

7 Conclusion

In this paper I have attempted to draw together to strands of the literature on the impact
of fertilizer application on crop yields and to develop uni�ed framework for the analysis
of the economics of agricultural production in a dynamic setting based on the di�erential
inclusion approach to optimal control theory. The approach is relatively intuitive involving
only a few steps and capable of being implemented simply in a spreadsheet using commonly
employed numerical methods. The results obtained here are only preliminary and it would
seem desirable to make a comparison of a number of di�erent fertilizer carryover functions.
Nevertheless the simplicity of the model presented facilitates the presentation of a \new
technique" for the solution of problems that would otherwise be considered intractable.

References

Aubin, J-P. (1990) A Survey of Viability Theory, SIAM Journal of Control and Optimiza-
tion, Vol. 28, No. 4, pp. 749-788, July.

Aubin, J-P. (1991) Viability Theory, Birkh�auser, Boston

Clarke, F.H. (1983) Optimization and Nonsmooth Analysis, John Wiley and Sons, New
York

Godden, D.P. and Helyar, K.R. (1980) An Alternative Method for Deriving Optimal Fer-

tilizer Rates review of Marketing and Agricultural Economics 48 (2), pp. 83-97.

Heady, E.O. and Dillon, J.L. (1961) Agricultutral Production Functions, Iowa State Uni-
versity Press, Ames.

Kennedy, J.O. (1986) Rules for Optimal Fertilizer Carryover: An Alternative Explanation,
Review of Marketing and Agricultural Economics, Vol. 54, No. 2, August, pp. 3-10.

Kisielewicz, M. (1991) Di�erential Inclusions and Optimal Control, Kluwer, Dordrecht.

Lanzer, E.A. and Paris, Q. (1981) A New Analytical Framework for the Fertilization Prob-

lem, American Journal of Agricultural Economics 63 (1), pp. 93-103.

Paris, Q. (1992) The von Liebig Hypothesis, American Journal of Agricultural Economics,
November, pp. 1019-1028.

Reinganum, J.F. and Stokey, N. (1985)Oligopoly Extraction of a Common Property Natural
Resource: The Importance of the Period of Commitment in Dynamic Games, Interna-
tional Economic Review Vol. 26, pp. 161-173.

10


